
The present work was submitted to the
Chair of Computer Science 13 (Computer Vision)

Faculty of Mathematics, Computer Science and Natural Sciences
Prof. Dr. Bastian Leibe

Master Thesis

Temporal Modeling of 3D Human Poses in
Multi-Person Interaction Scenarios

presented by

Stefan Erlbeck
Student ID: 344628

2021-12-16

First examiner: Prof. Dr. Bastian Leibe
Second examiner: Prof. Dr. Leif Kobbelt

Abstract

Anticipating human movement is vital for autonomous systems in order to en-
sure safety and understand human intentions. Although a variety of methods to
solve motion prediction with deep learning have been proposed, we argue that
existing research lacks focus on two key aspects. Many methods remove the
global components of motion and treat each human individually, which oversim-
plifies the dynamics of human motion. In order to demonstrate that claim, we
adopt a successful existing method using recurrent neural networks to addition-
ally model global motion. This model serves as a baseline to our new method
based on attention, which is used both for reasoning about time and interactions.
For our evaluation, we enhance the quality of existing multi-person datasets by
fusing different views. Our extensive evaluation shows that pose representation
and normalization is crucial to successful models and we highlight the difficulty
of modeling global positioning in combination with relative motion. Neverthe-
less, the adopted recurrent method comes close to state of the art performance
which was trained without global motion. We furthermore solidify our claim that
frameworks should be aware of other humans in the scene by showing that our
attention-based method is able to close the performance gap to the recurrent
method when considering multiple subjects jointly.

iii

Contents

1 Introduction 1
1.1 Applications . 1
1.2 Motivation . 2
1.3 Problem Definition . 2
1.4 Outline . 3

2 Fundamentals 5
2.1 3D Modeling . 5

2.1.1 Distance Functions . 5
2.1.2 Rotations . 6
2.1.3 Human Poses . 6

2.2 Deep Learning . 7
2.2.1 Multi-Layer Perceptrons 7
2.2.2 Training . 7
2.2.3 Recurrent Neural Networks 8
2.2.4 Attention Mechanism . 9
2.2.5 Common Techniques . 9

2.3 Algorithms for Preprocessing . 10
2.3.1 Linear Assignment . 10
2.3.2 Sequence Alignment . 10
2.3.3 Estimating Rotations . 11
2.3.4 Geometric Median . 12

3 Related Work 13
3.1 Related Tasks . 13

3.1.1 Modeling Humans . 13
3.1.2 Sequence Generation . 17

3.2 Motion Forecasting . 19

4 Forecasting with RNNs 21
4.1 Architecture . 21
4.2 Towards Long Predictions . 22
4.3 Training . 23

4.3.1 Batch Packing . 23

v

Contents Contents

4.3.2 Loss Function . 23
4.3.3 Implementation Details . 25

5 Forecasting with Transformers 27
5.1 Architecture . 27
5.2 Usage of Attention . 29
5.3 Sequence Generation . 30
5.4 Training . 31

5.4.1 Padding . 32
5.4.2 Implementation Details . 32

6 Motion Datasets and Processing 33
6.1 Motion Datasets . 33
6.2 Pose Representation . 34
6.3 From Video to Sample . 36

6.3.1 Padding Short Videos . 36
6.3.2 Trimming Long Videos . 36

6.4 Preprocessing . 37
6.4.1 Data Normalization . 38
6.4.2 Enhancing Multi-Person Data 39
6.4.3 AMASS Dataset . 43

6.5 Data Augmentation . 44

7 Evaluation 47
7.1 Metrics . 47

7.1.1 Definitions . 49
7.1.2 Differences . 50

7.2 Evaluation Protocols . 51
7.2.1 Comparison to Literature 52
7.2.2 Differences . 52

8 Results on AMASS Dataset 55
8.1 LSTM Tuning . 55

8.1.1 Number of Layers . 55
8.1.2 LSTM and GRU . 56

8.2 GRU Tuning . 57
8.2.1 Number of Layers . 57
8.2.2 Dropout . 57
8.2.3 Dimension of Hidden State 58
8.2.4 Pose Representation . 58
8.2.5 Batch Size . 59
8.2.6 Loss Function . 60
8.2.7 Data Normalization . 60
8.2.8 Summary of RNN Tuning 61

vi

Contents Contents

8.3 Transformer Tuning . 62
8.3.1 Number of Layers . 62
8.3.2 Dropout . 63
8.3.3 Weight Decay . 63
8.3.4 Dimension of Embedding Space 64
8.3.5 Pose Representation . 65
8.3.6 Learning Rate Warm-Up 65
8.3.7 Summary of Transformer Tuning 67

8.4 Comparison . 67
8.5 Qualitative Results . 70
8.6 Final Summary . 71

9 Results on Multi-Person Data 73
9.1 Transformer Tuning . 73

9.1.1 Dimension of Embedding Space 73
9.1.2 Ablation of Person Attention 73

9.2 Comparison . 75
9.3 Qualitative Results . 76
9.4 Summary . 77

10 Conclusion 79
10.1 Summary . 79
10.2 Future Work . 80

A Further Results on AMASS Dataset 81
A.1 GRU . 81

A.1.1 Weight Decay . 81
A.1.2 Absolute and Relative Loss 81
A.1.3 Weight Initialization . 82
A.1.4 Learning Rate . 83
A.1.5 Length of Input . 83
A.1.6 Output Length Schedule 84
A.1.7 Sample Heuristic . 85

A.2 Transformer . 85
A.2.1 Absolute and Relative Loss 86
A.2.2 Number of Attention Heads 86
A.2.3 Batch Size . 87
A.2.4 Learning Rate . 88
A.2.5 Loss Functions . 89
A.2.6 Length of Input . 89
A.2.7 Output Length Schedule 90
A.2.8 Data Normalization . 90
A.2.9 Sample Heuristic . 91
A.2.10 Temporal Masking . 92

vii

Contents Contents

A.2.11 Scaling Features . 92

B Further Results on Multi-Person Data 95
B.1 Transformer . 95

B.1.1 Filtering Threshold . 95
B.2 GRU . 95

B.2.1 Filtering Threshold . 96
B.2.2 Dimension of Hidden State 96

Bibliography 99

viii

1
Introduction

Humans naturally deduce intentions from motion cues during all kinds of inter-
actions, for example greeting usually involves shaking hands, where failing to
understand these intentions might lead to situations perceived as awkward if one
person refrained from accepting the hand shake, e.g., due to safety concerns dur-
ing a pandemic. This process of motion forecasting can be formalized as the
task of extrapolating an observed human motion into the future. The ability
to predict human goals based on observed motion is crucial when participating
in traffic since cyclists often indicate their intention to turn by raising a hand.
With recent breakthroughs in computer vision and natural language processing
comes an increasing interest in admitting autonomous cars and even humanoid
robots outside of controlled environments. This process can only be approved if
the safety of all involved humans can be ensured. In order to achieve this goal, it
is key to automatize the prediction of human motion as an important ingredient
to inferring human intentions.

1.1. Applications

A wide variety of activities requires anticipation of movement. For humans, mo-
tion prediction is probably most relevant in sport activities like handball where
correct forecasting is vital to winning. Automated prediction is still far off to
model complex feints but might one day be used to analyze opponent behav-
ior prior to a match. However, current methods could be applied in environ-
ments where feinting is detrimental. For example, pedestrians do not hide their
goals in order to avoid collisions, so that autonomous vehicles need to infer these
goals. Similarly, autonomous agents need an overview of other traffic participants
through tracking. However, pedestrians may temporarily be occluded behind ob-
jects in which case motion forecasting can be used to bridge these gaps. Likewise,
understanding intentions is crucial to navigating through crowds. Moreover, real-
time performance is essential, but complex frameworks suffer from a small reac-

1

Chapter 1. Introduction 1.2. Motivation

tion lag due to the heavy computational load. Motion prediction can counteract
this lag so that the world model is less outdated.
One goal of robotics is to create robots which are able to interact with hu-
mans, e.g., advising customers or freeing nurses of straining tasks like supporting
mobility-impaired patients. In these scenarios, the robots need to be able to un-
derstand human motion to ensure safety. Lastly, applications in virtual reality,
augmented reality and entertainment should be mentioned.

1.2. Motivation

Although the field of motion prediction is relatively new, a lot of different meth-
ods have already been proposed to tackle the problem. Many authors seem to
be interested in generating realistic motions for time horizons of more than 10 s.
While the problem is challenging, we argue that these long time horizons are not
useful for autonomous systems because of the inherent ambiguity, i.e., solutions
are just guesswork for such a time horizon. In contrast, modeling multiple hu-
mans jointly has only recently caught the attention of the research community.
Although single-person motion forecasting may suffice for direct interactions of a
robot with a human, the robot also needs the capability to navigate in scenarios
with multiple people. In such cases, important constraints on the positioning
of each individual can be derived from understanding interactions correctly, e.g.,
that palms touch during a handshake. These constraints unlock their full po-
tential when all humans are modeled within the same fixed coordinate system.
However, many existing approaches model motion in a coordinate system cen-
tered to the human, which completely removes global orientation and positioning
with respect to the camera. A truly autonomous system would therefore require
a second framework for inference of global 3D positioning. This seems far from
optimal to us: if two frameworks have to be used for highly correlated tasks, these
systems should work together instead of separately. But without global motion
modeling, there is no possibility for refining a 3D pose detection hypothesis and
vice versa. We therefore argue that motion modeling should be extended to a
global setting. Furthermore, we hypothesize that global positioning is refined
from multi-person modeling due to the aforementioned constraints from interact-
ing humans.

