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Abstract Monocular 3D human pose estimation has come a long way in recent
years thanks to the introduction of deep convolutional architectures. Neverthe-
less, in complex scene environments, the problem of scale ambiguity and occlusion
still pose a great challenge for current algorithms. In this work, we propose to
improve 3D human pose estimation by taking advantage of the depth informa-
tion available at train-time. More precisely, we present a privileged information
learning framework that teaches a fully convolutional network to effectively ex-
tract depth cues from RGB images. The model can then be deployed at test-time
to infer a 3D human pose based on a single RGB image. Moreover, we explore
the possibility to make use of the unlabelled portion of our data as well, since
this is inherently made feasible by our design. We conduct experiments on three
different large-scale datasets to validate the efficacy of the proposed method and
test out a variety of design choices.

1





1
Introduction

The rapid development of 3D human pose estimation algorithms in the past two
decades has enabled a wide range of possibilities. For example, modern video
game consoles use the technology for real-time motion analysis. From a sensor-
based snapshot of the current environment, the technology infers the current full-
body posture of each player. Over time, the build-in software assembles these
single-frame estimations into temporal trajectories of 3D body poses. Based on
these trajectories, the actions of the players are determined, thereby gone the
need for a physical controller. As in Figure 1.1, the pose we talk about here is
usually defined as the relative orientation and distance between adjacent body
parts on a pre-defined kinematic tree.
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Figure 1.1: Example of a skeletal tree that defines the kinematic topology of the
human body.

But the potential of 3D human pose estimation is not confined to just gaming
technologies. Sign language recognition, where pose estimation plays a major role,
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Chapter 1. Introduction 1.1. Motivation

opens the occasional possibilities of interaction and communication for the speech-
impaired [RKE20]. Driver attention monitors periodically evaluates the posture
of the driving personnel to assess the driver’s alertness and give warnings where
appropriate [XLZ+17]. Conventional motion capture systems require the subjects
to wear either optical markers or inertial measurement units in order to determine
an array of keypoint positions over time. Such a system is, despite its prevalence,
typically expensive and tedious to deploy, whereas a more affordable alternative,
on the other hand, would be to apply monocular pose estimation [MSM+20].
Yet the most crucial application of this technology lies in autonomous systems.
Similar to a game console, a service robot needs to recognize and understand
in real-time a user’s command from his hand gestures. An autonomous vehicle
monitors pedestrian actions all the time to enable timely responce under critical
situations [GPB+20]. In both scenarios, pose estimation serves as the corner
stone for more advanced cognitive functions.

1.1 Motivation

(a) Input image (b) 3D Estimation

Figure 1.2: Monocular 3D human pose estimation. The goal is to give a camera-
space estimation of the 3D pose of the person given an image and a
bounding box.

At the core of this work, we intend to improve on how 3D human pose esti-
mation in the context of computer vision is done, utilizing convolutional neural
networks [KSH12]. To be more precise, we focus on the particular sub-problem
of monocular single-person pose estimation: Given a single image at inference
time and a bounding box containing a person, this task demands the reconstruc-
tion of a full-body pose in the form of 3D skeletal keypoints in camera-space
(see Figure 1.2). Formally, the 3D pose P containing J keypoints of a person is
formulated as

P = (p1,p2, . . . ,pJ) ∈ R3×J , (1.1)
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1.1. Motivation Chapter 1. Introduction

where pj is the position of the j-th skeletal keypoint in the camera-centered
coordinate system. This is a not trivial task by any means mainly due to a
number of obstacles:

� It is inherently impossible to infer the size of a person from just a single
picture.

� Occlusion between different subjects and self-occlusion causes some body
parts to be at least partially invisible.

� Samples containing rare poses and strange camera angles tend to lead to
bad predictions.

1.1.1 Challenges

We will discuss in detail about each of these problems in the paragraphs below.

3D object space Hole Perspective image

Image plane

Figure 1.3: Classic pinhole camera model. Note that the projection of the yel-
lowish object and the reddish object onto the imaging plane leads to,
regardless of color, the same image.

Scale Ambiguity To get a whole picture on the problem of scale ambiguity in the
context of 3D human pose estimation, we need to first understand how imaging
works. In this case, it is sufficient to approximate the complicated imaging process
of a modern camera with the classic pinhole camera model (see Figure 1.3). Under
this model, every 3D point of an object in camera-space, if within the field of view
of the camera, corresponds to a pixel on the imaging plane. The image-space
location of this pixel is determined via a perspective projection. This projection
is mathematically carried out in two steps. In the first step, our 3D camera-space
coordinate (x, y, z)ᵀ is converted into a normalized camera coordinate (x′, y′, 1)ᵀ

via

(x′, y′, 1)ᵀ = (x, y, z)ᵀ · 1

z
. (1.2)
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Chapter 1. Introduction 1.1. Motivation

This essentially tries to ascertain just how far away the point would deviate
from the optical center on the x- and y-axis, if it were one unit away from the
optical center on the z-axis. The second step obtains an image space location
(u, v, 1)ᵀ by multiplying this normalized camera coordinate by the intrinsic matrix
of the camera: uv

1

 =

fx sx cx
0 fy cy
0 0 1

 ·
x′y′

1

 . (1.3)

Here fx and fy are the focal lengths of the camera and cx and cy are principal
point offsets. The former decides the number of pixels a physical unit in camera-
space covers, whereas the latter simply stipulates in pixel units the location of
the principal point relative to the origin of the image. The principal point is the
foot of the perpendicular to the imaging plane that passes through the optical
center. sx is a parameter that describes the extent of axis skew of the camera,
which causes shear distortion in the projected image. On a modern day camera
this is however negligible and simply treated as zero.

It is therefore evident that the movement of a point in camera-space bears
no impact on the location of the pixel it projects to, as long as it stays on the
line uniquely specified by its original position and the optical center. Figure 1.3
illustrates this effect: The reddish plane and yellowish plane projects onto the
same pixels on the imaging plane despite the fact that they are different objects.
Now in the context of 3D human pose estimation, this implies that there is an
inifinite number of hypothesis on how tall and far away from the camera the
subject is, that would perfectly explain why the person looks the way he is in
that image. Of course we could argue that the physical size of a human falls within
a certain range, and we may always get a rough clue of how tall the person is
from the ratio of his limbs and the relative size of other objects that appear in
the background, but we could never know for sure.

Occlusion Occlusion happens when the sight of the camera on a body part of
the subject is blocked by some other subject or himself. While a human can infer
from his experience what a plausible pose could be, such occlusions often take
away the visual evidence essential for an algorithm to make a reliable speculation.
Moreover, when two or more subjects stand close to each other, confusion caused
by the mutual presence of body parts from various people in the bounding box
makes it tricky to associate the corret body part to the subject in question.
Additionally, it may further compound matters if a bounding box is not given in
some test cases. Modern approaches typically tackle this in a top-down fashion:
A detection is performed prior to the pose inference phase to obtain a bounding
box of the subject. Since heavy occlusion often hampers the performance of the
detector, the pose estimator may fail to function properly due to a bounding box
of below-par quality. An example of these problems is shown in Figure 1.4.
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(a) (b)

Figure 1.4: Samples that feature heavy occlusion: Case-a: Subject in question is
heavily occluded by the person in the foreground. Case-b: Bounding
box contains body parts from another subject.

Rare Poses and Camera Angles Rare samples at inference time pose a great
challenge to almost all computer vision tasks [SGG16]. As is often the case, a
model that is trained to fit an unbalanced dataset exhibits a tendency to offer
the most commonplace prediction for an unfamiliar input image. Nevertheless,
by virtue of the dendroid nature of 3D skeletons, 3D human pose estimation deals
with a higher degree of uncertainty than many other visual recognition tasks. On
one hand, the model may have trouble extracting the various body parts from
visual clues on the image; on the other hand, the algorithm might simply fail to
work out a semantically correct way to place those body parts in space thanks to
the pinhole camera model we discussed above. Previous works attempt to restrict
the degrees of freedom for each skeletal keypoint either through the adoption of a
set of explicit limb-scale constraints [PZDD17] [SXW+18] or via the employment
of a hierarchical skeleton retrieval strategy [LCY18]. Despite such efforts, rare
poses and camera angles still account for a relatively large portion of total errors
at test time.

1.1.2 Further Context

On account of the challenges described in the previous section, it is a natural idea
to think of offering more information to the recognition model by introducing
other input modalities into this task. Of all the commonly available modalities,
depth information in the form of depth maps has caught the most attention in 3D
computer vision tasks. This is primarily because the ability to effectively extract
depth cues from the visual disparity between both eyes is exactly what makes
human vision so keen on recognizing 3D shapes in complex environments, or in
the context of human pose estimation, the 3D pose. [ZWD+18] and [SFEG19]
are approaches for which the incorporation of depth input led to significant boost
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in overall performance of the algorithm. From a pragmatic standpoint, however,
their methods presume the availability of depth information at inference time,
which is a harsh assumption for a great many application scenarios, where having
a depth sensor at disposal is a luxury. What we practically want instead is an
algorithm that

a is able to, at train time, improve the model by extracting valuable knowledge
from the available depth input.

b is able to, at inference time, offer a pose estimation on the basis of a single
RGB image.

A natural solution to this specific problem setup would be intuitive and has
already been explored by [VL20]. Given full depth annotation at train time, they
propose to simplify the 3D estimation task into a 2D problem plus an additional
depth map prediction step. But since depth sensors could only provide depth an-
notation for points on the front surface of any object, a direct lookup of predicted
depth values for the skeletal keypoints is never reliable, let alone situations that
involve any form of occlusion (see Figure 1.5 for an example). As such, [VL20]
chose to insert a workaround step in their design as a counter-measure.

(a) RGB image (b) Depth image

Figure 1.5: Example for an unreliable depth lookup: the depth values looked up
at the pixel locations of quite a few keypoints are far away from the
actual depth of those keypoints by virtue of self-occlusion.

1.1.3 Objectives

By contrast, we notice that this problem setup closely fits the preconditions for
privileged information learning to come into play [VI15]. In essence, privileged
information describes the auxiliary source of information provided at train time,
in addition to the regular features, to a student model by a stronger teacher model.

8
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This additional explanatory cue should, at least theoretically, offer guidance for
the student to gain the vital insight into how its teacher would approach the same
problem, despite having no access to such counselling at test time [LPBSV15].
Here in the context of 3D human pose estimation, we argue that a good piece
of privileged information could be the intermediate feature maps provided by a
teacher convolutional neural network, who has exclusive access to the depth maps
associated with each sample. A student network, on the other hand, should
process this information in a way such that it learns how to extract such rich
features on its own when only an ordinary RGB image is given as input.

The goal of this master thesis is, in the presence of fully annotated RGB-
D images, to develop a learning framework for such knowledge transfer to take
place. Moreover, since unlabeled RGB-D image pairs are available in abundance,
we explore the possibility to acquire some weak supervision from this portion
of our data as well, in the hope of a further gain in performance. We conduct
experiments on two large-scale action recognition datasets [LSP+19] [LHL+17]
and an additional test set [IPOS13] to examine whether our proposed learning
paradigm is able to overcome the aforementioned problems to some extent, and
to see how privileged information about depth could lead to changes to the way
a convolutional neural network understands an RGB image containing a human
pose.

1.2 Overview

The rest of this thesis will be organized as follows. In chapter 2, we will recapit-
ulate the various basic aspects of deep learning and, in particular, convolutional
neural networks, so as to show that the feasibility of our proposed method is
well-grounded. In chapter 3, we briefly address the various topics closely related
to this thesis and discuss how previous works approach similar problems.

In chapter 4, we will first give a detailed explanation of the baseline method that
is the foundation of this thesis, then go on to propose our own pose estimation
framework that facilitates knowledge transfer between a teacher and a student
model. In chapter 5, we address details on data preparation and how our learning
framework is implemented at train-time and test-time. In chapter 6, we will
present the results of various experiments we carry out and analyze whether the
impact of our proposed method meets our expectations. In the last chapter, we
will summarize the content of this thesis and conclude on the findings we make.
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2
Fundamentals

Since our proposed method is based on convolutional neural networks, we dedicate
this chapter to the various fundamental aspects of these deep artificial architec-
tures that have revolutionized computer vision for the past decade. Considering
the fact that convolutional neural networks are just a branch form of artificial
neural networks specialized for dealing with computer vision tasks, we start by
taking a look at the more general concept of the latter.

2.1 Artificial Neural Networks

Originally a mimic of the biological neural structures in a human brain, arti-
ficial neural networks today attain a ubiquity throughout the field of artificial
intelligence few in the past could have expected. From recommendation sys-
tems [FQY+18] to machine translation, from general object detection to mas-
tering the game of Go [SSS+17], these networks are capable of developing the
competence to take on tasks that require a certain level of intelligence.