1.3. Problem Definition

Let us first formally define the problem of motion prediction. Assume that the
human skeleton consists of J body joints, where each body joint is a point xj ∈ R3

in three-dimensional space. We can then represent the complete human pose at
a fixed point in time f as pf = (xT1 . . . xTJ)T ∈ RJ×3. Then a motion is a
sequence of poses (p1, . . . , pF) for equidistant points in time 1, . . . , F . We also

2

1.4. Outline Chapter 1. Introduction

denote these points in time as frames, which is why they are subscripted with the
letter f . The task of motion prediction then becomes the problem of inferring
(pF+1, . . . , pF+H) from (p1, . . . , pF) for a fixed time horizon H. We usually choose
F and H such that the method is exposed to 2 s of known historic poses, and needs
to extrapolate 1 s into the future. These are prominent values in the literature
and more importantly, constitute a time horizon where the inherent ambiguity of
the task is still limited, i.e., we can assume that the majority of probability mass
is distributed across a set of almost identical future pose sequences.
We will also refer to future poses as target poses in analogy to regression targets
and refer to input poses as conditioning poses.

1.4. Outline

In order to understand our approach to motion prediction, a solid background
on recent techniques and architectures in deep learning is required, especially
concerning recurrent neural networks and attention. We will therefore provide
an overview of basics techniques in deep learning in Chapter 2, along with ref-
erences for further information. Furthermore, we will look at more details on
human pose representations and shortly explain the most relevant mathematical
concepts needed for that.
After the basics are laid out, we will present related research in Chapter 3. This
chapter is split into three parts. First, we will pin down the role of motion fore-
casting inside computer vision by introducing related tasks like 3D pose detection
and highlight similarities and differences. Next, we will look at motion forecast-
ing from a syntactical point of view and explain how sequences are modeled and
generated. Lastly, we will present an overview of existing methods for motion
forecasting.
Our own approaches are explained in Chapter 4 and Chapter 5. In Chapter 4,
we adopt an existing system using recurrent neural networks. That approach is
widely considered to be a milestone in the field of motion forecasting. There are
two reasons behind this step. Firstly, we want to demonstrate how to extend
the task to additionally capture global positioning and orientation. Secondly,
we want to create a strong baseline method which is necessary because existing
approaches to multi-person motion prediction are often hard to compare to due
to uncommon metrics or datasets. Our own method using the attention mech-
anism is presented in Chapter 5. We will demonstrate how attention replaces
the temporal dependency of recurrent approaches and also how it generalizes to
multi-person modeling with little additional effort. Due to these advantages, we
argue that attention-based architectures are preferable once they obtain the same
accuracy as recurrent ones.
Multi-person datasets with accurate 3D ground truth poses are currently scarce.
Although there are several efforts to alleviate this gap concurrently to this work,
they were not published in time. We therefore dedicate Chapter 6 to our approach

3

Chapter 1. Introduction 1.4. Outline

of obtaining refined ground truth data from datasets recorded with commodity
hardware. This is of course far from optimal and should therefore be considered
as a placeholder for upcoming datasets.
Consequently, we split our evaluation described in Chapter 7 into an analysis on
high-quality data and on our refined data. Chapter 8 shows the result of our
extensive tuning on the AMASS dataset, which contains single-person motions
from professional motion capturing systems. Furthermore, we will compare our
two methods to several heuristics and a state of the art method using attention
as well. We will show that our approaches cannot fully compete with the state
of the art, likely caused by the fact that the mentioned method was not required
to model global motion as our methods were. However, we will also see that
the gap to state of the art performance is rather small. Lastly, we will see that
our attention-based method has trouble to keep up with our recurrent method
for certain evaluation metrics and that different architectures exceed at global
motion and relative motion. The second part of our evaluation is presented in
Chapter 9, where we will move to the refined multi-person dataset. We will see
that the performance advantage of our recurrent method is completely negated
by the ability of attention to model multiple people jointly.
Lastly, we will discuss our results in Chapter 10 and explain how future research
might improve our attention-based method.

Our contributions can be summarized as follows:

1. Extending an existing successful method to model global orientation and
position.

2. Devising a new method that generalizes to multi-person motion forecasting
with no constraints on the number of subjects.

3. Refining existing datasets in order to adequately evaluate our method.

4. Demonstrating the difficulties of global modeling and how multi-person ap-
proaches can alleviate these difficulties.

4

2
Fundamentals

In order to follow the next chapters, a strong background in deep learning is
helpful. We will therefore dedicate this chapter to shortly explaining the most
fundamental learning concepts relevant to our research. We will furthermore
provide references for more in-depth explanations. Lastly, we also want to intro-
duce common mathematical concepts and algorithms which are sometimes needed
when processing motion data.

2.1. 3D Modeling

In order to model humans in three-dimensional space, some common mathemati-
cal concepts like distance functions and rotations are required. More importantly,
one needs to understand how a human pose is actually represented, so that we
will provide the details in this section.

2.1.1. Distance Functions

A metric or distance function is a function d(x, y), which is positive definite,
symmetric and fulfills the triangular inequality, in other words

d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y

d(x, y) = d(y, x)

d(x, y) ≤ d(x, z) + d(z, y)

for all elements x, y, z from the metric space. Common metrics include the Man-
hattan distance and the Euclidean distance. The former is given by

d(x, y) = ‖x− y‖1 =
3∑

i=1

|xi − yi|

5

Chapter 2. Fundamentals 2.1. 3D Modeling

for two points x, y ∈ R3, whereas the squared Euclidean distance is given by

d(x, y)2 = ‖x− y‖22 =
3∑

i=1

(xi − yi)2

Squaring the Euclidean distance is common in machine learning, because often,
derivatives need to be computed.

2.1.2. Rotations

Formally, a rotation is an orthonormal basis exchange of a coordinate system,
so that applying a rotation results in the coordinate axis pointing into different
directions compared to the original coordinate system. We will only consider
rotations in three dimensions throughout this work. Together with translations,
i.e., shifts of the origin and all other points along the same parallel vector, ro-
tations form the group of Euclidean transformations which preserve distances,
angles and areas [HZ03]. Rotations can be expressed in a variety of different
representations. For the scope of this work, it suffices to view a rotation in three
dimensions as a matrix R ∈ R3×3 which satisfies RRT = RTR = I where I is the
identity matrix. The set of these matrices R form the so-called orthogonal group
and those elements with determinant equal to one form a subgroup called special
orthogonal group. This subgroup coincides with the rotation matrices. In con-
trast, those orthogonal matrices with determinant equal to minus also contain a
reflection component, i.e., they change the coordinate system from right-handed
to left-handed, which is usually not desired. For more information on rotations,
and especially on alternative representations, we refer to [SSVO10].

2.1.3. Human Poses

In order to model human motion, one needs to be able to represent the human
skeleton adopting different poses at discrete time steps. A sparse way to approx-
imate human poses is to model the relationship, i.e., angles, between the most
important joints like shoulders and elbows. This bears similarity to how robotic
arms, etc., are modeled and is also adopted in animation software. In robotics,
the most common way to accomplish that is to model each joint as a local coor-
dinate system and the current pose configuration as a chain of rotations, which
is sometimes referred to as joint angle representation. If one additionally knows
the length of the limbs, one can then compute where an end joint is in the co-
ordinate system of an ancestor joint by recursively chaining the rotations and
translations of all joints in between. This process is called forward kinematics.
Such an approach is also adopted by Loper et al. [LMR+15] in their effort to
model human poses as well as body shapes in a single differentiable framework
compatible with animation pipelines, see Section 3.1.1 for details on SMPL. An
alternative approach to this is to model joints as points in the same coordinate

6

2.2. Deep Learning Chapter 2. Fundamentals

system, i.e., to model joint locations. The formulation as angles makes it easier
to encode constraints like fixed limb lengths and impossible joint angles so it is
advantageous for controlling robots. However, the purpose of human modeling is
different to controlling actuators in a robot. Usually, the goal is to either visualize
the poses or to integrate them into a 3D scene model. For both of these goals,
joint angles are meaningless so that forward kinematics need to be applied any-
ways. We therefore argue that as long as the deep learning framework is able to
reliably generate feasible poses, joint locations are more efficient as an underlying
representation.
More background on kinematics can be found in [SSVO10].

2.2. Deep Learning

In the following, we will shortly describe important neural network architectures
which are utilized in this work, and algorithms related to training them.

2.2.1. Multi-Layer Perceptrons

A broad class of neural networks is named multi-layer perceptrons (MLP). A
single layer of such a network maps an input vector x linearly to Wx+ b, where
W is a learned weight and b a learned offset called bias. In this context, learning
means optimizing under a certain loss function which defines what the output of
the MLP should look like. Stacking multiple such layers would not make sense
without the introduction of non-linear mapping, e.g., σ(x) = max{0, x}, between
them, since the composition of two linear functions is again linear. Two-layer
perceptrons have been shown to be capable of approximating every function, if
the dimension of the intermediate output is high enough [SSBD14]. In practice,
more than two layers are commonly stacked instead of choosing a large hidden
state.

2.2.2. Training

Neural networks are typically supervised using a loss function which measures how
correct the outputs are. An example for a loss function often used in regression
is the squared Euclidean distance between predicted vector and target vector. Of
course, this assumes that training data exists for which the ground truth target
is known. This assumption is never violated throughout the scope of this work.
A common iterative algorithm to optimize the weights of a neural network is
gradient descent. The idea is that the gradient of the loss with respect to the
weights points into the direction of steepest ascent, so that moving in the opposite
direction produces a lower loss. The corresponding update rule is

wnew = wold − η
∂L

∂wold

7

Chapter 2. Fundamentals 2.2. Deep Learning

where L is the loss function with weight wold and η is the learning rate governing
convergence speed. Modern deep learning systems often apply optimized versions
of gradient descent, e.g., Kingma et al. [KB15] average over past gradients for a
less noisy estimate and additionally scale the gradients for more stable conver-
gence.
It should be noted that the computation of the gradient is not trivial. The gradi-
ent vectors have to be computed in a smart order to efficiently reuse intermediate
results. This is summarized in an algorithm called backpropagation. For more
details, refer to [SSBD14].
Gradient descent originally computes the loss over all samples in the training
dataset. However, this implies that the optimization might get easily stuck in a
local optimum [Bis06]. Stochastic gradient descent only computes the loss over
a single data point, which alleviates the previous problem but can be extremely
slow for large datasets. As a consequence, most approaches use a middle ground
where multiple data points selected at random are grouped into a (mini-)batch
and each loss computation and weight update are performed on such a batch. Us-
ing this approach allows to implement optimization via efficient matrix products,
and is less noisy than stochastic gradient descent. Mini-batches can be employed
to modern alternatives for gradient descent as well.

2.2.3. Recurrent Neural Networks

Multi-layer perceptrons and most other feed-forward networks have a distinctive
limitation. Each input token produces a deterministic output, irrespective of
previous inputs. This is problematic for applications like time-series prediction
where the input consists of multiple measurements at different points in time.
Recurrent neural networks (RNNs) add a temporal connection between each layer.
The naive implementation computes the output as ht = σ(Whht−1 + Wxxt + b),
i.e., the output depends on the current input xt and on the previous output ht−1.
Such an RNN can be notoriously hard to train because gradients might grow or
shrink uncontrollably in magnitude, compare Hochreiter et al. [HS97]. Therefore,
they devised an RNN design with improved gradient flow. The key idea of their
method, which is called long short-term memory (LSTM), is to use gates of the
form σ(W [ht−1, xt]+b) where square brackets denote concatenation. The result is
a vector containing values only between zero and one due to the sigmoid function
σ. This vector is then used to control the access to the internal state of the
LSTM cell, e.g., which parts of the cell state should be forgotten (set to zero).
An alternative to LSTM with a simplified design is named gated recurrent unit
(GRU) and was presented in [CvMG+14].

8

2.2. Deep Learning Chapter 2. Fundamentals

2.2.4. Attention Mechanism

While RNNs governed state of the art in many sequence tasks like natural lan-
guage processing for years, they suffer from low parallelization potential. Fur-
thermore, the limited size of the cell state poses an inherent bottleneck to keeping
both short-term and long-term dependencies. Vaswani et al. [VSP+17] proposed
a different approach to sequential modeling called attention. It is computed as

softmax

(
QKT

√
d

)
V

where the rows of matrices Q,K and V are query, key and value vectors and the
denominator contains a scalar rescaling factor. Essentially, the formula computes
a weighted sum of the value vectors for a query vector qi where the weight of each
individual value vj is determined by the similarity between its query qi and key
kj.
We can immediately observe two advantages of attention. Firstly, the informa-
tion exchange between the value vectors is independent of the distance between
i and j, which means that attention considers the relationship between distant
inputs just as much as short-term dependencies. Secondly, the number of queries
is independent of the number of key-value pairs. In fact, queries and key-value
pairs do not even need to represent the same type of data, e.g., queries could
represent words and key-value pairs could represent image features if one was to
evaluate whether a sentence describes an image.
Vaswani et al. also made further contributions. Multi-head attention is an ex-
tension where attention is applied several times in parallel in order to explore
more than one type of similarity between tokens. Since attention has no sense
of token order, the absolute position of each token is encoded through sine and
cosine waves with different periodicities. This positional encoding is added once
to the input. Their resulting network trained on language translation is called
transformer, although that term is sometimes also used for vastly different archi-
tectures containing an attention module.

2.2.5. Common Techniques

Neural networks are known for a considerably amount of time, but only recently
became popular in a large variety of tasks. Additionally to higher computational
resources, this may partly be accounted to a number of tricks which often seem
to help in practical applications. Dropout multiplies random entries of the inter-
mediate outputs with zero, which can be seen as a way to train multiple models
and combining their benefits. Data augmentation diversifies the training dataset
by applying modifications to the training data which the network should be able
to deal with. Another trick is called weight decay, where the loss is extended
to contain the norm of the network weights. This enforces small weights except
where needed for a good performance. In order to see why small weights are

9

Chapter 2. Fundamentals 2.3. Algorithms for Preprocessing

preferable, consider the case where a certain feature is only weakly correlated
with the outcome. If the corresponding weight was large, fluctuations in that
feature would be enhanced despite having little meaning to the outcome. Other
techniques include residual connections, where the output of a layer (or multiple
layers) is added to the input, so that it effectively learns to generate a correc-
tion of the input. These residual connections can greatly improve gradient flow
which allows for deeper models. Lastly, consider the layer presented by Ba et
al. [BKH16], which re-normalizes a feature vector so that the different features
are located around zero. This is for example helpful when using the rectified
linear unit (ReLU) σ(x) = max{0, x} non-linearity. Imagine that all inputs were
positive numbers. Then multiple linear layers would collapse into a single linear
function and the convergence would be slow until the network learned to offset
the bias to positive values.
Apart from the information about layer normalization, most of this section is
based on [GBC16], which also serves as a reference for more details.

2.3. Algorithms for Preprocessing

Apart from deep learning, we require a few classical algorithms, which will be
presented in this section. Most of these algorithms are used for preprocessing of
noisy data.

2.3.1. Linear Assignment

The problem of linear assignment considers n workers which need to be assigned
to m jobs. Each possible pair of worker and job induces a certain cost based
on some cost matrix C ∈ Rn×m. The task is to find a non-extendable matching
of jobs to workers, so that either no worker is unemployed or all jobs are being
worked on. The task can also be formulated as finding a non-extendable matching
with minimal cost. While many algorithms have been devised, some of the most
efficient methods can be traced back to the Hungarian algorithm and use shortest
augmenting paths to solve the problem [Cro16]. That means that in each step,
a previously unassigned worker is matched to a job which was already assigned.
Consequently, the original worker needs a new job, which can again be an assigned
job. This is repeated until a previously assigned worker is matched to a previously
unassigned job. Such an extension of an existing matching is called an alternating
path and the algorithms look for the shortest of all alternating paths. Crouse
[Cro16] derived such an algorithm which is also used in the scope of this thesis.

2.3.2. Sequence Alignment

The problem of sequence alignment consists of finding correspondences between
the items of both sequences, where correspondences must never go backwards,

10

2.3. Algorithms for Preprocessing Chapter 2. Fundamentals

e.g., if ai was matched to bj, then no item after ai can be matched to any item
before bj and vice versa. The problem can be solved efficiently with dynamic
time warping (DTW) which utilizes dynamic programming to check whether a
matching until (ai, bj) should be extended by matching bj+1 to ai or to ai+1

or matching bj to ai+1. Salvador et al. [SC04] present a linear approximation
of DTW called FastDTW, which recursively finds coarse alignments and refines
those. Although Wu et al. [WK20] report that FastDTW is slower than full
DTW, we observed considerably lower execution times, so that we will employ
FastDTW.

2.3.3. Estimating Rotations

Consider two sets of vectors in R3 with the same cardinality. The task is to
find a rotation matrix that, when multiplied with the vectors from the first set,
produces the vectors in the second set. Obviously, this problem has no solution
in almost all cases, so that one instead tries to minimize the squared Euclidean
distance between the rotated vectors and the vectors in the second set. The prob-
lem was solved by Kabsch [Kab78] and essentially comes down to stacking the
vectors into matrices A and B, computing BTA ∈ R3×3, applying singular value
decomposition BTA = UΣV T (with sorted singular values) and choosing UV T

as the solution to the problem. The algorithm can be applied to point clouds by
shifting the center of mass to the origin first.
However, the rotation matrix UV T may have a determinant of minus one. This
means that the vectors were actually reflected and rotated and is often not a fea-
sible solution. Kabsch observed that multiplying the last column of V by minus
one in that case alleviates the problem.
Another difficulty is that the data may contain a large number of outliers, i.e.,
corrupt data points which should be ignored. In order to increase robustness,
one can use the meta-algorithm random sample consensus (RANSAC) [FB81].
Instead of computing the hypothesis (in this case the rotation matrix) from all
data points, one randomly samples a minimal number of data points such that
the solution is unique, which is three vector pairs in our case. Next, one computes
the hypothesis on this subset and evaluates how many points in the whole dataset
support it, i.e., how many vectors lie within a reasonable error threshold. These
steps (sampling and evaluation) are then repeated for multiple iterations. In the
end, the best hypothesis, i.e., the one with the highest support, is used to divide
the dataset into inliers and outliers so that one can then choose the hypothesis
minimizing the error on all inliers.

Although implementations of Kabsch’ algorithm exist in common libraries, we
ran into the problem of having to compute a large amount of such rotations.
We therefore implemented a batched version of Kabsch’ algorithm based on the
singular value decomposition from PyTorch.

11

Chapter 2. Fundamentals 2.3. Algorithms for Preprocessing

2.3.4. Geometric Median

For a point cloud x1, . . . , xm ∈ Rn, the problem of finding the geometric median
c is defined as

argmin
c∈Rn

m∑
i=1

‖xi − c‖2

which is a generalization of the one-dimensional median. If the Euclidean norm
was squared, one could simply compute the center of mass, i.e., the arithmetic
mean component-wise. The proof is analogue to the maximum likelihood esti-
mation of the mean of a multivariate Gaussian, compare for example [Bis06].
Without squared norms, the problem is strictly convex, i.e., every local minimum
is also global [VZ00]. Nevertheless, iterative algorithms like [VZ00] are required.
The basic idea is to compute the center of mass, but value points higher when
they were farther away from the previous estimate. However, finding a good
initialization is not trivial.

12

3
Related Work

Motion Forecasting is one of many computer vision problems involving the mod-
eling of human behavior. We will therefore present a brief overview of tasks
emerging around human modeling, where we will highlight similarities and dif-
ferences to motion prediction. Next to modeling human behavior, the other key
aspect of motion prediction is the generation of a sequence. Therefore, we will
describe common approaches to this class of problems and analyze benefits of
drawbacks of these approaches.
After providing these overviews, we can then proceed to look at state of the art
methods solving motion prediction in order to understand which key develop-
ments have been made.

3.1. Related Tasks

Motion prediction shares similarities and methodologies with many other tasks
from computer vision and even natural language processing. In this section, we
will provide a brief overview of related problems in deep learning. Problems
might share semantic and syntactic similarities, which we will both consider in
Section 3.1.1 and Section 3.1.2 respectively.