2.1.1 Neurons

In contrast to its great potential, the atomic unit structures that constitutes an
artificial neural network is actually quite simple: A neural network is at its core
just a set of interconnected neurons. A neuron takes as input signals either from
the outside or sent out by other predecessor neurons and then, based on the value
of those signals, emits itself an output signal that is further propagated forward.
The output signal is typically a linear combination of the inputs plus an offset.
In the simplest case, a single neuron can serve as a tiny neural network whose
forward propagation can be formulated as

y(x) = w · x + b =
∑
s∈S

wsas + b, (2.1)

11



Chapter 2. Fundamentals 2.1. Artificial Neural Networks

where y(x) is the output signal of our neuron, x = (a1, a2, . . . , aS)ᵀ is the array
of input signal values, w = (w1, w2, . . . , wS)ᵀ is the array of associated weights
for each input signal s, b is the bias. The weights and the bias are learnable
parameters for our neuron. A illustration of a single-neuron network is given in
Figure 2.1.

Figure 2.1: Example of a single-neuron artificial neural network. The grey squares
to the left of the neuron represent input signals. The white square to
the right of the neuron stands for the neuron’s output.

2.1.2 Gradient Descent

We want the neuron to automatically adjust its parameters so that for any given
array of input signals, the neuron’s output approximates the value of a target
function f that we intend to learn. To achieve this, we prepare a set of N training
samples on which the neuron learns by trial and error. Each sample i ∈ N on this
training set is a tuple (xi, ti), where xi is the array of input signals and ti is the
training label. Naturally it is guaranteed that f(xi) = ti holds for all samples i on
this set. We enumerate over all the samples and measure for each sample, based
on a chosen criterion, the extent by which the neuron’s output deviates from the
associated target label. We call the arithmetic mean of these measurements the
network’s evaluation loss on this training set. A typical criterion for quantizing
this loss is the mean squared error function:

E(y) =
1

N

N∑
i=1

(y(xi)− ti)2. (2.2)

Now that we have a measure of how inaccurate the network’s output is with re-
spect to the target labels, we want to optimize the parameters of our network such
that this loss is gradually cut down. One common way to do this is to perform
gradient descent on the parameter space of our model. Essentially, the gradient
of an error function with respect to a parameter points to the direction in which
the error increases the fastest. By repeatedly pushing our parameters slowly in
the opposing direction of the gradients, we effectively adjust our model in a way
such that this evaluation loss subsides over time. The formulation for updating

12



2.1. Artificial Neural Networks Chapter 2. Fundamentals

the weight associated with input signal s ∈ S under such an optimization scheme
is

w′s = ws − η
∂E

∂ws

, (2.3)

where the learning rate η is a hyperparameter that decides the extent by which
we shift our weight parameters in a single iteration. The update of the bias for our
neuron is carried out in similar fashion. This update scheme is repeated for a large
number of iterations until, ideally, the network reaches a state of convergence,
where the evaluation loss visibly stops to decrease further but oscillates around
a small value instead.

2.1.3 Multi-layer Perceptron and Activation Functions

Our single-neuron network discussed above is probably able to approximate a
linear target function quite well, but there’s a limit to what a single-neuron can
achieve due to its linear nature. To learn a more complex target function, we
need to stack up multiple layers of these neurons, where each neuron in one layer
takes as input the signals emitted by all neurons in the previous layer. This is
the general idea behind multi-layer perceptrons (see Figure 2.2 for an example).
For easier explanation, we refer to the array of signals input to and output from
a network layer as features from this point on.

By organizing neurons in a hierarchical fashion, it is hoped that neurons at
the front would learn to extract useful features, based on which neurons at the
back are able to confidently decide on what the final output signals should be.
Such an organization, however, poses a great obstacle to the optimization of the
model. Whereas derivation of the gradients is straightforward for a single-neuron
network, in a multi-layer perceptron, a weight parameter associated to a certain
connection between two neurons can exert an influence on the final evaluation
loss via an exponential number of paths each consisting of a few neural con-
nections. To separately derive the gradient components by tracing back along
each path and then aggregate them for the final weight update would induce an
unmanagable computational cost. To tackle this problem, a dynamic program-
ming algorithm termed the back propagation was designed. In this algorithm,
the gradients of the evaluation loss with respect to the output features of each
layer is computed in reverse order. Since the layers are arranged in a fixed se-
quence, by the time the derivatives with respect to the output features of one
layer have been calculated, all the ingredients needed for the derivatives of the
previous layer to be computed are already there. As a result, the gradients can
be propagated layerwise backwards while no redundant calculations take place.
After the derivatives with respect to the output features of all layers are ready,
gradients with respect to the network parameters are worked out and the weight
updates are carried out as before.

13



Chapter 2. Fundamentals 2.1. Artificial Neural Networks

Despite increased strutural complexity, simply piling up more layers of neurons
won’t bring in much improvement, because a linear combination of a set of linear
functions is indeed again a linear function. What we need is to apply a filter
function on the output signal of each neuron that introduces some non-linearity
into our network. Such a filter function is called an activation function and is
typically differentiable so that the gradients of the loss may still be derived for
each trainable parameter after its adoption.

Figure 2.2: Example of a multi-layer perceptron. Multiple layers of neurons are
assembled together to enable better expressiveness.

The choice of activation functions bears a significant impact on the learning
capacities of neural networks. For computer vision tasks the logistic sigmoid
function

σ(a) =
1

1 + e−a
(2.4)

or the hyperbolic tangent function

tanh(a) =
ea − e−a

ea + e−a
(2.5)

were assumed to be the default selection until a few years ago. However,
both of these functions demonstrate saturated behaviour for input values of large
magnitude. At the same time, the derivative of both functions rapidly approaches
zero as the input value edges towards infinity on both ends. For deep networks
that consist of a huge number of layers, this leads to the vanishing gradient
problem: The gradients of the loss with respect to the trainable parameters of
the earlier layers become so small that they can’t be numerically represented
on modern computational devices. As a consequence, the network suffers from
precipitate convergence and fails to closely fit the training data.

To circumvent this issue the rectified linear activation function

relu(a) = max(0, a) (2.6)

and its variations [XWCL15] were introduced. Not only does this rectifier func-
tion preserve linear behaviour for positive input values, which is crucial for keeping

14



2.1. Artificial Neural Networks Chapter 2. Fundamentals

the gradients at a healthy scale and faster convergence, it induces less computa-
tional overhead than conventional activation functions as well. And thanks to its
non-linear property, a network that implements such an activation function for
its hidden layers could still enjoy the added benefit of better expressiveness.

It is worth noting that training efficacy is closely dependent on the way a neural
network’s trainable parameters are initialized as well. Conventionally, the net-
work parameters are initialized to be some small random value around zero. This
is because an initialization with any constant value will lead to symmetric gradi-
ents for all network parameters across the same layer on each iteration, resulting
in a restricted search on parameter space and thus a degenerate optimization
process. For different choices of the activation function, the best way to intialize
the parameters may differ, but the general rule of thumb is that, for each layer,
the variance of the output features should remain close to that of the input. For
example, given the fact that the previous layer and the current layer contains m
and n neurons respectively, a glorot-initialization [GB10], where each weight is
drawn from the uniform distribution

U [−
√

6

m+ n
,

√
6

m+ n
], (2.7)

is often preferred when the logistic sigmoid function is employed, primarily
due to the function’s limited window of high sensitivity around zero. On the
other hand, a he-initialization [HZRS15], where each weight obeys the normal
distribution

N [0,

√
2

m
], (2.8)

is nowadays the defacto standard for networks that adopt the rectified linear
function, since for this activation function the linearity assumption around zero
does not really hold.

2.1.4 Training Strategies

In Subsection 2.1.2 we employed the practice where, on each iteration, we com-
pute the average evaluation error for the current model on the whole training
set before the gradients are derived. Such a strategy is called batch learning.
Conceptually, batch learning shifts the model parameters in the exact direction
of the global optimum, since the gradients were derived from an average error
computed over all samples from the training set. In practice, however, due to the
non-convexity of the optimization domain, such a strategy often causes the model
to be prematurely stuck in a local optima. Moreover, modern training sets for
visual recognition tasks typically contain at least tens of thousands of image. The
limited memory capacity of commonly affordable computational devices means
that performing batch learning is most of time far from a tractable practice.

15



Chapter 2. Fundamentals 2.1. Artificial Neural Networks

Stochastic learning provides an alternative. Instead of presenting all samples
at once, the stochastic method sweeps through the training set and directly per-
forms an update to the model parameters based on each individual sample. The
gradients derived from single-sample evaluation tend to be noisier and may cause
the model to move through parameter space in a swaying manner, but from time
to time, they might also kick the model out of the local maxima that hinders
further improvement.

Mini-batch learning strikes a balance between the two strategies above by pro-
cessing a small set of randomly picked samples each time before a parameter
update takes place. On one hand, the method exhibits better stability than
stochastic learning due to the fact that the gradients used for model updates are
averaged out over multiple samples. On the other hand, a mini-batch is still able
to provide the vital randomness that helps a model avoid suboptimal basins of
attraction. Additionally, since a mini-batch can most of the time fit into memory
without a problem, the method opens the possibilities of vectorized computation,
which greatly reduces the overall training time required by modern architectures.

2.1.5 Training Configurations

For neural networks, a successful training session relies closely upon chosing the
right configuration from a range of options. For example, the learning rate de-
termines the step size of a parameter update in the opposite direction of the
gradient. The optimal magnitude of the learning rate used for each step is tricky
to grasp. A large value allows the model to learn fast but may cause ocillation
around the optimum in the final stages of the training process, whereas a small
value guarantees a steadier learning curve at the risk of possibly having the model
prematurely stuck in a suboptimal solution on the optimization surface. As such,
a common practice is to gradually cut down the learning rate according to a pre-
defined schedule as the training progresses, and there are a number of ways to do
this:

� A step-decay scheduler multiplies the learning rate by a small factor every
few epochs.

� A time-decay scheduler sets the learning rate to be the reciprocal of a linear
function on the number of past epochs.

� An exponential-decay scheduler tunes down the learning rate with a nega-
tive exponential function on the number of past epochs.

Here an epoch refers to a full pass through all samples in a training set. Se-
lecting a best policy to schedule the learning rate usually depends on the task at
hand.

Another important decision towards the optimization of a neural network is how
the parameters are updated based on the gradients. The classic update policy
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for stochastic gradient descent is decribed by Equation (2.3), but more advanced
approaches have been proposed to enhance the efficiency of the parameter search.
For example, the momentum method proposes to keep track of parameter updates
that took place in the past and use this knowledge to guide future updates. This
is done by keeping in memory an accumulated average of the shift vectors for
previous iterations. A newly computed shift vector is always incorporated into
this inertia vector before the latter is then used for the next update. Since this
inertia vector essentially points in the direction of the steepest descent on average,
such a strategy may dampen unnecessary oscillations and is often able to help
the model steer through flat regions or steep curvature in the search space.

As an upgrade to the momentum method, the Adam optimizer proposed by
[KB14] makes the further observation that, for deep architectures, the magnitude
of gradients for layers close to the entrance of the network may vary significantly
from those for layers close to the exit. A sensible optimization process should,
therefore, consider this difference and try to update the parameters based on a
somehow normalized version of the gradients. To achieve this, the Adam op-
timizer maintains for each layer a running estimation on the averaged squares
of the gradients as well. It then applies this term to normalize the inertia vec-
tors discussed above, before an actual update is executed. Since its release, the
standard Adam optimizer has received broad recognition throughout the deep
learning community.

2.2 Convolutional Neural Networks

While multi-layer perceptrons are powerful structures at appoximating functions
of certain complexity, their application to the field of computer vision has been
confronted with great obstacles. This is mainly by virtue of the fact that in a
multi-layer perceptron, a neuron receives input from each neuron in the previous
layer and outputs its activation signal to all neurons in the next. For a typical
classification task, where each sample in the training set consists of an RGB
image and its class label, the only way to feed the image into our perceptron as
an input would be to flatten the image into a vector of floating point numbers.
If we assume an image is of the shape W × H × 3 and there are m neurons on
the input layer of the network, the number of trainable parameters in that layer
would be 3mWH. For tasks that require a high-resolution input, this number
will get huge and induce an intractable computational cost on the optimization
process, let alone the excessive time consumption.

2.2.1 Convolution Layer

In order to reduce the number of parameters in each layer without losing the
dependencies between neurons that are critical for understanding an image, the
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convolution operation, or the convolution layer, was introduced. Taking inspi-
ration from the neural structures inside the human visual cortex, each neuron
in a convolution layer is only connected to neurons from the previous layer that
are within a small local neighborhood. Moreover, since the connection rules are
identical for all neurons on the same layer, the learnable weights associated with
these connections are shared as well. This results in a forward propagation that
is fundamentally different from the one that happens on a fully-connected layer.
Essentially, computing the output, or feature map, of a convolution layer is equiv-
alent to sliding a filter over all possible image locations and each time calculating
a weighted sum of the pixel values temporarily covered by this filter. It is worth
noting that in such a window-scan, the stride with which the filter advances
does not necessarily have to be one. A convolution operation for which the filter
moves at least two units each time is called a strided convolution. Formally, the
convolution operation is defined as

G[u, v] = T ∗ F =
C∑
c=1

2A+1∑
i=1

2B+1∑
j=1

T[c, i, j]F[c, u+ i, v + j], (2.9)

where G is the output feature map, T is the filter of shape C×(2A+1)×(2B+1),
F is the input image or the feature map of the last convolution layer that contains
C channels. To be able to extract more information and thus allow for better
expressiveness, usually more than one filter is applied at the same time. These
individual filters are combined into what is called a convolution kernel, which
is essentially a 4-dimensional tensor that can be slid over the image space in
a highly parallelized manner on modern computational devices. The output of
these filter operations are combined as well into a multi-channel feature map
that is passed further forward. For instance, if a convolution kernel of the shape
K×C×(2A+1)×(2B+1) is applied to an input of the shape C×H×W , the output
features of this convolution operation will be of the shapeK×(W−2A)×(H−2B).
An illustration of the convolution operation is given in Figure 2.3.