3.1.1. Modeling Humans

Semantically similar tasks to motion prediction mainly occur in computer vi-
sion. Motion forecasting is a task where reasoning about human behavior is key.
Many related problems also require knowledge about human appearance, e.g.,
skeletal representations are often extended to human shapes via frameworks like
SMPL [LMR+15], more details later. We introduce a taxonomy of semantically
related tasks in Figure 3.1 based on the structure of the problem solution.

13

Chapter 3. Related Work 3.1. Related Tasks

Modeling Humans

Classification Regression

Face Detection

...

Action Recognition

Re-Identification

2D 3D

Pose Detection

Pose Detection

Motion Forecasting

Shape Prediction

Object Detection

Tracking

...

...

Trajectory Prediction

Figure 3.1.: Taxonomy of computer vision tasks related to humans.

Let us first consider classification problems involving human appearance. An
early example for this problem class is face detection, i.e., the binary decision of
whether an image shows a face or not. Viola et al. [VJ01] proposed a famous
and efficient method for face detection using a hierarchy of simple decision rules
based on image features. This work dates back to when deep learning was not
yet popular.

A more recent and more complex example of human appearance classification is
the task of re-identification, where a queried human needs to be matched against
a database of individuals. Wojke et al. [WB18] derived a type of dense layer that
forces the network backbone to learn feature representations which can be com-
pared with cosine similarity. This is beneficial because it allows comparisons with
unknown humans. We will later use their approach during our data preprocessing.

Like human appearances, human behavior can also be classified. One exam-
ple for that is action recognition. Here, an RGB video depicting human behavior
is shown to the classifier which then needs to assign the video to a class of hu-
man actions, e.g., eating, walking, etc.. One can think of action recognition as
the classification variant of motion forecasting, because both problems consist
of understanding human motions. A popular method for action classification

14

3.1. Related Tasks Chapter 3. Related Work

was presented by Carreira et al. [CZ17], who demonstrate that pre-training on
large action recognition datasets benefits the accuracy greatly. They furthermore
present an approach to benefit from image classification networks which are con-
siderably more advanced than those prevalent in action recognition.

On the other hand, regression tasks usually require multiple continuous outputs.
These tasks can further be divided into 2D, i.e., the regression method predicts
pixel location, and 3D, where the goal is to predict locations in world space. We
will first consider 2D regression problems and then their 3D variants if existent.
A low-dimensional 2D regression task is trajectory prediction, where a past trajec-
tory is known and needs to be interpolated into the future. Humans are simplified
to moving points on a 2D plane and the difficulty comes from modeling social
interactions like people moving in groups. We note that this is quite similar to
global motion estimation, because both tasks involve the extrapolation of po-
sitions into the future. Trajectory prediction was solved for example by Alahi
et al. [AGR+16], who utilize a single auto-regressive recurrent network to pre-
dict each trajectory individually. The key to their method is the intermediate
social-pooling layer, where the hidden states of the RNNs are aggregated if the
respective humans are close to each other.

Two highly common regression problems in the space pixel coordinates are object
detection and tracking. Both involve the prediction of bounding boxes in order
to mark objects in the image, e.g., by regressing the pixel coordinates of the
box corners. These tasks are not necessarily related to humans, but important
applications like autonomous cars utilize these techniques for pedestrians and
other traffic participants. The difference between object detection and tracking
is that tracking also consists of a temporal component because in each frame,
the tracked objects need to be associated to those objects from the previous
frame. A recent object detection approach using transformers was presented by
Carion et al. [CMS+20]. Here, the image features are fed into the transformer
encoder while the decoder maps “placeholders”, which are called object queries,
to bounding boxes. Attention is used as the connection mechanism between the
object queries and the image features. Meinhardt et al. [MKLTF21] extend that
transformer structure to perform tracking. This can simply be achieved by using
auto-regressive feedback on the positive detections, i.e., the input to the decoder
consists of empty object queries and filled track embeddings from the previous
frame. We emphasize that tracking shares many similarities with motion fore-
casting. Both tasks are regression problems, include a temporal component and
largely deal with human movement. However, the human appearance is much
more important for tracking than for motion prediction. Moreover, motion fore-
casting has to interpolate longer into the future.

The regression task with the highest similarity to motion forecasting is pose

15

Chapter 3. Related Work 3.1. Related Tasks

prediction, at least concerning how outputs look like. Pose prediction is the task
of regressing the location of joints like wrists and feet. These locations can be
regressed both in pixel (2D) or in world coordinates (3D). Again, we will consider
the 2D variant first. One approach to multi-person pose estimation is presented
by Cao et al. [CSWS17]. Two CNNs are iteratively applied to the image features.
The first CNN predicts confidence scores for the different joints as heatmaps.
However, association between joints becomes extremely hard for crowded scenes.
Consequently, the second CNN predicts 2D vector fields for each point lying on
a limb. For association, one can use the vector field to learn where the kinematic
child joint lies. Since this method infers poses from joints, it is called bottom-up.
Another line of work approaches the problem top-down, i.e., first detecting im-
age crops containing a single human and then inferring joints. An example for
such a top-down pose detection in 3D coordinates was presented by Sárándi et
al. [SLAL21]. The authors directly generate volumetric heatmaps via convolu-
tions from the input image. Next, the expected voxel location of each joint is
computed. The key advantage is their translation-invariant joint loss which al-
lows the network to place the root joint anywhere inside the heatmap. As a
consequence of the decoupling of heatmap and image coordinates, a full pose can
be regressed even for cropped image. If additionally the camera intrinsics are
known, their method can be extended to compute the absolute position on top
of the root-relative pose.
Although both motion forecasting and 3D pose detection both consist of the re-
gression of human poses, there are also many differences. These include that
for motion prediction, the input is not an image but a pose sequence and that
not only the current pose should be regressed but also those after that. Current
approaches to motion forecasting are discussed extensively in Section 3.2.

The last of the presented 3D regression problem involving humans is shape pre-
diction, where the goal is usually to predict a sparse but high-dimensional surface
mesh of the human body. As surface meshes are difficult to manipulate, shape
prediction often involves the regression of the skeleton pose as well so that the
surface mesh can then be modified, e.g., with animation software. A framework
to accomplish that was presented by Loper et al. [LMR+15]. Their model, called
SMPL, contains learned deformations of the default surface mesh based on the
body shape, e.g., how athletic a person is, and based on the human pose, in order
to model soft tissue deformation around joints. These two factors, the body shape
of a certain human, and its pose at a point in time can be controlled by two low-
dimensional input vectors, which can for example be generated by a deep learning
method. The key is that SMPL is able to apply forward kinematics according to
the pose vector provided so that the surface mesh will adopt the corresponding
pose.

After presenting this overview on related tasks, we want to mention that other

16

3.1. Related Tasks Chapter 3. Related Work

taxonomies are possible, e.g., based on the input data. However, we argue that
the goal of inference is a more discriminative property than for example whether
the image is colored. This taxonomy is also by no means complete, e.g., recent
research often aims at segmentation or object detection from point clouds. While
motion forecasting with joint locations comprises a point cloud as well, there are
many distinctions. Firstly, motion forecasting is extremely low dimensional com-
pared to a LiDAR scan. Secondly, our data is assumed to be free of occlusion
and background, i.e., each joint location is always known and each point in the
input can be mapped to a relevant joint. Finally, we aim to manipulate points,
i.e., perform realistic transformations of human poses.

3.1.2. Sequence Generation

Syntactically, motion forecasting is a sequence-to-sequence tasks similar to lan-
guage translation or trajectory prediction, where both input and output are se-
quences. We therefore now provide an introduction on how to approach this class
of problems.
In general, input and output sequences cannot be assumed to have the same
length. Thus, many authors, e.g., [VSP+17, AGR+16, LYRK21] among others,
utilize encoder-decoder-architectures in order to decouple the input and output
sequence. The encoder computes a latent feature representation of the input,
often with fixed length, and the decoder performs sequence generation while be-
ing conditioned on the encoder output. For example, Vaswani et al. [VSP+17]
apply these architectures to automated language translation where the encoder
computes feature vectors for each word in the source language sentence and the
decoder generates a translation conditioned on these words. Naturally, encoder
and decoder do not share weights because, e.g., grammar can differ a lot between
source and target language. Interestingly enough, the feature representation is
nevertheless shared between the two languages by grouping common character
combinations in both languages into new symbols, i.e., the input and output to-
kens are in fact not words but character groups. For brevity, we still refer to
them as words.

While the encoder-decoder formulation solves the problem of decoupling input
and output, it does not solve the problem of how to actually generate the output
sequence. Therefore, we will now investigate methods to achieve that.
A popular method to generate a sequence of output tokens is to use an auto-
regressive connection. This means that the network is trained to transform a
vector describing the state at time ti−1 to the vector describing the state at time
ti. Since the output comes from the same domain as the input, the network can
then use the output, i.e., the estimated state at time ti, to generate the estimated
state at ti+1. This procedure can then be repeated as often as necessary in order
to generate longer sequences.

17

Chapter 3. Related Work 3.1. Related Tasks

Auto-regressive methods can be subdivided into two categories based on how
exactly training is performed. In teacher forcing, which is for example used
in [AGR+16], the input sequence is the ground truth sequence shifted by one
step. Consequently, to predict n steps into the future, the input is the ground
truth at t0, t1, · · · , tn−1 and the target variable is the ground truth at t1, t2, · · · , tn.
In sampling-based training, the only ground truth used is the feature vector at
t0. The estimated corresponding output ŷ1 then becomes the input at t1 and so
one. Thus, the network is trained to work with its own output. Note that even
with teacher forcing, inference has to be sampling-based as the future is obviously
unknown.
Training with teacher forcing reduces the training duration because all inputs
are directly known, which allows more aggressive optimization and paralleliza-
tion even for recurrent models. Furthermore, it can lead to more stable training
because the correspondence between input and output is always exact unlike in
sampling-based training. Here, a complete mismatch between target yi and es-
timation ŷi leads to the supervision that ŷi should be matched to yi+1. But if
ŷi is a valid state different from yi, one usually cannot assume that it should
lead to state yi+1 as well. In contrast, sampling-based training can lead to more
robust models because the network gets used to its own noise. Which of these
two properties is more important depends on the task. Motion forecasting usu-
ally employs sampling-based training as Martinez et al. [MBR17] reported it to
outperform teacher forcing. Prior to that, Fragkiadaki et al. [FLFM15] utilized
teacher forcing with increasing amount of corrupting noise on the input, which
Martinez et al. criticize as difficult to tune.

In their machine translation framework, Vaswani et al. [VSP+17] also use auto-
regressive generation with teacher forcing. A key difference is that they addition-
ally apply beam search, where instead of greedily generating the most likely word,
several words with high probabilities are stored. This is useful because sometimes
choosing a suboptimal word can lead to more likely sentences in the long run.
In contrast, the amount of valid human poses is infinite so that the probability
distribution of human poses cannot be represented as a probability vector. It
therefore becomes rather sophisticated to model multiple futures similar to how
multiple translations are explored, e.g., Ghosh et al. [GSAH17] report that the
Gaussian mixture models they used lacked expressive power.

A completely different approach to sequence generation is presented by Hernan-
dez et al. [HGM19]. The authors formulated motion forecasting as an inpainting
problem. Inpainting is the task of generating image coloring for regions where
the original data is lost, e.g., in order to remove text written on an image. If
the task is to predict a time series, the task can equivalently be formulated as
inpainting the future of a temporal tensor. Consequently, this approach is more

18

3.2. Motion Forecasting Chapter 3. Related Work

efficient both in training and inference because it does not depend on sequential
computation like auto-regressive generation. But like all sequence generation ap-
proaches, it inherently suffers from ambiguity and error propagation the longer
the target length is.

3.2. Motion Forecasting

We have now given an overview of tasks involving modeling of human appearance
and behavior. Furthermore, we have presented different approaches to generate
future motions, therefore it is now time to actually focus on motion forecasting.
We will therefore present a wide variety of recent method specifically for that task.

An early milestone was presented by Martinez et al. [MBR17], who showed that
previous attempts were often outperformed by a simple baseline heuristic called
zero motion, where the last known pose is used as predictions. They devised
a GRU architecture with comparably few weights. One key contribution is to
employ a residual connection from input to output so that the network effec-
tively models velocity. Ghosh et al. [GSAH17] presented a deeper LSTM. After
each prediction, the output is fed to a denoising auto-encoder which was trained
separately on denoising as well as joint reconstruction. This allows the model
to produce realistic poses over a time horizon of 10 s, at least for periodic ac-
tions like walking. Liu et al. [LWJ+19] model the space of all human poses as
a Lie group. The strong ties to the theory of Lie groups allow encoding of pose
constraints like restrictions on bone lengths and the degrees of freedom in some
joints. Their decoder is the usual auto-regressive RNN, but updated with the
average of all hidden states from the encoder in order to not over-emphasize the
last known frames. In contrast, Martinez et al. use the large hidden state of
the encoder because they argue that the first prediction often lacks smoothness.
Aksan et al. [AKH19] designed a custom hierarchical layer. For each joint, there
is a dedicated small sub-layer conditioned on its kinematic parent and the global
feature vector. This feature vector can be the hidden state of an arbitrary RNN,
e.g., the GRU from [MBR17]. Du et al. [DVJR19] devised an LSTM for motion
prediction with shapes instead of poses using the aforementioned SMPL frame-
work [LMR+15]. They furthermore introduced additional loss terms derived from
domain knowledge, e.g., symmetry of shoulders and ground plane constraints.
Adeli et al. [AAR+20] model multiple humans at the same time. Their encod-
ing LSTM is applied on each person separately. Afterwards, they employ social
pooling as in [AGR+16]. Another key difference to previous methods is that they
model motions in a fixed global coordinate system instead of a relative system
following the subjects. Kundu et al. [KBM+20] designed a network specifically
for long-term synthesis of partner dance motions. One part of the network is
provided with the known poses of one person and predicts their dance partner
from that. The other part of the network takes one person and predicts its future.

19

Chapter 3. Related Work 3.2. Motion Forecasting

By alternating between these two steps, future motions of arbitrary length can be
synthesized without losing the correlation between the two dance partners. They
evaluate time horizons of 20 s.

Before the emergence of transformers [VSP+17], few methods for motion pre-
diction used approaches other than RNNs. Notable exceptions are Hernandez et
al. [HGM19] and Mao et al. [MLSL19]. Hernandez et al. formulate the problem as
an inpainting task (compare Section 3.1.2) and employ two convolutional neural
networks following the generative adversarial network approach. The task of the
generator is to predict the future motion and the discriminator evaluates whether
the result looks similar to real data. Their motivation for the network structure
is that image inpainting is solved in the same way. Mao et al. choose a different
approach. Given a motion sequence, they replicate the last known frames as often
as it shall be predicted, like the zero motion baseline from [MBR17]. Afterwards,
they apply the discrete cosine transform (DCT) on each joint independently, i.e.,
each joint trajectory is not represented as a temporal sequence of locations but
as a weighted sum of cosine waves. The network then performs a refinement of
these coefficients. Their motivation for using DCT is that those coefficients cor-
responding to high frequencies can be discarded after refinement to smooth the
joint movement through space.

Recent approaches investigate attention mechanism to replace the recurrent con-
nection. Cao et al. [CGM+20] first generate possible destinations and then predict
the motion which the human undertakes to reach a destination, where the lat-
ter part is generated by the transformer. Like Adeli et al., their method is scene
aware, i.e., the network is provided with image data in addition to the past poses.
Li et al. [LYRK21] propose a transformer that generates dance movements con-
ditioned on past poses and on music. They employ two transformers to embed
audio features and pose features into the same latent space. These latent features
are concatenated and used to generate future poses with a third transformer. Mao
et al. [MLS20] also presented an extension to their DCT method. The network
input does not only comprise the DCT coefficient, but also a prior estimate of
future. This prior is obtained by motion attention, i.e., an attention mechanism
compares how similar the last known poses are to older poses. If similar older
poses are found, one can use their respective future (which still lies in the past)
as a prior. This design is motivated by the fact that some motions like walking
are periodic. Concurrently to our work, Aksan et al. [ACKH20] developed an-
other transformer architecture. By now, it is peer-reviewed and published, but
we still refer to a preprint. Their method divides a motion into a temporal and
a kinematic dimension. Consequently, their transformer uses spatial attention
to aggregate information between joints and temporal attention to achieve the
same between different frames. The sequence is generated in an auto-regressive
manner.

20

4
Forecasting with Recurrent Neural Networks

As our first method, we will adopt the approach to motion forecasting from
Martinez et al. [MBR17]. Their method utilizes recurrent neural networks and
is often used in research to obtain a reference performance. However, it ignores
global motion and is therefore not directly comparable to our method presented
in Chapter 5. To alleviate this, we adopt their architecture to global motion
modeling. Furthermore, the adoption allows to analyze how much additional
effort is required to transition from relative to global modeling.

4.1. Architecture

The encoder-decoder architecture from Martinez et al. [MBR17] is presented in
Figure 4.1. The classification as an encoder-decoder model is rather conceptual
because historic and future poses are fed to the same recurrent layer and conse-
quently share the same internal state, though at different points in time. The key
difference between the encoder and the decoder is that the encoder only updates
the internal state while the decoder additionally passes the output of the last
recurrent layer to the linear projection layer in order to generate a pose from
the internal state. The output sequence is generated using the auto-regressive
approach, which was extensively presented in Section 3.1.2.

The main differences to their model are threefold. Firstly, we represent poses as
joint locations instead of joint angles, which we motivated in Section 2.1.3. Sec-
ondly, we stack multiple recurrent layers because we train on AMASS [MGT+19],
which contains significantly more data (and therefore allows deeper networks)
than Human3.6M [IPOS14] used by Martinez et al.. Moreover, AMASS contains
a wide variety of challenging motions like somersaults, whereas Human3.6M con-
tains 15 everyday actions of which a few are even redundant, e.g., walking, walking
with a dog and walking as a couple. Lastly, Martinez et al. recommended to con-
catenate action labels to the network input as their action-agnostic network was

21

Chapter 4. Forecasting with RNNs 4.2. Towards Long Predictions

RNN Layer

RNN Layer

RNN Layer

RNN Layer

RNN Layer

RNN Layer

RNN Layer

RNN Layer

Input Input

Linear Linear

Output Output

Input

+ +

Output

RNN Layer

RNN Layer

Linear

Output

+

Output

Figure 4.1.: Adopted recurrent architecture. The linear layer predicts offsets to
the input. Generated output is used auto-regressively in the next
step.

outperformed by the action-aware one. However, action labels may be hard to
obtain in practical applications so that we only train action-agnostic versions.

In contrast, we inherit many of their crucial design decisions. Our training follows
a sampling-based approach instead of teacher forcing (compare Section 3.1.2) in
order to expose the model to its own noise. Furthermore, we employ a residual
connection from input to network output so that the model predicts velocities.
Martinez et al. motivate that by improved continuity for the very first frame.
Lastly, we train the network on all actions jointly to better utilize large datasets.

4.2. Towards Long Predictions

Since we do not use teacher forcing, the network needs to predict latter frames
from an extremely noisy estimation of the early frames (see Section 3.1.2). We
found it to be helpful to start with a time horizon of just one frame and increasing
the time horizon slowly over the course of training. By ensuring that the network
can adjust to each time horizon for a few epochs, the network starts with a good
initialization when the time horizon is increased by one frame. This has some
similarities to the noise schedule Fragkiadaki et al. [FLFM15] employ, because
the time horizon of one frame means that the model does not yet see its own
output. Unlike their noise schedule, we do not make any assumptions on the

22

4.3. Training Chapter 4. Forecasting with RNNs

type and magnitude of noise since it solely comes from the network itself once
the time horizon contains two frames or more.

4.3. Training

Since we changed the underlying pose representation and added global informa-
tion to the motion sequences, many of the training details in [MBR17] need to
be revised for our purposes. Most importantly, we utilize different loss functions,
but some implementation details need to be adapted as well.