Despite a reduction by orders of magnitude in the number of trainable param-
eters, the design of convolutional structures enables the network to capture the
spatial dependencies vital for extracting from small local areas visual cues like
corners and edges. However, it takes more information that those local patterns
to recoginize general semantic concepts from an image like a vehicle or a horse.
In a biological vision system, high-level cognitive functions are achieved via the
cooperation of a large number of neurons taking on different tasks. This is im-
plemented analogously in a convolutional neural network. By stacking multiple
convolution layers in a row, neurons in later layers have access to information
about a broader part of the image by gathering the features output by the small
group of neurons in front of them. This allows for the detection of more com-
plex appearance structures like the wheel of a car or the window of a house, and
eventually the recognition of entire semantic objects.
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Figure 2.3: Example of a convolution layer. Values on the output feature map is
computed via a window-scan with the kernel. Note that the spatial
dimensions of the feature map are shortened by twice the half-width
of the kernel after the filter operation.

2.2.2 Pooling Layer

But convolution layers alone wouldn’t be powerful enough to make up a network
capable of such visual cognition. This is because in a network that comprises only
convolution layers, even the neurons in the last layer won’t have access to local
patterns collected from distant areas, unless the network is extremely deep. We
call the portion of the original image that a neuron is able to gather information
from its receptive field. Empirically, we want the neurons in middle-level layers to
already have a sizable receptive field, so that a considerable part of the network
is dedicated to processing global features - features output by high-level neurons
who already sees the whole picture before making a decision. This is the reason
behind the introduction of pooling layers.

A pooling layer spatially downscales a feature map by segmenting the image
space into small patches and reducing the local features on each patch into a
single value. The reduction operation is done separately but in the same way for
each channel of the input features. There are two simple options for this reduction
operation: Either the average or the maximum value of the input features on the
same patch is taken as the output. Figure 2.4 demonstrates an example for the
2× 2 pooling operation.

Pooling layers are an integral part of modern convolutional architectures for
a variety of reasons. On one hand, by placing a pooling layer behind every
convolution layer, not only do the receptive fields of neurons in successive layers
increase exponentially, a rapid decline in the overall computational effort for the
back propagation of gradients is achieved as well. On the other hand, since a max-
pooling layer always chooses the dominant value from a local neighborhood as its
output, its usage encourages the network to produce translation- and rotation-
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Figure 2.4: Example of a pooling layer. Each pixel entry on the output feature
map is associated with a patch of pixel entries on the input. The
output features are computed as the average or maximum value over
the associated input patch.

invariant features, which are valuable to a range of visual recognition tasks. This
is also partly why max-pooling is often preferred over average-pooling in modern
convolutional networks.

2.2.3 Batch Normalization

One of the reasons why deep convolutional neural networks are difficult to opti-
mize is that, after the loss is evaluated for a mini-batch of training samples, all the
network parameters are updated simultaneously. This implies that every layer
is updated under the assumption that the other layers remain unchanged, which
isn’t the case. For this cause, the distribution of input features for each network
layer is likely to change everytime a new mini-batch arrives, which provokes the
network parameters to oscillate quite a bit at the beginning stages of the training
process. This undesired distribution change in the input features is also known
as the internal covariate shift.

To mitigate this issue, [IS15] propose to standardize per mini-batch the input
features before they are fed into activation layers. Specifically, a batch normal-
ization layer calculates per channel the mean and standard deviation of the input
features across all samples in a mini-batch. Separately for each channel, the
operation then rescales the input activation values to have a mean of zero and
a standard deviation of one. To enable better flexibility in pratice and allow
the subsequent layers to work on features that display their preferred statistics,
extra learnable parameters γ = (γ1, γ2, . . . , γC)ᵀ and β = (β1, β2, . . . , βC)ᵀ were
introduced. The formulation for a batch normalization on channel c is therefore
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G[c, u, v] =
F[c, u, v]− µc√

σ2
c + ε

· γc + βc, (2.10)

where G and F are the input and output features for a particular sample, u
and v are coordinates on the spatial axes, ε is a small value added for numerical
stability, µc and σc are the mean and standard deviation of the respective chan-
nel. Additionally, since at test time the availability of mini-batch statistics can
not be presumed, it is common practice to maintain a running mean and variance
on the training samples and then apply these statistics on test samples. As has
been proved by a wide range of research, the application of batch normalization
layers is able to prevent the input statistics for convolution layers from chang-
ing drastically between subsequent mini-batches and thus noticably stabilize the
training process.
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Figure 2.5: Example of a batchnorm layer working on a mini-batch of four sam-
ples. Note that the normalization is performed across all pixels on
the same feature channel over all samples. Different feature channels
are handled independently.

2.2.4 Common Architectures

The operations introduced up till this point can already make up deep convolu-
tional architectures capable of a learning capacity to handle a variety of visual
recognition tasks. In the following we will briefly discuss about a few classic
models.

The VGG-Net presented by [SZ14] was among the very first attempts to apply
convolutional neural networks for large-scale image classification. A visualization
of the model is given in Figure 2.6. The authors of this paper append to the
end of the convolutional stage of the network a number of fully connected layers.
These layers work on the flattened feature output of the last convolution layer
and separately predict a probability on the class membership of the input image
for each potential class. Compared to convolutional models proposed by earlier
works, VGG-Net made two novel design choices that enabled a breakthrough in
the benchmarked classification accuracy on imagenet [DDS+09]. On one hand,
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the depth of the architecture is more than doubled compared to the previous
AlexNet model [KSH12] thanks to the adoption of rectified linear functions. On
the other hand, only 3×3 kernels are utilized for a VGG-Net’s convolution layers,
which greatly reduces the number of trainable parameters in the model and speeds
up the training process. But thanks to its great depth, the model is still able to
maintain a large receptive field for neurons at the back. These design principles
became indeed the standard for future architectures.

Figure 2.6: One variation of VGG-Net that contains 11 trainables layers. Each
cuboid represents either the initial image or the multi-channel feature
maps output by the convolution and max-pooling layers. The spatial
and channel dimensions are displayed on logarithmic scales. The fully
connected layers at the end of the model are omitted.

A larger number of stacked layers may enhance the expressiveness of a convo-
lutional network due to an enlarged parameter space, but only up to a certain
point. Over that mark, a further increase in depth begins to damage the per-
formance because gradients start to vanish for layers in the front. This was the
bottleneck for VGG-like structures and was addressed by [HZRS16] via the in-
troduction and stacking of residual blocks (see Figure 2.7 for an example). In a
residual block, features either pass through a few convolution layers in succession,
or totally ignore these layers and only go through a 1× 1 convolution for channel
alignment purposes. The features that reach the end of both paths are simply
joined via a pixelwise summation. Despite its concision, this structural modifi-
cation has proven to be effective in countless experiments. The additional path,
referred to as a skip connection, allows the gradients to propagate backwards
without rapidly shrinking in magnitude, which enables the layers to the front of
the network to keep on updating itself even when the evaluation loss comes down
to a small value as the training proceeds. Taking full advantage of this property,
the standard ResNet architecture was designed to be made up of only deep chain
structures that each contains a sequence of residual blocks and led to significant
advances on various recognition benchmarks.
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3x3conv 3x3conv

F(x)

x

x F(x)+x

Figure 2.7: Example of a residual block implemented in ResNet. The additional
skip connection at the top allows the model to learn only the residual
part of an underlay target function.

But convolutional networks are more than just powerful feature extractors. For
a wide range of applications including general object detection, image segmenta-
tion and human keypoint detection, specialized convolutional architectures that
are adapted from classic model designs can be trained and applied at inference
time in an end-to-end manner. One example of this is the fully convolutional net-
work proposed by [LSD15] to take on the task of semantic image segmentation.

In this task, the goal is assign a class label for each pixel on a given image.
However, since the features that pass through a convolutional network is typically
downscaled multiple times thanks to pooling layers and convolutions with stride,
giving a pixelwise prediction is not straightforward. Long et al. propose to tackle
this problem by upsampling the feature maps with transposed convolution layers.
A transposed convolution does the exact opposite of a normal convolution and
increases the spatial resolution of a feature map when a fractional value is set as
the stride. By stacking multiple such layers in a row, a prediction map that is of
the same resolution as the original image can be reconstructed at the end of the
network. Pixelwise loss evaluation is then carried out to offer guidance for the
parameter update. Taking inspiration from [LSD15], a large number of similar
network designs were proposed later for visual recognition topics that demand
dense prediction maps.
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3
Related Work

In this chapter we will address the various topics closely related to our work. We
begin this chapter with a glance into the more well-studied problem of monocular
2D human keypoints detection. We then delve into the focus of this work, which
is monocular 3D human pose estimation. Properly solving this 3D subproblem
entails dealing with a number of issues that come along with the added dimen-
sion, and we will show how a number of previous works approach this topic. In
particular, we will introduce the work [SLAL20] by Sarandi et al. in this sec-
tion, which lays the foundation for this master thesis. We conclude this chapter
with a view into the realm of privileged information learning and, specifically,
how this concept has been applied to enable the proper handling of several visual
recognition tasks.

3.1 Monocular 2D Human Keypoints Detection

In monocular 2D human keypoints detection, an algorithm predicts an image-
space coordinate for each skeletal keypoint of all person instances within a sin-
gle image. This task bears some resemblance to semantic image segmenta-
tion [CPK+14], in the sense that it requires a dense prediction for each pixel
on the input image. Nevertheless, a key difference lies in the fact that in 2D
human keypoints detection, when multiple subjects jointly appear in the same
image, an assignment of each detected keypoint to one of the person instances
is needed. In general, the majority of recent methods fall into two categories in
their approach to this assignment problem.

3.1.1 Top-down Approaches

The first family of methods circumvent an association attempt as a whole. They
employ a pipeline that consists of a detection stage and a separate pose inference
stage. The detection stage gives a bounding box for each person instance and
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then crops out the image content within. The second stage takes this image patch
and, under the presumption that only a single person is present, gives a single
coordinate prediction for each joint. One classic implementation of such a strategy
is the work by Papandreou et al. [PZK+17]. In the first stage, they directly apply
a Faster R-CNN [RHGS15] detector to generate person detection boxes. In the
second stage, they propose a fully convolutional ResNet architecture that, based
on box proposals delivered by the first stage, predicts jointwise heatmaps and
2D offset-maps. Ideally, a heatmap should store the probabilities with which
the respective joint falls within each pixel’s vicinity, whereas the 2D offset-map
is supposed to store per-pixel a 2D vector that points from that pixel to the
groundtruth joint location. At inference time, these two maps are fused into a
highly localized activation map via a bilinear voting procedure. An illustration
of this voting process is given in Figure 3.1. The peak locations of these final
activation maps are then determined and assembled as the final pose prediction.

Figure 3.1: Voting procedure proposed by Papandreou et al. [PZK+17]. Every
heatmap pixel casts a vote to the specific sub-pixel location its offset
vector points to, with a weight equal to its confidence score. The pixel
values on the final activation maps are then computed via bilinear
interpolation.

3.1.2 Bottom-up Approaches

The second group of methods address the keypoint assignment problem in a
bottom-up fashion. In a first step, they detect and gather keypoint candidates
of every type, regardless of their ownership. In the second phase, they try to
establish connections among these keypoint candidates, such that each group
of associated keypoints form a full skeleton instance. The OpenPose keypoint
detector [CSWS17] proposed by Cao et al. is a state-of-the-art embodiment of
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this design paradigm. They build their work off the back of [WRKS16] and make
use of a fully convolutional architecture that consists of multiple prediction stages.
Each prediction stage tries to refine the predictions of its predecessor. Figure 3.2
visualizes their model design. The novel aspect of this work is that they propose
to regress what they call 2D part affinity fields on top of the usual jointwise
heatmaps. Each part affinity field correspond to a single arc on the kinematic
tree, which in most cases represent a bone that connect two joints. According
to their design, each spatial location on a part affinity field stores either the null
vector or a unit vector that points from the start of the target bone to its end,
provided that the location is covered by an instance of that bone in the given
image. In the second stage of the inference pipeline, they compute association
scores between each pair of candidate joint instances that share a bone in the
kinematic tree. This is achieved by calculating a path integral between the two
joint candidates on the target bone’s part affinity field. Based on these association
scores, the hungarian algorithm is applied to establish optimal matches between
joint candidates on either end of a target bone. These confirmed bone instances
then go on to make up a full skeleton instance for each subject. Notably, their
method can easily be extended to incorporate depth input like in [MGVCO18]
and achieve comparable performances.

Figure 3.2: Model architecture employed by Cao et al. [CSWS17]. The multiple
two-branch prediction stages feed on general features as well as joint-
wise heatmaps and part affinity fields output by the previous stages.
This repeated design pattern gradually refines the dense prediction
quality.

3.2 Monocular 3D Human Pose Estimation

The transition from image-space to camera-space makes monocular 3D human
pose estimation a much harder task than its 2D counterpart in a number of
aspects:
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� The added degree of freedom for each skeletal keypoint leads to a signifi-
cantly larger solution space.

� 3D points in the camera coordinate system and 2D locations on an image
only satisfy a loose form of spatial correspondence.

� Candidate poses of different scales and at different distances to the camera
may project to the same image.

� Different articulations of the same person at the same distance to the camera
may project to the same image as well.

3.2.1 Direct Coordinate Regression

Several methods have been developed in recent years that build on the rapid
improvement in image-space estimation since the adoption of deep convolutional
networks. Dabral et al. [DGM+19] attach a 3D lifter module to the back of a stan-
dard Mask R-CNN [HGDG17] framework. The 3D lifter module [MHRL17] is a
simple multi-layer perceptron that, agnostic to image features, converts 2D image
coordinates to a 3D root-relative skeleton. Figure 3.3 illustrates their approach.
Similarly, Zhou et al. [ZHS+17] propose to regress 2D keypoint activation maps
as a first step. These activation maps are then combined with general features
and fed as input to a depth regression module that outputs root-relative depth
values for each joint. The work by Mehta et al. [MSM+19] also falls into this
category. They install a second branch onto the 2D keypoint detection frame-
work in [CSWS17] that predicts a 3D bone vector field for each joint. This vector
field is supposed to encode 3D metric-space displacement vectors that connect a
joint to its immediate neighbors on the kinematic chain. At inference time, they
lookup the displacement vectors stored at the respective pixel locations predicted
for each joint and deliver this information to the fully connected lifter module as
additional evidence.

3.2.2 Volumetric Heatmaps

Methods described above presume a strong 2D keypoint detector as their founda-
tion. In practice however, scene background variations and occlusion may cause
the 2D keypoint detection to fail, thus lead the 3D estimation astray. The other
group of methods try to circumvent numerical coordinate regression as a whole.
To this end, they discard the 3D lifters and instead train a fully convolutional
network to predict dense localization probabilities in a discretized space.

[PZDD17] is amongst the first approaches to test out the possibilities of a
2.5D volumetric heatmap representation. In such a representation, each discrete
slice along the z-axis is a 2D confidence map spatially aligned with the input
image. The assoicated slice index, however, translates to an actual z-coordinate
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Figure 3.3: 3D pose estimation framework proposed by Dabral et al. [DGM+19].
In order to directly regress 3D root-relative coordinates, a fully con-
nected lifter module is appended to the end of the Mask R-CNN
branch for 2D keypoint detection.

in camera-space. They train a stacked hourglass architecture to produce such
volumetric representations at multiple prediction stages, each time with an in-
crease in depth resolution. At test time, the grid location where the peak value
resides on each heatmap is taken as the prediction for that specific joint. Sun et
al. [SXW+18] build on their idea and introduce the soft-argmax operator into the
framework. This fully differentiable operator computes an average of all voxel
grid coordinates as the final prediction, weighted by the activation values stored
in the respective heatmap entries. Such a practice lifts the limitation on infer-
ence precision caused by a finite heatmap resolution and allows for an end-to-end
framework at both train-time and test-time.

Figure 3.4: Nibali et al. [NHMP19] use axis permutation to transition between
different views of the same feature blob.

The marginal heatmap regression framework proposed in [NHMP19] is another
example of this genre. They propose to predict marginal heatmaps that encode
the same localization information as the volumetric representation in [PZDD17],
but induce lower computational expenses. In their design, the features produced
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by the backbone of the fully convolutional architecture undergo axis permutation
before they are delivered to the respective marginal heatmap regression modules.
Figure 3.4 visualizes such an operation. This axis permutation enables a transi-
tion into separate views of the same feature blob and essentially allows for the
backbone to aggregate depth cues into the feature maps. At inference time, joint
coordinates for each axis are computed from the marginal heatmaps via again
the soft-argmax operator.

The aforementioned approaches still face limitations since they do not di-
rectly address the issue of scale ambiguity. In particular, the predicted x- and
y-coordinates lie in image-space, whereas the root-relative z-coordinate lies in
metric-space. The true depth of the root joint and the camera intrinsic matrix
are therefore required for the full reconstruction of the root-relative skeleton. Un-
der circumstances where root joint information isn’t available, its depth value can
only be determined in least squares fashion based on empirical statistics about
bone length. Such anthropometric heuristics fail, however, in the presence of
subjects of diverse heights. As such, Istvan et al. [SLAL20] propose to regress a
volumetric heatmap whose entries directly correspond to metric-space grid vox-
els. That is, the central coordinate of each grid cell is measured in millimetres
on all three dimensions. Such a design not only encourages the convolutional
network to extract scale and depth information based on appearance cues, but it
also opens the possibility for the model to implicitly reason about joints that fall
outside the field of view of the camera. We take their method as the foundation of
our pose estimation framework. A detailed desciption of their inference pipeline
is given in Section 4.1.

3.3 Privileged Information Learning

In the context of machine learning, privileged information refers to the train-
time-only soft labels provided by a teacher model to a student model. These
additional informative cues encapsulate how the teacher manipulates the various
resources at its disposal and should, ideally, aid the student in achieving a similar
level of expertise in the learning task at hand that is not attainable otherwise.
In a sense, the knowledge distillation framework [HVD15] proposed by Hinton
et al. is an instance of this learning paradigm, with a special focus on model
compression. In particular, they let a teacher model, compute-intensive, share its
intermediate results every step of way through its task handling process. In the
meanwhile, a student model, less complex, try to closely replicate these mid-level
outputs when given the same task input. For deep learning models, this stepwise
guidance allows the student to closely mimic the teacher’s behaviour and converge
to better solutions on its own parameter space.
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Figure 3.5: Supervision transfer framework proposed by Gupta et al. [GHM16].
Supervision is transferred from one modality to another for which
there are paired images.

3.3.1 Supervision Transfer

And yet there’s more possibilties. Especially under the circumstance where there
is an inconsistency in the input modalities between train-time and test-time, priv-
ileged information learning can be applied to transfer knowledge between models
that accept distinct inputs. [GHM16] is such an example. They introduce the con-
cept of supervision transfer, which caters to the demand on deep learning models
that work with modalities with scarce annotations. A graphical illustration for
their method is given in Figure 3.5. Specifically, they assume the existence of a
teacher network that is able to produce discriminative features for images from
a source modality with rich annotation. To transfer the supervision to a target
modality, where only a small set of labeled images are present, they prepare a
wide collection of unlabelled image pairs of either modality that describe the same
scenes. For each image of the source modality in the collection, they save the
mid-level activation maps the teacher network produces as soft labels. These soft
labels are then delivered as supervision signal to a second model, who perceives
exclusively the counterpart images of the target modality and try to reproduce
the associated features at some point in the architecture. The resultant model
can subsequently be finetuned on a small set of labeled images from the target
modality and considered ready for deployment. They test out the idea on the
task of general object detection and conclude from their results that:

� The target model trained with the supervision transfer technique is able to
produce feature representations that possess similar discriminative power
to that of its teacher.

� The learned weights on the target model serve as a great starting point for
further finetuning procedures on the target modality.
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3.3.2 Knowledge Transfer

The same strategy is employed in [HGD16] [GMM18] but with a different em-
phasis. They try to prove that there is still value in exploiting the information
carried by images from train-time-only modalities, even if there is sufficient an-
notation for the target modality. [GMM19] takes this argument a step further by
incorporating the concept of adversarial learning into their training framework.
Figure 3.6 illustrates their idea. They deal with the task of video classification
via temporal convolutional networks [FPW17]. To facilitate efficient knowledge
transfer between a teacher and a student that accept input images of different
modalities, they introduce a separate descriminator network that plays an ad-
versarial game with the student. Specifically, the student plays the role of the
generator in a conventional adversarial learning setup and attempts to generate
feature vectors that closely resembles those produced by the teacher. The dis-
criminator, on the other hand, is instructed to classify whatever input feature
vector with respect to an extended class pool. That is, the discriminator gives ei-
ther a class label prediction, when it believes that the input vector was produced
by the teacher, or a fake label, if it is convinced that the vector is a fake one
generated by the student. As has been proven in their experiments, this unique
design allows the student to extract a feature representation that not only entails
visual cues from an inaccessible modality but also possesses rich discriminative
power.

Figure 3.6: Adversarial discriminative modality distillation framework proposed
by Garcia et al. [GMM19]. The conventional entrywise distillation
loss is replaced by an adversarial game.
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4
Method

In the following, we explain the various aspects of our proposed method for
monocular 3D human pose estimation. We begin this chapter with the descrip-
tion of the baseline approach. Then we explain in detail how we propose to utilize
the depth images available at train time to improve this baseline via privileged
information learning. At last we address the multiple possibilities to modify the
estimation framework in an attempt to further enhance training efficacy.

4.1 Baseline Approach

We follow [SLAL20] and address the task of monocular 3D human pose estima-
tion by training a fully convolutional neural network to directly regress, for each
skeletal keypoint, a volumetric heatmap in metric space.

4.1.1 Network Input

The baseline method take as input a tuple that consists of an RGB image, the
bounding box of the person in question on that image and the intrinsic matrix
of the camera that took the picture. For training samples the tuple additionally
includes a ground-truth 3D skeleton in world-space and the validity masks that
describes whether each skeletal keypoint is within the field of view of the camera.

Directly cropping out the image area enclosed by the given bounding box and
feed the patch into the network is an option, but such a practice robs the model
of the perspective information crucial for prediction accuracy. For example, the
true camera-space pose of a guy who stands near the edge of the image needs to
be rotated by a small angle to align perfectly with the pose of the same guy when
he stands right at the center, even if he faces the camera and records the exact
same pose in both cases. The algorithm should be able to notice the difference
between the two and act accordingly.
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To address this, we follow [SLAL20] and perform a homographic transformation
on the input image. Specifically, we want to know how the image would look if
the camera were to face the center of the subject when the picture was taken. To
do this, we first need to know what the world-space direction of the three axes of
the camera coordinate system would be if the camera were rotated towards the
subject. Let K be the intrinsic matrix of the orginal camera configuration and
R be the rotation matrix that describes how to represent a world-space vector
under the camera coordinate system. We may compute the world-space vector
that points from the optical center of the camera to the 3D position of bounding
box center (ucenter, vcenter, 1) as

acenter = RᵀK−1 ·

ucentervcenter

1

 . (4.1)

Since we want the camera to face the center of the subject after the rotation, we
take the normalized version of this vector as the new optical axis of the camera:

anew
z = unit(acenter) =

acenter

‖acenter‖2
, (4.2)

where unit(·) is the function that normalizes a vector by its euclidean norm.
Note that this rotation should not change the camera’s upward-direction w,

otherwise the rotation may not be uniquely defined. It is then straightforward
to define the world-space direction of the other two axes based on the right-hand
rule via

anew
x = unit(anew

z ×w) (4.3)

and

anew
y = unit(anew

z × anew
x ). (4.4)

These directional vectors constitute the rotation matrix Rnew of the updated
camera configuration, which, along with the static camera position t, describes
how to transform a world-space coordinate pworld to a coordinate pcamera in the
updated camera’s coordinate system:

pcamera = Rnew(pworld − t), (4.5)

where

Rnew = (anew
x , anew

y , anew
z )ᵀ. (4.6)

This is exactly what we do to the world-space groundtruth skeleton that is
provided for each training sample, in order to obtain the camera-space coordinates
(p∗1,p

∗
2, . . . ,p

∗
J) that we need later for supervision purposes.
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Now that we have obtained the extrinsic parameters for our updated camera
configuration, we have all the resources needed for the homographic transfor-
mation. If we simply allow the intrinsic matrix K to remain unchanged, a pixel
location (unew, vnew, 1)ᵀ on the projected image would correspond to pixel location

uv
1

 = KRRᵀ
newK

−1 ·

unewvnew

1

 (4.7)

on the original image. The projected pixel value can then be simply determined
via a bilinear interpolation over adjacent pixel values near (u, v, 1)ᵀ on the original
image. To retain consistency, the image-space coordinate of the bounding box
vertices should be reprojected in the same manner.

Figure 4.1: Example of a training sample. The blue rectangle is the given bound-
ing box. The square box encloses the image area that is actually
cropped out.