4.3.1. Batch Packing

Accumulating samples into a batch matrix requires fixed dimensions which are
not given in our setup due to varying lengths of the sequences. The most com-
mon solution to the problem is padding, which does not work well with recurrent
networks as each input token alters the hidden state. While some RNN variants
like GRUs are in theory capable of learning when to ignore input, there is a more
elegant solution which [PGM+19] calls packing. Using this technique, the batch
dimension is dynamically lowered over time, depending on how many sequences
are shorter than the current temporal step. This frees the network of having to
learn to differentiate between input and padding.

Batching is not only necessary for the input but for the regression targets as
well. Some of the motion sequences are shorter than 2 s so that there are nei-
ther enough frames for input nor for output. Ideally, those sequences should be
discarded, but that would decrease the amount of multi-person data consider-
ably. Therefore, we still train on these sequences but only supervise those frames
where ground truth is available. The missing targets are padded with zeros and
the corresponding loss terms are filtered with a binary mask. Training on less
frames than the intended number of target frames is also utilized as part of our
output length schedule Section 4.2.

4.3.2. Loss Function

A motion prediction problem is a temporal pose regression problem. As such,
we can view each time step as an individual pose regression. Therefore, we can
consider different pose regression losses. We will be evaluating a squared L2 loss
based on Euclidean distance, which resembles the mean squared error angle loss
from Martinez et al., and an L1 loss based on Manhattan distance, which is used
for some pose regression methods, e.g., in [SLAL21].

23

Chapter 4. Forecasting with RNNs 4.3. Training

Pose Loss

Each joint of a pose is a point in three-dimensional space. Therefore, we can use
distance metrics presented in Section 2.1.1 as a measure of how accurate a joint
was regressed. Since a pose consists of multiple joints, the loss of a whole pose
is the arithmetic mean of distances between ground truth joints and predicted
joints. We prefer the mean over a sum because the pose loss becomes invari-
ant to the number of joints and the interpretability is higher, namely a Euclidean
pose loss becomes the average distance each joint has to be moved to fit perfectly.

The resulting pose loss using Manhattan distance is given by:

Lpose(yf,p, ŷf,p) =
1

J

J∑
j=1

‖yf,p,j − ŷf,p,j‖1

where yf,p,j and ŷf,p,j are ground truth and prediction location of joint j respec-
tively at frame f for person p and J is the total number of joints. Furthermore,
we denote groups of joints (poses) by yf,p, videos of poses by yp and batches of
videos by y, i.e., when grouping along an axis, we leave out the corresponding
index.

Motion loss

It is crucial to mask out poses where the ground truth is not known. This may
occur for short sequences which are then padded to have the correct length for
batching Section 4.3.1. Likewise, it is crucial to divide the sum of pose losses
of a single motion by the number of frames in that motion. Not doing that
would result in a bias of the model to attend to motions extending over long
time intervals. The reason is that those long sequences consist of more frames,
therefore the loss becomes larger due to more summands. To summarize, we can
say that the motion loss is the arithmetic mean of pose losses of that motion and
represents the average pose loss in each frame. It is given by:

Lmotion(yp, ŷp,m) =
1

F

F∑
f=1

mfLposes(yf,p, ŷf,p)

where mf is the masking bit of frame f and F is the total number of prediction
frames.

Batch Loss

Lastly, we compute the arithmetic mean of all motion losses in a batch to achieve
invariance to different batch sizes. These mainly occur because a dual person
motion sequence is treated as two independent motion samples so that more dual

24

4.3. Training Chapter 4. Forecasting with RNNs

person sequences result in larger batches. The advantage of this design decision
over an explicit normalization with the number of people is that each prediction
is equally important, no matter how many people are present in the scene. The
resulting loss is given by:

Lbatch(y, ŷ,m) =
1

P

P∑
p=1

Lmotion(yp, ŷp,m)

where P is the number of people in the batch.
Alternatively, one might also suggest to combine motion loss and batch loss, i.e.,
compute the mean pose loss over all frames and all people jointly. However, this
would introduce a bias towards long sequences similar to what is explained in
Section 4.3.2. This can be illustrated by the following example: let us assume
the batch contains two single-person motions, where the first motion consists of
30 frames, the second motion consists of 10 frames and the prediction method
has a constant pose loss in each of the 40 frames. Then the first motion would
contribute three quarters to the joint loss, despite a constant performance between
both sequences.

Absolute and Relative Loss

The loss described in Section 4.3.2 can be achieved in two different representa-
tions: in root-relative coordinates and in absolute (camera) coordinates. Both
representations encode crucial information. The root-relative loss ensures that
the prediction constitutes a plausible human pose irrespective of the human’s lo-
cation with respect to the camera. On the other hand, the absolute loss ensures
that all joints move through space as a connected unit. We therefore define an
absolute importance weight α ∈ [0, 1] and choose our final loss as:

L(y, ŷ,m) = αLbatch(y, ŷ,m) + (1− α)Lbatch(r(y), r(ŷ),m)

where r is a function which subtracts the root joint location from each frame and
each person independently.

4.3.3. Implementation Details

Our RNN models are implemented in PyTorch [PGM+19] and were trained on
a single GPU, in most cases a GTX 1080 Ti and in some cases a Titan X. We
experiment both with GRUs and LSTMs. Our baseline RNN has two layers and
1024 hidden units. We use Adam with weight decay [LH19] with default param-
eters as our optimizer and employ gradient clipping in case exploding gradients
may occur. All our models were trained for 150 epochs with a batch size of 128,
which takes between one and two hours except where we experimented with larger
networks. The learning rate starts at 1× 10−3 and is exponentially decayed by a

25

Chapter 4. Forecasting with RNNs 4.3. Training

factor of 0.98. After 120 epochs, an additional decay by factor 0.1 is applied. Al-
most all hyperparameters are varied during our extensive hyperparameter study
presented in Section 8.2. Notable exceptions are the number of epochs and the
learning rate decay which were manually tuned once until a stable setting was
found.

26

5
Forecasting with Transformers

After presenting our adaption of an existing method to global motion forecasting,
we will now present our own neural network. It is based on the attention mecha-
nism presented by Vaswani et al. [VSP+17] (see Section 3.1.2) which was recently
adopted to computer vision as well, e.g., in [CMS+20]. Our motivation is that
attention models all dependencies, e.g., the influence of the first frame on the last
frame is considered as much as the influence of two consecutive frames on each
other. In contrast, recurrent models have to decide each step how much current
information overrides past dependencies. Moreover, each decision is final, i.e.,
once old information is overridden or new one discarded, it can not be restored.
Further details can be found in Section 2.2. One important aspect of attention in
our use case is that we can utilize it both for temporal modeling and relationships
between multiple interacting humans.

5.1. Architecture

Our architecture is presented in Figure 5.1. It bears many similarities to the
encoder of the successful transformer from Vaswani et al. [VSP+17] used for lan-
guage translation, but tokens represent poses at certain frames instead of words.
We will now describe the different components.

The input sequence is embedded with a single linear layer. Afterwards, a po-
sitional encoding of the frame indices, consisting of sine and cosine waves with
different frequencies, is added to the embedded input in order to provide the
model information about the order of frames.
After that, several layers are stacked. Each layer consist of an attention module
to aggregate information between different frames. A second attention module
aggregates features between poses of different people in order to evaluate whether
these poses constraint each other. These modules are followed by a two-layer per-
ceptron with a non-linearity and dropout. Both the attention modules and the

27

Chapter 5. Forecasting with Transformers 5.1. Architecture

Input

Linear

Temporal
Attention

+

Person
Attention
Add & Norm Add & Norm Feed

Forward Add & Norm

Linear

Output

+

Positional
Encoding Lx

Figure 5.1.: Attention-based motion predictor. Attention is used both between
frames and between people in the scene. The model predicts the new
pose as joint offsets to the previous pose.

perceptron have a residual connection for better gradient flow. Dropout and layer
normalization is applied after each residual connection, refer also to Section 2.2.5.
After the last of these layers, the embedded frames are simply projected back into
joint coordinates with a linear layer complementary to the very first embedding
layer. As is common in motion prediction, the output of the model at each frame
is interpreted as a velocity which means that in order to obtain the final poses,
the previous pose has to be added to the output of the projection layer.

Many differences between our architecture and the original transformer stem from
the differences in the tasks. In this paragraph, we will only list these differences,
and refer to Section 3.1.2 for details on how Vaswani et al. implement these aspects
and their reasoning. Firstly, Vaswani et al. have a dedicated decoder with differ-
ent weights to accompany variations between source and target language, whereas
our input and output both consist of human poses at different time steps so that
new weights are not needed. Furthermore, the usage of attention is adopted to
our setting, see Section 5.2. Lastly, Vaswani et al. use auto-regressive sequence
generation with beam search, whereas we follow Hernandez et al. [HGM19] (also
described in Section 3.1.2) approach to sequence generation, which is the topic
of Section 5.3.

Our architecture also took some inspiration from the motion forecasting method
in [ACKH20] where attention is used for temporal and spatial reasoning. A key
difference is that Aksan et al. consider each joint as an independent input en-
tity whereas we concatenate all joints into a single feature vector of in our case
24 · 3 = 72 entries which is not considerably more than the 54 dimensions used
in [MBR17]. The advantage of concatenation is that it enables the network to
argue holistically on whole poses. Another difference is that the method from Ak-
san et al. is single-person only, i.e., it uses spatial attention between joints of the

28

5.2. Usage of Attention Chapter 5. Forecasting with Transformers

same person instead of between poses from different people as ours does. Lastly,
their method uses auto-regressive generation like Vaswani et al. (but without the
beam search).

5.2. Usage of Attention

The basics of attention are described Section 2.2.4. As shown in Figure 5.1, our
architecture utilizes two types of attention. Temporal attention, which is named
analogously to [ACKH20], exchanges features between poses of the same person
at different points in time. In contrast, person attention aggregates features be-
tween poses of different individuals, hence the name. It does so for each point
in time independently. In the terminology of Vaswani et al., both our attention
modules compute self-attention which means that query, key and value tokens
come from the same data distribution, e.g., poses at different points in time.
This is opposed to their encoder-decoder attention which is often used to com-
bine data of different modalities, e.g., words from different languages in [VSP+17].