After this homographic transformation, we crop out the smallest concentric
square image area that covers the reprojected bounding box and resize this im-
age patch to shape 257× 257 before it is fed into the convolutional network (see
Figure 4.1 for an example). For a person standing nearly upright, this cropping
strategy allow us to include more background context in the input image without
any sacrifice in spatial resolution. The input shape is chosen so that convolution
layers with stride greater than one are able to symmetrically sample the feature
maps at all stages of the network, which should allow the model to learn a evenly
distributed feature representation without a problem at the image borders. Op-
tionally, various image augmentation steps may come in either before or after the
cropping operation takes place. These augmentation schemes will be discussed
in Subsection 4.1.4.
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4.1.2 Network Design

Previous works [XWW18] [BMB20] in various fields of computer vision have
shown that high resolution features are crucial for deep convolutional networks to
be able to output fine prediction maps. As such, we adopt the standard ResNet-
50 architecture [HZRS16] as the backbone of our fully convolutional network,
with the modification that the strided convolution in the first residual block of
the last chain structure is replaced by an atrous convolution [CPK+17] with a
dilation rate of 2. This replacement results in an effective stride of 16 instead
of 32 for the entire model, despite the fact that the receptive fields of neurons
behind this convolution layer remain unchanged. As a result, the last feature
map produced by the backbone of the model finds a doubled spatial resolution
at 17× 17. Based on this feature map, our baseline model predicts a score tensor
of shape JD × 17 × 17, where J is the number of required skeletal keypoints
and D is the level of discretization in the depth dimension. This is achieved by
simply attaching a 3 × 3 convolution with no stride to the end of the backbone
as the regression head. We initialize our network with the weights of a standard
ResNet-50 architecture pretrained on ImageNet, with the exception that the con-
volutional regression head is initialized randomly. A graphical depiction of our
fully convolutional network is given in Figure 4.2.

Figure 4.2: The baseline model based on the standard ResNet-50 architecture.
The light-yellow cuboid represents an input image of shape 3× 257×
257×3. A 7×7 convolution and a 3×3 max-pooling both with stride 2
convert this image into a 64×65×65 feature map (light green cuboid).
This feature map is fed into four consecutive sequences of stacked
residual blocks that extracts rich features of shape 2048 × 17 × 17.
Based on these features, the convolutional regression head predicts
a volumetric heatmap (last cuboid) separately for each skeletal key-
point.

4.1.3 Prediction and Error Function

We rearrange this score tensor into J volumetric heatmaps Hscore
j , each of shape

17 × 17 ×D, and pass them individually into a 3D softmax operation to obtain
the confidence maps Hconf

j for each joint j ∈ J :
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Hconf
j [u, v, d] =

exp (Hscore
j [u, v, d])∑17

u′=1

∑17
v′=1

∑D
d′=1 exp(H

score
j [u′, v′, d′])

. (4.8)

Semantically, each entry value in volumetric confidence map Hconf
j represents

the predicted probability with which the skeletal keypoint j ∈ J falls into the
voxel in camera-space that corresponds to that particular entry. Utilizing these
confidence scores, we may compute the expected normalized camera-space coor-
dinate p̄j = (x̄j, ȳj, z̄j)

ᵀ for each joint j ∈ J via the soft-argmax operator. This
operator essentially accumulates the 3D coordinates that correspond to the cen-
ters of each grid voxel within a unit cube, weighted by the normalized confidence
scores stored in the associated confidence map entries:

x̄j =
17∑

u′=1

17∑
v′=1

D∑
d′=1

Hconf
j [u′, v′, d′] · u

′ − 1

17− 1
,

ȳj =
17∑

u′=1

17∑
v′=1

D∑
d′=1

Hconf
j [u′, v′, d′] · v

′ − 1

17− 1
,

z̄j =
17∑

u′=1

17∑
v′=1

D∑
d′=1

Hconf
j [u′, v′, d′] · d

′ − 1

D − 1
.

(4.9)

Since we are only concerned with root-relative pose prediction, these normalized
coordinates are then converted into actual camera-space coordinates within a
2000mm × 2000mm × 2000mm prediction volume, which should be suffiently
large to contain the full skeleton of a person under all body configurations. This
is done by simply scaling each component of the normalized coordinates by a
factor of 2000:

pj = 2000p̄j. (4.10)

To obtain the final root-relative pose estimation P̂ = (p̂1, p̂2, . . . , p̂J) for eval-
uation purposes, we subtract the coordinate of each joint by the position of the
root joint, typically the pelvis:

p̂j = pj − pJ . (4.11)

These root-relative predictions are then evaluated against the groundtruth
skeleton, which produces a single loss value to optimize:

Lregression =

∑J
j=1mj ·

(
l(x̂j, x̂

∗
j) + l(ŷj, ŷ

∗
j ) + l(ẑj, ẑ

∗
j )
)

3
∑J

j=1mj

, (4.12)

where
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l(a, b) =

{
0.5(a− b)2 |a− b| < 1.0

|a− b| − 0.5 |a− b| ≥ 1.0
(4.13)

is the huber loss, x̂∗j , ŷ
∗
j and ẑ∗j are the target root-relative coordinates, mj

is the boolean validity mask indicating whether joint j is within the field of
view of the camera or not. Note that this design does not impose any explicit
contraint on the distribution of the volumetric heatmaps. This allows the network
to learn implicitly how to generate a set of probability distributions that would
best predict the relative positions between each skeletal keypoint and the root
joint. Moreover, all operations described above are easy to implement in a fully
differentiable manner, so that gradients can be computed following the chain-rule
using the standard backward propagation solver implemented in modern deep
learning engines.

4.1.4 Augmentation Schemes

To account for the potential distribution changes in lighting conditions, bound-
ing box quality and camera angles at inference time, we employ multiple image
augmentation schemes throughout the training stage.

Color Augmentation Color augmentations simulate the expected lighting varia-
tions that may happen at test time. We successively induce random distortions on
the brightness, contrast, hue and saturation values of a training image. Specificly,
for an input image F in normalized RGB color space, a brightness augmentation
adds a common random noise subject to a uniform distribution to all pixel values
across the three image channels:

F = F + ubrightness, ubrightness ∼ U [−0.125, 0.125]. (4.14)

A contrast augmentation removes 0.5 from all pixel values, scales all pixels by
a random factor subject to a uniform distribution, then adds back the previously
deducted amount:

F = (F− 0.5) · ucontrast + 0.5, ucontrast ∼ U [0.8, 1.25]. (4.15)

We convert the image to the HSV color space before the other two augmentation
steps are applied. The HSV color space describes an image in terms of hue, sat-
uration and luminance values and thus gives an interpretation that de-correlates
color information from lighting intensity. Under this setup, a hue augmentation
adds a common random noise to all pixel values across the hue channel of the
image:

Fhue = Fhue + uhue, uhue ∼ U [−18, 18]. (4.16)
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Similarly, a saturation augmentation works exclusively on the saturation chan-
nel and scales all pixel values by a random factor:

Fsaturation = Fsaturation · usaturation, usaturation ∼ U [0.8, 1.25]. (4.17)

Geometry Augmentation Geometry augmentations prepare the model for pos-
sible variations in camera angle and bounding box distribution at test time. We
apply random rotation, flip and zoom on our camera configuration after we turn
the camera towards the center of the subject, but before the image reprojection
and the calculation of camera-space groundtruth takes place. This specific order
by which the operations are performed ensures that the supervision we impose
on our convolutional model remain consistent with the input image.

Given the camera’s current rotation matrix R, a rotation augmentation ran-
domly rotates the camera around its optical axis by a small angle θ that obeys
the random uniform distribution

U [− π

12
,
π

12
]. (4.18)

The updated rotation matrix Rnew of the camera can be computed as

Rnew =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ·R. (4.19)

A flip augmentation randomly flips the camera horizontally for each training
image with a 50 percent chance. Internally, this is achieved by multiplying the
first row of the rotation matrix R of the camera by −1:

Rnew =

−1 0 0
0 1 0
0 0 1

 ·R. (4.20)

This would result in a mirrored version of the usual image reprojection de-
scribed by Equation (4.7). But additional attention is needed on the retrieval of
camera-space groundtruth coordinates for a flipped sample. In this case, after
Equation (4.5) is applied, coordinates for symmetric keypoints on either side of
the skeletal tree are swapped to make sure that the mirrored supervision seman-
tically complys with the input image. The validity masks are to be updated as
well.

Since the principle point of the camera coincides with the center of the bounding
box after the homographic transformation, a random zoom augmentation can be
achieved by simply rescaling the focal lengths in the camera’s intrinsic matrix by
a random factor: (

fx
fy

)
=

(
fx
fy

)
· uzoom, uzoom ∼ U [0.9, 1.1]. (4.21)
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Since the cropping area stays unchanged afterwards, this essentially leads to
image crops that either contain more background information at the price of a
lower effective resolution, or exclude part of the person’s outline.

4.2 Depth as Privileged Information

In this work, we build on the baseline method described in the previous section by
incorporating depth input into the models’s learning process. We imagine that the
additional depth cues would inform the model of the relative distance of various
body parts to the camera, thus aid the deeper neurons in understanding the
general pose configuration of the subject. Moreover, due to probable limitations in
real-world application scenarios, a dependency on depth sensors at inference time
shall be preferably avoided. Therefore, a crucial aim of this study is to find a way
for the model to be able to effectively extract such depth cues from ordinary RGB
images. Inspired by the recent success of [HGD16] [GMM18] and made possible
by the release of two large-scale action recognition datasets [LSP+19] [LHL+17],
we present a novel 2-stage training scheme that exploits the very idea of privileged
information learning. In our learning paradigm, a teacher model that is capable of
extracting rich feature representations from a pair of RGB and depth images gives
out a piece of advisory information for each sample, in an attempt to transfer
this valuable knowledge to a student model. The student, on the other end of
the framework, receives this guidance message along with an RGB input and
tries to figure out just what extra depth information could be inferred about a
given sample that would be beneficial for the pose regression task at hand, if
an associated depth image were present. More details of our training scheme is
explained in the following subsections.

4.2.1 First Stage

In the first stage of our priviledged information learning setup, we train, in the
presence of fully annotated RGB-D image pairs, a teacher network that is adapted
from our baseline model to estimate 3D human poses. Specifically, we mount an
additional depth branch onto our baseline convolutional network that is paral-
lel to the front part of the existing backbone. This new branch takes as input
a single-channel depth image of the same spatial resolution as the input RGB
image. To allow the network to handle this input format, the usual convolution
kernel of shape 64 × 3 × 7 × 7 at the front of the standard ResNet-50 architec-
ture is replaced by a new kernel of shape 64 × 1 × 7 × 7. The rest of this new
branch duplicates the standard configuration up till the second chain structure
of residual blocks, after which the two branches are joined together via a fusion
module. Here we concatenate the features output by both branches along the
channel dimension and then cut down the number of feature channels by half
via a 1 × 1 convolution. This design choice closely follows [OVBG19] [LPV+20]
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and encourages both branches of the model to work independently on their own
input modality and produce complementary feature representations. Whereas a
number of alternative options are applicable in this circumstance, selecting the
best fusion module in practice is not the core focus of our work. The rest of
the teacher network (the trunk part) copies its configuration from the baseline
model and is optimized in exactly the same manner. An illustration of the teacher
model’s training scheme is given in Figure 4.3.

Prediction

Groundtruth

Regression Loss

Figure 4.3: The first stage of our training scheme. The spatial and channel di-
mensions are displayed on logarithmic scales. The depth branch in
the bottom copies its configuration from the standard ResNet-50 ex-
cept for the first convolution layer and takes as input a single-channel
depth image (light-blue rectangle at the front). The circle with a plus
sign represents our fusion module which consists of a concatenation
operation and a 1 × 1 convolution layer for the purpose of channel
alignment. The same supervision target as the baseline model is set.

One crucial aspect of optimizing such a bi-modal convolutional network is the
initialization of its parameters. A common practice today is to load the weights
taken from a standard ResNet-50 model pretrained on ImageNet [DDS+09]. In
practice however, this default option may not be especially optimal. Since those
pretrained weights are intended for an RGB input, it could well happen that
features extracted by the depth branch end up playing little row in accounting
for the features reaped by our fusion module. As a consequence, a teacher net-
work initialized in this fashion could fail to perform significantly better than our
baseline. The other option is to handle the initialization of the depth branch in a
separate manner. That is, we can load the weights of an adapted baseline model
onto the depth branch, whose foremost convolution layer is modified in exactly
the same way. We refer to this variant as our baseline depth model from this
point on. It shall accept a single depth image as input and can be pretrained
on labeled depth samples collected from the NTU RGB+D dataset. An ablation
study on the initialization scheme of our teacher model is discussed in Section
6.1.
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4.2.2 Second Stage

The second stage of our training scheme is where knowledge transfer takes place.
In this stage, we focus on the optimization of a standalone student model that is
constructed from the same configuration as our baseline network and instructed
to mimic the way our teacher model approaches the task of regressing a 3D
human pose. Crucially, this student model sees only an RGB image under all
circumstances and is to be deployed as an independent pose predictor at inference
time. For each fully annotated pair of RGB and depth images, we feed both
image modalities into our teacher network and pick out a certain mid-level feature
map as a piece of train-time advice for the student. We freeze the parameters
of our teacher model throughout this stage, so that a fixed output is always
guaranteed for the same sample. The chosen mid-level response map contains
critical information about the valuable depth cues that the teacher is able to
incorporate from the privileged depth input, to which a direct access for the
student is denied.

Prediction

Groundtruth

Regression Loss

Distillation Loss

Figure 4.4: The second stage of our training scheme. We freeze the teacher net-
work and jointly optimize the student model over two seprate super-
vision targets. In this depiction, the distillation loss is imposed on the
last convolution layer in the third chain structure of both networks.
The orange cuboid represents the difference between the respective
response maps.

Given this crucial guidance, we jointly optimize the student model over two
separate supervision targets. On one hand, we ask the student network to give its
own prediction for the 3D pose of the subject based solely on the RGB input and
evaluate how closely the estimation fits the groundtruth skeleton using Equation
(4.12). In the meanwhile, we influence how the student produces its own features
via the introduction of a distillation loss [HVD15] between the two models. We

42



4.2. Depth as Privileged Information Chapter 4. Method

expect this distillation scheme to facilitate an effective knowledge transfer between
the two models and enable the student to, for any test image, extract a rich
feature representation somehow as if it were directly exposed to the paired depth
modality.

A graphical depiction of the second stage of our learning framework is given
in Figure 4.4. In particular, we establish an association between two mid-level
convolution layers, one from either side, that correspond to the same target layer
on the standard ResNet-50 architecture. In our experiments, the last convolution
layer in the third chain structure of residual blocks turns out to be the best choice
for this association. If we refer to the activation maps produced by the respective
teacher layer and student layer in the matched pair as Fteacher and Fstudent, we
explicitly enforce the student model to generate a Fstudent that resembles Fteacher

as closely as possible. Formally, our distillation loss can be formulated as

Ldistillation = ‖σ(Fteacher)− σ(Fstudent)‖2, (4.22)

where σ(·) is the standard logistic sigmoid function as in Equation (2.4). Essen-
tially, this loss function measures the pixelwise similarity between the mid-level
response maps extracted by the respective networks. The sigmoid function is
introduced to map the activation values to the range [0, 1] and thus gain a better
control over the magnitude of the loss. For a fully annotated RGB-D sample,
the final loss formulation will be a weighted combination of the two loss terms
described above:

Lstudent = Lregression + αLdistillation, (4.23)

where α is a hyperparameter that controls the relevance of the distillation
term. In practice, the optimal value of α is dependent on a variety of factors and
generally tricky to ascertain. Too large a value can cause the distillation term
to dominate the total loss function, whereas a value too small makes the impact
of our distillation scheme insignificant. In our experiments, we choose to linearly
increase the magnitude of α to an empirical value, such that even contribution is
made by both terms in our overall loss formulation at the end in general.

Additionally, it is worth noting that our distillation loss in Equation (4.22) does
not require the presence of groundtruth 3D pose annotations. Since unlabelled
RGB-D image pairs are available in abundance in the vision community, we take
full advantage of this property and seek to acquire some weak supervision from
the unlabelled portion of our data as well. Specifically, we propose to establish
our train-time mini-batches as a hybrid of both labeled and unlabelled RGB-D
image pairs. Whereas the loss formulation in Equation (4.23) is applied to the
labeled portion of our samples, we compute only the distillation loss for samples
devoid of annotation. We then aggregate the loss values computed over samples
of either part to acquire a single optimization target.
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4.2.3 Further Details

A number of implicit design choices have been made in the above description for
our two-stage learning framework. In the following we will further clarify these
decisions and discuss what could be expected of them as an outcome. We carry
out extensive ablation studies to evaluate their practical impact and present the
results in Subsection 6.1.

Distillation Target The distillation loss described by Equation (4.22) works
on the response maps produced by the respective target layer instances from
either model within the learning framework. It is unclear, however, which target
layer in the standard architecture should be selected to optimally establish such
an association. Moreover, in a modern convolutional architecture, the output
features of a convolution layer typically pass through a batch normalization and
a rectified linear activation function before they are processed by the subsequent
convolution. Since batch normalization restores the distribution of a response
map, we believe it steadies the learning process if we apply the distillation loss
only after a batch normalization is performed. But it is still debatable whether
the loss should be applied before the rectified linear function takes effect or after.
These decisions have a decisive impact on the loss magnitude and general efficacy
of the proposed method.

Distillation Loss Formulation Especially at the start of the second stage of
our training scheme, the distillation term generally dominates the overall loss in
terms of magnitude. To stabilize the gradients, one option is to pass the target
response maps through a logistic sigmoid function before the pixelwise difference
is taken, as in Equation (4.22). But if we were to apply a rectified linear function
to the target features first, the sigmoid function would then map the activations
to the range [0.5, 1], which may not be ideal for the distillation loss to exercise
its full potential. As such, we introduce an alternative loss formulation that is
commonly applied in classification:

Ldistillation =
C∑
c=1

17∑
u=1

17∑
v=1

bce (Fstudent[c, u, v], σ(Fteacher[c, u, v])) , (4.24)

where

bce(a, b) = −b log(σ(a))− (1− b) log(1− σ(a)) (4.25)

is the binary cross entropy loss function and σ(·) is again the sigmoid function.

Batch Normalization Statistics By default, the batch normalization layers in
both models of our learning framework actively maintain a running estimation
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of mini-batch statistics. Nevertheless, it is equally interesting to see what will
happen if both models freeze their accumulated mean and standard deviation
vectors past a certain point in the second stage of our training scheme. This can
be achieved by switching all batch normalization layers into evaluation mode in
Pytorch. The update of learnable parameters for these layer will continue on
regardless.

(a) sample (b) attention map

Figure 4.5: The generated artificial attention map for a given sample.

Attention Maps Attention modules [WGGH18] [JLLT18] have proven effective
in their ability to guide convolutional networks towards key areas of an input
image. We adopt a simple version of such strategies at train time and create
an artificial attention map in an attempt to accelerate the knowledge transfer
process. Specifically, for each labeled sample, we obtain the 2D image-space loca-
tions (uj, vj)

ᵀ for each skeletal keypoint j ∈ J by projecting the 3D groundtruth
skeleton onto the input image. The pixel value at location (u, v) on our attention
map A can then be computed as

A[u, v] =
J∑

j=1

exp (−(u− uj)2 + (v − vj)2

5
). (4.26)

As the next step, this attention map is normalized to the range [0, 1] and resized
to have the same spatial resolution as that of the target response maps on which
our distillation loss is imposed. In the presence of this attention map, we replace
the default formulation in Equation (4.22) for our distillation loss with

Ldistillation = ‖(σ(Fteacher)− σ(Fstudent))�A‖2, (4.27)

where � stands for pixelwise multiplication. Ideally, this addtional attention
mechanism should encourage the student network to prioritize extracting the
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correct feature representations at image locations that correspond to the subject
in the foreground. Figure 4.5 visualizes such an attention map for a given sample.

Partial Convolutions Partial convolutions proposed by [LRS+18] excel at in-
painting images that are fractionally corrupted. These convolutions re-weight
the output activations based on how well the neighborhood of the current pixel
is populated in the input feature map. Since the annotated depth images we
are able to collect for our experiments are of limited quality, partial convolutions
could benefit the teacher network in that they condition a deeper neuron’s atten-
tion only on valid input pixels. To validate this idea, we take the baseline depth
model defined in Subsection 4.2.1 and replace all standard convolutions up to the
end of the second chain structure of residual blocks with partial convolutions.
We train this adapted network on labeled depth images from the NTU RGB+D
dataset and see if the modification brings any gain in performance.
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5
Experimental Setup

Various experiments have been conducted to verify the efficacy of our proposed
method. We dedicate this chapter to covering the preparation and implementa-
tion aspects of these experiments.

5.1 Datasets

We make use of two large-scale RGB-D datasets for training purposes. The NTU
RGB+D dataset [LSP+19] and the PKU-MMD dataset [LHL+17] are the first
datasets of their calibre to propel research on depth-based human action analysis.
They both record a wide variety of relatively simple human actions, whereby the
performers demonstrate considerable variations in terms of appearance. Each ac-
tion sequence is simultaneously recorded by several Micrsoft Kinect sensor devices
from different view angles. The RGB and depth videos captured by the respec-
tive sensors are in perfect sync, which allows us to easily collect an abundance of
RGB-D image pairs. The statistics of both datasets can be found in Table 5.1.
Sample RGB and depth images of both datasets can be found in Figure 5.1.

camera angles body rotations daily + paired actions
NTU RGB+D 51 2 49 + 11

PKU-MMD 3 1 40 + 11

subjects RGB resolution depth resolution
NTU RGB+D 40 1920× 1080 512× 424

PKU-MMD 66 1920× 1080 512× 424

Table 5.1: dataset statistics
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Figure 5.1: Sample poses collected from the NTU RGB+D dataset (first row)
and the PKU-MMD dataset (second row).

5.1.1 Annotations

In practice, we consider the spatial misalignment between the color and depth
cameras for both datasets to be negligible. In order to transform and crop the
depth frames in the same way as the RGB ones for a given video sample, we
need to know the intrinsic matrices for both cameras. Whereas the intrinsic
parameters for RGB cameras are openly available, we rely on the default 2D
and 3D annotations to compute those for the depth cameras. That is, under
a fixed camera configuration, we organize the keypoint annotations in terms of
2D-3D coordinate pairs (qi,pi), where qi = (ui, vi)

ᵀ and pi = (xi, yi, zi)
ᵀ. Since

all these coodinate pairs are associated by the same perspective projection, the
intrinsic parameters for the depth camera can be uniquely computed in least-
squares fashion as

(
fx
cx

)
= (Aᵀ

xAx)−1 ·Aᵀ
xu(

fy
cy

)
= (Aᵀ

yAy)
−1 ·Aᵀ

yv

, (5.1)

where

Ax =

(
x1

z1

x2

z2
. . . xM

zM

1 1 . . . 1

)ᵀ

Ay =

(y1
z1

y2
z2

. . . yM
zM

1 1 . . . 1

)ᵀ , (5.2)

M is the total number of 2D-3D coordinate pairs, u = (u1, u2, . . . , uM)ᵀ and
v = (v1, v2, . . . , vM)ᵀ. The resultant parameters can then be inserted into entries
of the intrinsic matrix as in Equation (1.3).

On the other hand, we notice the fact that the groundtruth skeletons in both
datasets are directly taken from the output of the build-in recognition software,
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which means they are of below-par quality in terms of consistency and accuracy.
For the actual train-time samples, we choose to discard the default annotations
and use instead the 3D pose skeletons inferred by the model in [SLAL20] spe-
cialised for the ECCV workshop challenge. This brings the added benefit that
the selection of keypoints our models estimate will be directly compatible with
the skeletal configuration of [IPOS13]. Neither datasets provide bounding box
information for the subjects. We run a Faster R-CNN detector [RHGS15] on
each RGB video frame and select one detection box that fits the 2D keypoint
annotation best for each sample. We then reproject the bounding box vertices
onto the paired depth frame in a way similar to Equation (4.7), in order to ensure
that the same image content is cropped for both frames.

5.1.2 Depth Images

Both datasets feature only indoor scenes under static lighting conditions. The
individual depth frames captured by the Microsoft Kinect depth sensor store per-
pixel the distances between the camera and the 3D points in space captured by
the infrared scan. The maximum depth value stored in a depth image is, to the
best of our knowledge, typically set to be around 3 metres by the points on the
wall in the background. Corrupted pixels have a value of zero. To map these
depth values to a range easier for our networks to process, we pass a depth map
D through the exponential function

D′[u, v] =

{
exp (−D[u, v]) D[u, v] < 0.1

0.0 D[u, v] ≥ 0.1
(5.3)

before it undergoes the same homographic transformation described in Subsec-
tion 4.1.1. Note that we treat a corrupted pixel as if it corresponds to an infinitely
distant point in space. Furthermore, since we ask our convolutional networks to
directly regress metric-space heatmaps, it could make more sense if the pixel val-
ues on a depth map were actual z-coordinates of the associated 3D points instead
of their distances to the camera. Therefore we propose to optionally rectify the
depth images via

D′[u, v] = D[u, v] ·

((
u− cx
fx

)2

+

(
v − cy
fy

)2

+ 1

)−1
(5.4)

as an additional step before Equation (5.3) takes effect. The impact of this
rectification step is discussed in Subsection 6.1.

5.1.3 Data Arrangement

The RGB-D image pairs collected from the NTU RGB+D dataset are assigned
into two distinct partitions that do not share any subject or camera configuration.
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Figure 5.2: Frequency map for the NTU RGB+D dataset. Each entry in the
graph is labeled with a saturation level proportional to the number
of times a subject appears in one camera angle of a certain action
sequence.

train-split subjects P007 P008 P015 P016 P017 P018 P019 P020 P021 P022
P023 P024 P025 P026 P027 P028 P037 P038 P039 P040

train-split configs S003C001 S003C002 S003C003 S004C001 S004C002
S004C003 S005C001 S005C002 S005C003 S006C001
S006C002 S006C003 S007C001 S007C002 S007C003
S009C001 S009C002 S009C003 S010C001 S010C002
S010C003 S011C001 S011C002 S011C003 S012C001
S012C002 S012C003 S013C001 S013C002 S013C003
S014C001 S014C002 S014C003 S015C001 S015C002
S015C003 S016C001 S016C002 S016C003 S017C001
S017C002 S017C003

test-split subjects P001 P002 P003 P009 P010 P011 P029 P030 P031 P032
test-split configs S001C001 S001C002 S001C003 S002C001 S002C002

S002C003 S008C001 S008C002 S008C003

Table 5.2: Subjects and camera configurations covered by our train-split and test-
split of the NTU RGB+D dataset.