Temporal attention is vital to the success of transformers because they mainly
consist of feed-forward layers which consider each frame as an independent input.
Only temporal attention allows modeling of temporal dependencies by comparing
different frames for similarity and exchanging features based on how similar each
frame pair is. In our case, temporal attention models the influence of past poses
on future movement. Therefore, attention is the analogue to the internal state of
an RNN which also has the purpose to encode knowledge of the past.
Person attention is the module that compares poses of different individuals at the
same point in time. Its purpose is to infer constraints from interacting humans,
e.g., that the palms touch during a handshake. The huge advantage of atten-
tion over other techniques is that it generalizes to an arbitrary number of people.
For single-person sequences, person attention essentially becomes another linear
layer, i.e., the output is completely determined by the matrix which maps tokens
to values. For two people, the attention evaluates how much the second person
matters to the feature vector of the first person and vice versa. If person two
is not important to the motion of person one, the attention module can ignore
the feature vector of person two, i.e., treat it as a single-person sequence. In the
opposite case, attention will combine information from both people into the new
features. Hence, the attention score is similar to a gate in a GRU which con-
trols how much information is updated. For more than two people, the query-key
mechanism searches for pairs which are interacting so that information can be
aggregated between those individuals.

Note that person attention and temporal attention are diametrically opposed.
Temporal attention looks at each person independently but considers each per-
son’s past while person attention only looks at a single frame at each step but

29

Chapter 5. Forecasting with Transformers 5.3. Sequence Generation

considers all people present in the interaction scenario. It is therefore important
to stack multiple transformer layers in order to aggregate information along the
missing connection. For example, after the first person attention layer, the feature
vector of the pth person contains information of all other P −1 people depending
on how important each person is for the motion of the pth one. Consequently,
when this vector is passed to the temporal attention module of the next layer,
the temporal exchange of information is not limited to the pth person. Instead,
relevant knowledge from other people is also aggregated to the past of person the
p. An alternative way would be to compute full attention between all people at
all time steps. However, for P people in F different frames, this would require
P 2F 2 comparisons instead of PF 2 + FP 2 so that this solution scales badly to
larger number of people or frames. Multiple layers would probably be necessary
even for combined person time attention so that we ignored that constant for our
analysis.

5.3. Sequence Generation

Just like with recurrent neural network, a popular method for transformers to
generate sequences is to use auto-regressive formulations. As described in Sec-
tion 3.1.2, Vaswani et al. consider multiple translations for each word, whereas
some authors do not consider such a probabilistic generation approach viable for
motion forecasting. But if only one pose is generated at each future time step,
we can do that parallel with attention. This is unlike a recurrent neural network,
which needs to be sequential in order to update the internal state correctly. We
can therefore utilize the inpainting formulation from Hernandez et al. [HGM19]
where missing information, i.e., future poses, are replaced with zeros in the input.
This is considerably faster for both training and inference. Another advantage
concerns temporal attention. Usually, this type of attention needs to be masked
in order to stop information leakage from future tokens. Failing to do so would
teach the network to look at future tokens in training, which will not work dur-
ing inference. In contrast, the inpainting formulation already masks future tokens
by itself. Consequently, attention masking can be omitted and features can be
exchanged forward and backward through time which increases the model’s ex-
pressive capabilities.
Note that using inpainting does not restrict our method to a certain length since
longer sequences can be generated by concatenating more padding symbols after
the known history. This is in fact utilized in order to implement the output length
schedule mentioned in Section 4.2.

A key difference to Hernandez’ formulation is how unknown joints are padded.
Hernandez et al. simply multiplied these joints with a binary mask. However,
mapping zeros to different joint locations only works for networks with internal
state. Although the convolutional network in [HGM19] does not have a state

30

5.4. Training Chapter 5. Forecasting with Transformers

per se, the convolutions have a limited window size so that the results of the
convolution are unique as long as each window has access to a different subset
of frames. In contrast, temporal attention compares each query with the same
global set of keys. Because zero-padded frames will result in the same queries, the
outcome of attention will be deterministic as well so that the method will predict
the same pose for all thirty future time steps. Adding the positional encoding
to the padded zeros somewhat alleviates the issue but the problem definition
still leads to unstable solutions where small disturbances in the input need to
be mapped to considerably different outputs. We therefore replaced the padding
with a constant velocity heuristic, which applies the difference between the last
known frame and the second to last known frame iteratively. In other words,
each joint moves along the line defined by the two locations of the joint during
the last two frames. Although this heuristic does not produce valid poses, e.g.,
it violates the bone length constraints, it increases the discriminability between
the inputs enough for good prediction results.
Another key difference is the supervision on the known parts. Hernandez et
al. [HGM19] use a reconstruction loss on the unmasked joints so that the output
is consistent with the input. This makes sense if the network is not only used
for motion prediction but also for regressing occluded poses. However, our main
emphasis is motion prediction and preliminary tests showed that additionally su-
pervising the historic poses hurts performance, probably because it enforces that
past information is represented in a way that allows reconstruction, which may
not be optimal for our prediction.

We would like to add a final remark to inpainting and auto-regressive sequence
generation. Preliminary tests showed that the former outperforms auto-regressive
generation with teacher forcing. Unfortunately, using sampling-based training
like [MBR17] is infeasible with the default implementation of multi-head atten-
tion due to a lack of caching. In a custom implementation, each future token only
requires the computation of one query, one key and one value because all previ-
ous queries, keys and values can be reused from the previous auto-regressive step.
Due to time constraints, we were not able to implement cached multi-head atten-
tion so that we could not evaluate the accuracy of an auto-regressive transformer
with sampling-based training.

5.4. Training

Our training setups of transformers and RNNs are vastly similar. Most impor-
tantly, the loss function presented in Section 4.3.2 is reused. The differences to
RNN training are highlighted below.

31

Chapter 5. Forecasting with Transformers 5.4. Training

5.4.1. Padding and Positional Encoding

Different sequence lengths are padded for the sake of batching. Unlike other ap-
proaches, we pad zeros at the beginning of each sequence instead of the end so
that the last historic pose is directly followed by the first predicted pose in the
positional encoding.
We additionally decided to use negative positional encoding, so that non-negative
positions correspond to future poses and negative positions to historic poses. This
ensures that those poses most relevant to prediction, namely the last historic
poses, have a consistent positional encoding. Future work should empirically in-
vestigate whether this is a good choice.
During temporal attention, padded frames should be ignored because they do not
contribute meaningful feature vectors. Following Vaswani et al., we add negative
infinity to the query-key dot products so that the resulting attention weights will
be zero after the softmax operation.
We also apply person padding when working with multi-person datasets. The
purpose is solely to store the batch in a tensor with fixed dimensions. The same
masking procedure is applied to ignore padding during person attention.
Furthermore, we apply the same target padding and masking procedure as men-
tioned in Section 4.3.1 in order to utilize short training sequences as well.

5.4.2. Implementation Details

The transformer model was trained on a single Tesla V100 GPU. The default
version has eight layers and an embedding space with 128 dimensions. The hid-
den dimension between the two feed-forward layers has 256 units. The dropout
probability is 10 %. We employ eight attention heads for temporal attention and
two for person attention. This is owed to the fact that our data contains at most
two people so that we hypothesize that more heads are not necessary. Future
research should investigate that in combination with a higher variety of the num-
ber of individuals. The optimizer is again Adam with weight decay, but with
β2 = 0.98, i.e., the estimator of the variance of the gradient adapts faster to
the current training stage. This was also reported in [VSP+17]. Similar to the
RNN, we employ gradient clipping and the same type of loss functions described
in Section 4.3.2. We found it helpful to use a smaller batch size of 32. We also
reduced the number of epochs to 120 due to resource constraints of non-project
jobs on the RWTH Aachen compute cluster. This should not affect the compa-
rability between transformer and RNN because improvements after 100 epochs
are marginal for both architectures. The training usually took between one and
two hours. The learning rate schedule is the same as in Section 4.3, except that
the additional decay by factor 0.1 is applied after 110 epochs instead of after 120
epochs. As for the RNN, we evaluate the performance impact of basically all
hyperparameters, see also Section 8.3.

32

6
Motion Datasets and Processing

This chapter deals with how motion data is obtained, how it can be represented,
and what steps are necessary to feed motion data to a neural network.

6.1. Motion Datasets

In order to work with deep learning methods, it is necessary to acquire datasets
for training. As discussed in Section 2.1.3, human poses are usually represented
by a subset of their joint locations. Obtaining these 3D positions is non-trivial
as they lie within the human body and not on the surface. Many approaches
to obtaining 3D poses, including professional motion capturing systems, there-
fore rely on robust triangulation, i.e., 3D reconstruction. This process consists of
detecting relevant points in image coordinates across different camera views and
then inferring the 3D locations of these points using knowledge about the posi-
tioning of the cameras. The points to be triangulated can be markers attached to
the cloths of the subjects, e.g., [IPOS14], but some marker-less approaches also
detect relevant joints with deep learning and triangulate those [JLT+15].
Unfortunately, this procedure does not always work when multiple subjects in-
teract. This stems from the occlusion that is naturally present in these scenar-
ios. Joo et al. [JLT+15] handle this by applying 480 cameras so that all angles
are covered redundantly. However, many of their multi-person scenarios consist
of static interactions like discussions. We expect no considerable advantage of
multi-person modeling in these cases as constraints mainly arise when subjects
touch each other (or are close to). A different approach is chosen in [LHL+17]
and [LSP+19] where the Microsoft Kinect v2 sensor is used. The Kinect sensor
consists of an RGB video stream and a depth sensor. The 3D reconstructions then
relies on video, depth and machine learning. Consequently, the poses are much
less accurate as they only rely on a single view. Nevertheless, we will be utilizing
these datasets called PKU-MMD [LHL+17] and NTU-RGB+D 120 [LSP+19] for
two reasons. Firstly, they show interesting interactions like handshakes, hugging,

33

Chapter 6. Motion Datasets and Processing 6.2. Pose Representation

kicking, etc., where multi-person modeling is vital to understanding these scenes.
Secondly, both datasets rely on multiple Kinect sensors positioned at different
angles. We can therefore utilize the different views to gain robustness to occlu-
sion. This process will be described in detail throughout Section 6.4.
We think of the resulting data as a best-effort placeholder for future datasets. For
example, Guo et al. [GBXAP21] concurrently worked on such a dataset, which
was not available in time for us. Since it is difficult to state definite conclusions
of the resulting quality, we additionally evaluate our methods on the AMASS
dataset [MGT+19]. AMASS is, to our knowledge, the largest collection of high-
quality motion datasets and provides all SMPL parameters to allow for full human
body shape reconstruction. Unfortunately, AMASS only contains single-person
sequences. Using AMASS serves two purposes. Firstly, it allows us to tune our
methods on data which is known to be reliable. More importantly, it also al-
lows us to compare our methods on reliable data in order to exclude that our
results are caused by wrong assumptions or biases created during preprocessing
of PKU-MMD and NTU-RGB+D 120.