Figure 5.2 shows the number of times every subject appears in each camera angle
of a certain action sequence. The camera configurations and subjects included
by either partition are shown in Table 5.2. RGB-D image pairs from the first
partition are used as fully annotated training samples through both stages of
our training scheme, whereas the second partition is considered as a standalone
test set. For the PKU-MMD dataset, the official cross-subject division proposal
is adopted. We extract RGB-D image pairs from the train-split videos and use
them as unlabelled samples in our weak-supervision setup. On the other hand,
RGB-D samples collected from the test-split videos constitute another test set
for model evaluation.
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Figure 5.3: Sample poses collected from the Human3.6M dataset.

Additionally, we leverage the official test split of the Human3.6M dataset
[IPOS13] to evaluate how well our models generalize to a different scene setup.
This large-scale benchmark features several subjects performing a smaller range
of more complex human activities. The groundtruth skeletons are gathered from
a motion capture system based on attachable reflective markers, which allow
for accurate reconstruction of human poses. Sample images of the Human3.6M
dataset is shown in Figure 5.3.

5.2 Evaluation Metrics

We quantize the performance of our models by using three standard evaluation
metrics that commonly appear in related literatures. Given estimated 3D root-
relative poses

P̂i = (p̂i,1, p̂i,2, . . . , p̂i,J) (5.5)

and groundtruth root-relative poses

P̂∗i = (p̂∗i,1, p̂
∗
i,2, . . . , p̂

∗
i,J), (5.6)

where the footnote i ∈ N indexes the test samples, the mean per-joint position
error (MPJPE) computes, as its name suggests, the average euclidean distance
between the predicted keypoint coordinates and the target keypoint coordinates
over all test samples:

Qmpjpe =
1

NJ

N∑
i=1

J∑
j=1

∥∥p̂i,j − p̂∗i,j
∥∥
2
. (5.7)

Naturally, lower Qmpjpe on a test set indicates better estimation accuracy.
The percentage of correct keypoints (PCK) reflects the overall proportion of

skeletal keypoints across all test samples that are reconstructed with an error
below a given threshold Tpck:

Qpck =

∑N
i=1

∑J
j=1 cond

(∥∥p̂i,j − p̂∗i,j
∥∥
2
≤ Tpck

)
NJ

, (5.8)
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where cond(·) stands for the conditional function that evaluates to 1 if and only
if the input condition were true. Higher Qpck for a given threshold indicates better
performance. In our experiments, we set Tpck at 50mm for our NTU RGB+D
and PKU-MMD test sets and 150mm for the Human3.6M test set.

For a given model and fixed test set, by escalating Tpck from zero to an upper
bound Tauc, we may uniquely determine a curve that describes the percentage of
correct keypoints as a function of the employed threshold. The area under the
curve (AUC) translates to the definite integral of this function from zero to Tauc:

Qauc(Tauc) =

Tauc∫
0

Qpck(Tpck) dTpck. (5.9)

Higher Qauc for a given threshold indicates better performance. In our experi-
ments, we set Tauc at 50mm for our NTU RGB+D and PKU-MMD test sets and
150mm for the Human3.6M test set.

The three evaluation metrics described above quantify different aspects of a
model’s capacity. For example, a model can well attain an inferior PCK-score
when it is able to, at the same time, reconstruct poses with relatively low mean
per-joint position error, since the PCK-score does not take into account very
difficult samples, for which the reconstruction error is well above the applied
threshold.

5.3 Implementation Details

We implement our 3D human pose estimation framework utilizing the PyTorch
[PGM+19] deep learning library. Forward and backward propagation of convolu-
tional networks are carried out in mixed-precision [MNA+17] both to accommo-
date more samples per mini-batch and to facilitate faster tensor computations.
Half-precision loss values are upscaled by a factor of 32.0 before the gradients are
propagated backwards. The resultant gradients are converted to full-precision
and downscaled by the same factor before the network parameters are updated.
The obnoxious issue of exploding gradients often accompanies mixed-precision
training procedures thanks to the narrowly limited numerical range. To prevent
the occurrence of gradient explosion, an additional gradient clipping step is in-
troduced. Gradient vectors of large magnitude are clipped to have a norm of 5.0
before they are processed by the optimizer.

In all of our experiments, random he-initialization is applied to the fusion
module and the regression head, since they don’t match a particular layer in
the standard ResNet architecture. We use standard-weights from this point on
to refer to the parameters of a standard model pretrained on ImageNet. Under
situations where we want to initialize a depth-based network or network branch
with standard-weights, a problem arises due to the mismatch in kernel shape
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dataset NTU RGB+D PKU-MMD Human3.6M
metric MPJPE PCK AUC MPJPE PCK AUC MPJPE PCK AUC
stddev 0.24 0.001 0.001 0.484 0.003 0.003 1.24 0.004 0.003

Table 5.3: Model variability in terms of standard deviation under the same train-
ing configuration.

between the respective foremost convolution layers. In such cases, we opt to take
the average over the three channels of the standard RGB kernel and use that to
initialize its single-channel counterpart. Similarly, when we use the weights of
a baseline depth model to initialize an RGB-based network, we duplicate three
copies of the single-channel convolution weights, stack them along the channel-
axis and then divide the resultant kernel by 3.

In all of our experiments, we train a model for 30 epochs on the train-split of
the NTU RGB+D dataset. Before each epoch commences, the training samples
are randomly reshuffled. Under situations where unlabelled RGB-D image pairs
are utilized to provide weak supervision, this portion of the training data is loaded
from a separate PyTorch Dataloader. A mini-batch always contains the largest
possible number of samples that can be processed in parallel on the GPU, rounded
to a multiple of 16. Unlabelled samples, if used, constitute a third of all samples
in a mini-batch.

We employ the standard Adam optimizer to manage the parameter updates.
Coefficients β1 = 0.9 and β2 = 0.999 are applied for the accumulation of the
gradients and their second moments respectively. In particular, the PyTorch
implementation of this optimizer incorporates an additional weight decay term
into the update formula, which regularizes the magnitude of weight vectors for
each layer. In our experiments, a weight decay factor of 4e−5 is adopted for all
network layers.

We employ a step-decay learning rate scheduler for all experiments. The base
learning rate η0 is set at 5e−5 unless stated otherwise. The actual learning rate
η can be perceived as a piecewise function of the number of past epochs npast:

η(npast) =



0.5 · η0 npast < 1

η0 npast < 15

0.2 · η0 npast < 20

0.04 · η0 npast < 25

0.008 · η0 25 ≤ npast

, (5.10)

where the first period serves as warmup phase. At the end of our experiments
all models have converged to an acceptable degree.

Due to various sources of randomness, models trained under exactly the same
configuration can differ in all aspects. To get an idea of how much the perfor-
mances of duplicate models can vary, we conduct five identical experiments, in
which we train a baseline model using only labeled RGB samples from the NTU
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RGB+D dataset. When evaluated on each of the three test sets according to the
aforementioned metrics, our duplicate models obtain similar but distinguishable
performance scores. The standard deviations among these scores are listed in
Table 5.3.
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6
Experimental Results

In this chapter, we demonstrate the outcomes of the various studies we carry
out, in an attempt to validate whether our method is of practical relevance. In
the first part, we experiment with different design choices within our learning
framework and reason about their impact on model performance. In a second
part, we present the core experiments as well as a comprehensive analysis of the
major findings.

6.1 Study on Design Choices

We test out in this section each of the training options discussed in Section 4.2.
Note that experiments in this section consider only labeled training data from
the NTU RGB+D train-split.

6.1.1 Baseline Performance

We train four baseline RGB models and report in Table 6.1 their performance
on the NTU RGB+D test-split and the Human3.6M test-split. All train-time
conditions, except for the few options shown as table columns, are set to be
identical. Train-time color and geometry augmentations described in Subsection
4.1.4 are applied to models 1.2-4. A comparison between model 1.1 and 1.2
shows that the adoption of augmented samples allows the model to generalize
significantly better to different scenes. Model 1.3 is initialized with the weights
taken from a baseline depth model in Table 6.2. Model 1.4 gets its initialization
from the last checkpoint of model 1.2. A comparison among models 1.2-4 shows
that initialization bears a significant impact on model capacity. In particular,
we observe that model 1.4 demonstrates an overall better performance than the
other two models. This indicates that it is better to start with a model that
accepts the same input modality and has already been finetuned on our training
data.
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ID input augmentation init NTU RGB+D Human3.6M

1.1 RGB N standard 26.68 82.27
1.2 RGB C + G standard 26.31 77.98
1.3 RGB C + G model 2.1 25.42 78.47
1.4 RGB C + G model 1.2 25.45 76.55

Table 6.1: Evaluation results for baseline RGB models on two independent test
sets. We report the mean per-joint position error in millimeters.

ID input init rectify partial MPJPE PCK [50mm] AUC [50mm]

2.1 depth standard N N 30.38 0.85 0.52
2.2 depth standard Y N 30.39 0.85 0.52
2.3 depth standard Y Y 30.38 0.85 0.52

Table 6.2: Evaluation results for baseline depth models on the NTU RGB+D
test-split. We report performance in terms of all three metrics.

6.1.2 Depth Map Rectification and Partial Convolutions

We train three baseline depth models and compare their performance on the
NTU RGB+D test-split in Table 6.2. All train-time conditions, except for the
few options shown as table columns, are set to be identical. In particular, no
train-time augmentation is applied. Model 2.2 and 2.3 are trained on depth
images that undergo the pythagorean rectification according to Equation (5.4).
A fraction of the standard convolutions in Model 2.3 are replaced with partial
convolutions as described in Subsection 4.2.3. Judging by the reported numbers
neither of the two proposed modifications lead to any improvement. As such, we
do not apply them in any other experiment.

6.1.3 Teacher Model Initialization

We train two teacher models as described in Subsection 4.2.1 and compare their
performance on the NTU RGB+D test-split in Table 6.3. All train-time con-
ditions, except for the few options shown as table columns, are set to be iden-
tical. Both experiments employ train-time color and geometry augmentations.
The depth branch of model 3.2 gets its initialization from the last checkpoint of
model 2.1. We initialize the RGB branch and the trunk part of either model
with standard-weights. It could be concluded from the numbers in the table that
the initialization strategy does not exert that much of an influence on model
performance as we expected. Nevertheless, we do notice that model 3.2 steadily
induce a smaller regression loss during the first few training epochs, although this
difference gradually wears thin as training proceeds. We visualize this finding in
Figure 6.1.
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ID input depth-branch init MPJPE PCK [50mm] AUC [50mm]

3.1 RGB + depth standard 19.77 0.94 0.66
3.2 RGB + depth model 2.1 19.71 0.94 0.66

Table 6.3: Evaluation results for teacher models on the NTU RGB+D test-split.
We report performance in terms of all three metrics.

Figure 6.1: A visual comparison between the regression loss curve induced by
either model in Table 6.3. The red and blue curve correspond to
model 3.1 and 3.2 respectively. Note that the loss induced by model
3.2 is visibly smaller through the first few epochs.

6.1.4 Distillation Target and Sigmoid Mapping

We train four student models as described in Subsection 4.2.2 and report in Table
6.4 their performance on the NTU RGB+D test-split and the Human3.6M test-
split. All train-time conditions, except for the few options shown as table columns,
are set to be identical. In particular, the model 3.2 is set to be the teacher model
in the privileged information learning setup. The default pixelwise similarity loss
formulation in Equation (4.22) is employed for the distillation procedure. Batch
normalization layers in both models are configured to actively collect mini-batch
statistics. The scaling factor α of the distillation term linearly increases from a
warmup value to a target value over the course of the first 10 epochs. From that
point on it stays untouched until the end of the training procedure. The warmup
and target values of α are set empirically as explained in Subsection 4.2.2.

For model 4.1, we impose the feature map similarity constraint at the end of
the last chain structure of residual blocks. For models 4.2-4, the distillation target
is set to be the ending convolution in the last residual block of the third chain
structure. A direct comparison between model 4.1 and 4.2 shows that the second
configuration is indeed of practical advantage. We suspect this is because an
earlier distillation target affords the model more freedom to decide on what is the
best way to leverage the hallucinated depth cues. Hence we stick to the second
configuration for the rest of this thesis. Moreover, a comparison between model
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ID teacher α⇒ target position sigmoid

4.1 model 3.2 0.005 0.01 16-th block after relu N
4.2 model 3.2 0.01 0.04 13-th block after relu N
4.3 model 3.2 0.1 0.2 13-th block after relu Y
4.4 model 3.2 0.05 0.1 13-th block before relu Y

ID input init augmentation NTU RGB+D Human3.6M

1.2 RGB standard C + G 26.31 77.98

4.1 RGB standard C + G 26.38 75.34
4.2 RGB standard C + G 25.44 74.84
4.3 RGB standard C + G 25.74 75.51
4.4 RGB standard C + G 25.27 74.93

Table 6.4: The upper chart shows the distillation configurations for several stu-
dent models. The lower chart shows their evaluation results. We report
the mean per-joint position error in millimeters.

1.2 and models 4.2-4 justifies the feasibility of our proposed training scheme. The
student models outperform the baseline model by a considerable margin on both
test sets.

The default sigmoid mapping in Equation (4.22) is excluded for model 4.2.
The distillation loss is, for model 4.4, imposed on the features before they pass
through the subsequent rectified linear function. A comparison among models
4.2-4 comfirms our previous speculations. On one hand, the sigmoid mapping is
better skipped if we pass the target features through a rectified linear function
first. On the other hand, if we were to keep the sigmoid mapping in the equation,
then it is better to compute the distillation term before the subsequent relu(·)
takes effect. In practice, the raw magnitude of the distillation term in experiment
4.2 varies significantly from that in experiment 4.4. A careful choice on each
hyperparameter preconditions the efficacy of our training scheme.

6.1.5 Distillation Loss Formulation

We further train two student models with the alternative formulation for our
distillation loss as in Equation (4.24). We report in Table 6.5 their performance
on the NTU RGB+D test-split and the Human3.6M test-split. All train-time
conditions, except for the few options shown as table columns, are set to be
identical. In particular, a direct comparison between model 5.1 and 4.2 shows that
the default pixelwise similarity formulation facilitates better estimation accuracy.
The comparison between model 5.2 and 4.4 yields similar conclusions.

We suspect what plays a big part in this is the shape of a formulation’s core
function. The huber term in Equation (4.22) scales linearly as the pixelwise
difference escalates, whereas the binary cross entropy term in Equation (4.24)
scales in hyperbolic fashion. This makes a difference in the presence of noisy
training samples that make it difficult for the student network to extract proper
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ID teacher α⇒ loss term sigmoid position

4.2 model 3.2 0.01 0.04 huber N after relu
5.1 model 3.2 0.01 0.1 bce - after relu
4.4 model 3.2 0.05 0.1 huber Y before relu
5.2 model 3.2 0.005 0.02 bce - before relu

ID input init augmentation NTU RGB+D Human3.6M

1.2 RGB standard C + G 26.31 77.98

4.2 RGB standard C + G 25.44 74.84
5.1 RGB standard C + G 26.57 77.14
4.4 RGB standard C + G 25.27 74.93
5.2 RGB standard C + G 26.05 77.40

Table 6.5: The upper chart shows the distillation configurations for several stu-
dent models. The lower chart shows their evaluation results. We report
the mean per-joint position error in millimeters.

ID teacher α⇒ const stats NTU RGB+D Human3.6M

4.3 model 3.2 0.1 0.2 N 25.74 75.51
6.1 model 3.2 0.1 0.2 Y 25.96 75.50

Table 6.6: Evaluation results for student models on two independent test sets.
We report the mean per-joint position error in millimeters.

depth cues. In such case, the distillation loss based on the binary cross entropy
term would contribute a dramatic part to the overall error, which forces the model
to pay less attention to the pose regression task.

6.1.6 Batch Normalization Statistics

Next, as was discussed in Subsection 4.2.3, we test out the train-time configura-
tion where, after the 10-th epoch, we turn off the update of mini-batch statistics
for batch normalization layers in both networks. We compare the resultant model
against model 4.3 in Table 6.6. All train-time conditions, except for the few op-
tions shown as table columns, are set to be identical. Judging by the reported
numbers the proposed modification does not lead to any visible improvement. As
such, we do not switch models into evaluation mode in any other experiment.

6.1.7 Artificial Attention Maps

Finally, we test out the possibility of applying an artificial attention map to the
distillation process, as described by Equation (4.27). We compare the resultant
model against model 4.3 in Table 6.7. All train-time conditions, except for the
few options shown as table columns, are set to be identical. As indicated by the
reported numbers, model 7.1 outperforms model 4.3 on both datasets. This could
imply that our artificial attention mechanism is able to help the model focus on
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ID teacher α⇒ attention map NTU RGB+D Human3.6M

4.3 model 3.2 0.1 0.2 N 25.74 75.51
7.1 model 3.2 0.25 0.5 Y 25.46 75.15

Table 6.7: Evaluation results for student models on two independent test sets.
We report the mean per-joint position error in millimeters.

ID teacher init α⇒ attention map position weak supervision
8.1 model 3.2 model 1.2 0.1 0.2 N after relu N
8.2 model 3.2 model 1.2 0.1 0.2 N after relu Y
8.3 model 3.2 model 1.2 0.25 0.5 Y before relu N
8.4 model 3.2 model 1.2 0.25 0.5 Y before relu Y

NTU RGB+D PKU-MMD Human3.6M
ID MPJPE PCK AUC MPJPE PCK AUC MPJPE PCK AUC
1.4 25.45 0.91 0.63 18.55 0.95 0.69 76.55 0.89 0.56
8.1 24.69 0.91 0.64 17.82 0.95 0.70 73.82 0.90 0.57
8.2 26.39 0.91 0.63 18.68 0.95 0.69 76.07 0.90 0.56
8.3 24.58 0.91 0.64 18.01 0.95 0.69 73.95 0.90 0.57
8.4 25.70 0.91 0.63 17.98 0.95 0.69 74.60 0.90 0.56

Table 6.8: The upper chart shows the distillation configurations for several stu-
dent models. The lower chart shows their evaluation results across the
three independent test sets. We report performance in terms of all
three metrics.

feature replication in image areas where the person resides. Furthermore, we
notice in practice that, during the first few epochs, the pixelwise multiplication
by our attention map cuts down the magnitude of the distillation loss by around
70 percent.

6.2 Core Study

We examine in this section to what extent privileged information is able to lift the
performance of a single RGB model. Here we adopt some of the design choices
that prove to be beneficial in our experiments from the previous section.

6.2.1 Student Performance

We train four student models as described in Subsection 4.2.2 and report in Table
6.8 their performance across all three test sets. All train-time conditions, except
for the few options shown as table columns, are set to be identical. All experi-
ments employ train-time color and geometry augmentations. For our distillation
loss the default pixelwise similarity formulation in Equation (4.22) is employed.

Performance scores achieved by model 8.1 and 8.3 indicate that our privileged
information learning setup is able to improve pose estimation accuracy across all
three datasets by a considerable margin. In particular, model 8.1 outperforms
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Figure 6.2: 3D pose predictions made by model 8.1 on Human3.6M test sam-
ples. In each 3D plot the green skeleton is the groundtruth, the blue
skeleton is the prediction.

model 1.4 in terms of mean per-joint position error on the Human3.6M test-split
by 2.7mm. This could imply that, thanks to the knowledge transfer process, the
RGB-based student is able to extract a feature representation that is more robust
to variations in scene environment. We visualize in Figure 6.2 the predictions
made by model 8.1 on Human3.6M test samples.

Model 8.2 and 8.4 receive via the distillation loss additional weak supervision
from unlabelled RGB-D image pairs that we collect from the PKU-MMD dataset.
Model 8.1 and 8.2 form a direct comparison. Judging by the reported numbers,
the additional unlabelled training data rather worsened a student’s test-time per-
formance. In particular, model 8.1 surpasses model 8.2 in terms of estimation
accuracy even on the PKU-MMD test-split, despite the fact that it had no train-
time access to samples from that dataset. A comparison between model 8.3 and
8.4 yields similar observations. More experimentation is needed in this regard to
ascertain the best way to exploit these unlabelled image pairs.

6.2.2 Effect of Distillation and Knowledge Transfer

In addition to performance evaluation, it is also interesting to see how well a
student model is able to, given only a single RGB image, replicate the features
produced by the teacher model, who has access to the paired depth image as well.
For this purpose, we gather a small set of RGB-D image pairs from the PKU-
MMD test-split. For each image pair, we take the absolute difference between the
respective target features extracted by model 3.2 and 8.1, then add up the result
along the channel-axis to obtain a single-channel difference map. We visualize
in Figure 6.3 this difference map along with the one obtained in the same way
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Figure 6.3: Difference map comparison for samples collected from the PKU-MMD
test-split. Each row represents a separate test sample. The first
column shows the input RGB image. The second column shows the
difference map between model 3.2 and 1.4. The third column shows
the difference map between model 3.2 and 8.1. Darker pixels indicate
smaller absolute feature difference for that image location. The last
two columns show the respective pose predictions made by model 1.4
and 8.1, projected onto the image plane.

between model 3.2 and model 1.4. Judging by pixelwise intensity, it is clear that
the target features produced by student model 8.1 more closely resemble those
output by teacher model 3.2. In fact, the minimum pixel value on the difference
map between model 3.2 and 1.4 is often 4 to 5 times that on the difference map
between model 3.2 and 8.1.

Another aspect of the learning framework we would like to study is whether or
not the student model has actually learned to effectively extract depth cues from
an RGB image. Whereas there is no direct way to prove or falsify this, we come
up with a workaround plan. That is, we discard the depth image in each training
sample and configure an RGB-based student model to receive privileged guidance
from the baseline RGB model 1.4. The other configurations of this experiment
closely follow the desciption in Subsection 4.2.2. We compare this model against
model 8.1 in Table 6.9. All train-time conditions, except for the few options
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6.2. Core Study Chapter 6. Experimental Results

ID teacher α⇒ loss term sigmoid position
8.1 model 3.2 0.1 0.2 huber Y after relu
9.1 model 1.4 0.1 0.2 huber Y after relu

ID input init augmentation NTU RGB+D Human3.6M
8.1 RGB model 1.2 C + G 24.69 73.82
9.1 RGB model 1.2 C + G 26.41 74.88

Table 6.9: The upper chart shows the distillation configurations for both student
models. The lower chart shows their evaluation results on two in-
dependent test sets. We report the mean per-joint position error in
millimeters.

shown as table columns, are set to be identical. As indicated by the reported
numbers, model 8.1 outperforms model 9.1 on both datasets. Since model 1.4,
teacher of model 9.1, had no access to any depth information throughout, we
speculate it is the privileged depth information provided to model 8.1 that allows
it to achieve this superior test-time performance.
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7
Conclusion

In this work, we aimed to improve monocular 3D human pose estimation by
taking advantage of the depth information available at training time. We adopted
the pose estimation framework proposed by Istvan et al. [SLAL20] as a baseline
method. We built on their approach to develop a privileged information learning
framework that teaches the equivalent of a baseline model to effectively extract
depth cues from a single RGB image.

We proposed to achieve this in two steps. In the first step, we train a teacher
network to regress human poses as accurately as possible. The teacher network is
adapted from the baseline model to accept one RGB image and one paired depth
image as input at the entrance of either branch. The two branches are joined
together via a fusion module in the middle of the original backbone. In a second
step, we teach an RGB-based student network to, in the presence of labeled RGB-
D image pairs, replicate the features produced by the teacher network for each
input sample. This feature representation counts as privileged information and
transfers knowledge to the student network about which visual cues are most
crucial for the pose regression task.

We carried out a range of experiments to validate the efficacy of the proposed
method. In particular, a student model trained within our framework outperforms
the baseline model by a considerable margin across all three test sets, which
clearly indicates that our method is of practical relevance. Furthermore, we tested
out various design choices to facilitate a more efficient knowledge transfer process.
Specifically, we tried an alternative distillation loss formulation, experimented
with different candidate layers as the distillation target and devised an artificial
attention mechanism. After a careful analysis of the experimental results, we
conclude that it is generally favorable to

� initialize a student network with weights taken from a pretrained baseline
RGB model.

� employ the proposed artificial attention mechanism.
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Chapter 7. Conclusion 7.1. Future Work

� stick to the default pixelwise difference formulation for our distillation loss.

� set the convolution at the end of the third chain structure of residual blocks
as the distillation target.

� impose the pixelwise similarity constraint on features before they undergo
the subsequent rectified linear function.

� set the α hyperparameter such that equal contribution is made by the two
loss terms in general.

7.1 Future Work

The effort to exploit unlabelled RGB-D image pairs that are abundantly available
did not pay off in our experiments. The reason for this could be complex but one
thing we noticed is that the teacher model we use does not perform sufficiently well
on the PKU-MMD test-split either. This may imply that the sample distribution
on the PKU-MMD dataset could be very different from that on the NTU RGB+D
dataset. If that is the case, it might make sense for us to try out this weak
supervision strategy on some other dataset.

We also notice that, due to the lack of pose diversity and scene variability, the
evaluation error for our baseline model on the NTU RGB+D test-split and the
PKU-MMD test-split are already non-realistically low. The vast majority of the
training samples are so easy to overfit that they make it impossible for us to train
a student model that is of practical use for in-the-wild application. If someday
a new large-scale RGB-D dataset with greater pose and scene variety arises, it
would certainly be interesting to repeat our experiments there and see if they
open up more possibilities.
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