6.2. Pose Representation

We have mentioned in Section 2.1.3 that joint angles allow to encode plausible
constraints on the pose more easily. Joint locations on the other hand are easier
to integrate into existing 3D modeling frameworks. We will therefore focus on
joint locations as input to our baselines and networks. However, there are still
many possible ways to encode joint locations.
The most straightforward way is to encode each joint location as a point in the
same global coordinate system. The concrete choice of origin and orientation of
that coordinate system does not matter for now, although we will later explain
why we move the origin to be close to the poses. This representation is easy to
process and it also generalizes well to global motion because if the coordinate
system is fixed throughout a motion sequence, global motion like walking away
from the origin is directly encoded into each joint trajectory.
Another possibility is to encode joints in a relative fashion. This means that for
each frame, the origin is moved to the root joint, i.e., the root node of the kine-
matic tree which defines the order of joints. It is therefore also called root-relative
representation. In our case, the root joint is chosen as the pelvis. In other words,
for a root-relative representation, the coordinate system follows the pose walk-
ing through space. This makes it impossible to reconstruct global motion from
the poses alone, i.e., the trajectory of the pelvis with respect to a fixed world
point would need to be stored externally. In contrast, this pose representation
is bounded so that each joint can only move away from the origin by a maximal
distance defined through the sum of bone lengths. Moreover, it disentangles local
from global movement, e.g., during walking, the torso is pushed from behind the
foot which is anchored on the ground until it is in front of it. Therefore, knee,

34

6.2. Pose Representation Chapter 6. Motion Datasets and Processing

ankle and toe of that foot moved backward relative to the torso. In the word co-
ordinate representation, this detail is hard to detect because the foot only moved
backwards relative to the torso and not relative to the ground. From now on,
we will also refer to poses represented in the same global coordinate system as
“absolute” poses in order to juxtapose that representation to the root-relative
one. It is important to note that existing literature often removes global rota-
tion, e.g., compare [MBR17, MLS20], which means that the coordinate system
does not only follow the human, it also rotates around with the human. On the
other hand, we do not remove global rotation from our relative representation in
order to make it more comparable with the absolute representation.
By now, we presented one pose description which models global translation on
top of global rotation, and one that disentangles global movement from local
movement. The next one is called mixed representation and combines the best
of both worlds. Each joint except for the pelvis is modeled relative to the pelvis.
The root joint in contrast is modeled as offset to an origin fixed over time. As a
result, each non-root joint is bounded and describes local movement whereas the
root joint describes the global movement. Another way to look at it is that the
global trajectory is concatenated to the root-relative pose features. This has the
distinctive advantage that all global movement components are enforced to be
the same, i.e., when transforming a mixed pose to an absolute pose, each joint is
translated to follow the exact same trajectory as the pelvis. In the absolute rep-
resentation, each joint had its own trajectory and the network needed to ensure
that all joints had realistic local movement while also keeping the trajectories to
move through space as a connected unit.
The last pose representation we present is a variation of the mixed description.
The pelvis is still representing the global pose trajectory, but each other joint
is modeled relative to its kinematic parent instead of relative to the root joint.
Therefore, each joint apart from the pelvis becomes a vector pointing parallel to
the bone inside the limb connecting the two joints, but emerging from the origin.
We therefore refer to this representation as bone vectors.
All four representations model global orientation and all except for root-relative
can be undone as well. Moreover, any possible transformation between pose
representations only consists of subtractions, e.g., between neighboring joints or
between root joint and other joints. Therefore, each transformation can be formu-
lated as a matrix multiplication so that it can be applied to whole batches of poses
at the same time. It is important to note that only the historic part of a motion
is transformed. As mentioned in Section 4.3.2, the loss consists of an absolute
component to ensure that the model is learning to predict correct trajectories.
Thus, it is most efficient to keep the target sequence in world coordinates.

35

Chapter 6. Motion Datasets and Processing 6.3. From Video to Sample

6.3. From Video to Sample

The lengths of motion videos vary significantly across datasets. However, batch-
ing and computational constraints require that training samples should have a
similar length. We therefore have to deal with videos which are too long or too
short.

6.3.1. Padding Short Videos

We already mentioned in Section 4.3.1 and Section 5.4.1 that we pad short videos
with zeros for the transformer and utilize packing to batch different sequence
lengths for an RNN. However, in some instances, there is another solution. In
contrast to NTU-RGB+D 120, the dataset PKU-MMD contains frames with
idling people from before each action technically starts. We can use these to
pad the shortest sequences so that the network has more context and learning
long-term dependencies might be improved. Furthermore, there is no real perfor-
mance penalty because the bottleneck is almost completely defined by the longest
sequence of the batch. We only apply this padding for up to 1 s of input because
more rest poses, i.e., poses of a human standing still, will probably not help the
network anyways. The usual padding or packing is then applied to obtain 2 s of
input, likewise it is applied on those samples from NTU-RGB+D 120.
This type of padding could technically be done on the target as well, but we de-
cided against that because it would encourage the network to predict rest poses
in the long run. This behavior often occurs on difficult actions. Encouraging
it further could result in rest pose predictions even for continuous actions like
walking.

6.3.2. Trimming Long Videos

Some AMASS sequences are several minutes long. Therefore, trimming these
videos is inevitable due to the computational complexity. For consistency, we
also applied trimming to Kinect sequences. Trimming the input to 2 s and the
output to 1 s is not only common in other methods, e.g., [ACKH20, MLS20], it
may also reduce the risk of exploding and vanishing gradients in recurrent neural
networks. Moreover, such long sequences are usually either heavily redundant,
or actually consist of several unrelated actions so that trimming is a reasonable
decision. However, we experiment with different input lengths.

One question is yet to be answered. Given a long video, one has to decide which
parts to discard and which to keep. This choice is crucial because without cues
of the future movement in the input, the task is inherently ambiguous. Further-
more, if the target contains too many idle poses, the prediction method may learn
to always predict a motion that leads to the rest pose as mentioned above. Such
a network would be of no interest because it has not learned anything except for

36

6.4. Preprocessing Chapter 6. Motion Datasets and Processing

the average pose.
For Kinect sequences, a reasonable approach is to keep the frames in the middle
and discard beginning and end. Since most sequences are quite short, the middle
often corresponds to the interesting part of a motion where one or multiple joints
move a considerable amount. However, this approach is not suited to AMASS,
since many AMASS sequences consist of multiple, often independent motions.
To leverage the data from the AMASS dataset, taking random parts of the se-
quence might work reasonably well. This can also be thought of as an additional
data augmentation technique. Random sampling of sub-sequences can also be
combined with the previous heuristic by weighting sub-sequences close to the
middle of a video higher, similar to a normal distribution. This can efficiently
be implemented by sampling the split, i.e., the last frame of the input, as the
sum of two uniform variables, similar to how seven is the most likely outcome
when throwing two dice at the same time. The massive advantage over rounding
a normally distributed random variable is the bounded support, i.e., the random
variable will only take values from a certain interval, e.g., between 2 and 12 in
the double dice roll example, so that no expensive rejection sampling has to be
performed.
There are still a couple of problems with this approach though. First of all, the
compromise is suboptimal for both datasets. Moreover, it is not suited well for
validation and testing, as the outcome of the random split has a massive im-
pact on the performance. We therefore prefer an exhaustive approach, similar
to [MLS20]. This means that every frame whose index is evenly divided by some
stride size s is chosen as the beginning of the input, provided there are enough
consecutive frames. This heuristic leads to reproducible and fair error metrics
and takes full advantage of long motion sequences. It can even be extended to
skip training samples which are likely to be irrelevant. We apply such an exten-
sion where we only include those samples with sufficient movement during the
last frames of input and first frames of target. Consequently, neither samples
without any relevant motion nor samples where the relevant motion only starts
in the later parts of the target are included in training.

6.4. Preprocessing

Since we are using multiple datasets, it is necessary to perform some normalization
steps. Furthermore, the quality of PKU-MMD and NTU-RGBD+D 120, to which
we will refer from now on as the Kinect datasets, is sometimes rather low so
that we tried to enhance it as much as possible. Note that the vast majority of
preprocessing steps described in the following are precomputed and stored to disk
to speed up training.

37

Chapter 6. Motion Datasets and Processing 6.4. Preprocessing

6.4.1. Data Normalization

Some data normalization steps are necessary regardless of the dataset. The very
first step ensures that axes are re-ordered to have a consistent coordinate system
where the z-axis is the principal axis of the camera and x-axis and y-axis are
analogue with the pixel coordinate axis from an imaginary image taken. This
step also includes scaling the coordinate system to meters as its unit.
After all other preprocessing steps have finished, it is important to normalize the
data. Since motions are represented in world coordinates, it is realistic to assume
that a human can move several meters in each direction. However, a motion
is completely invariant to translation and the only reason why the the absolute
position is important is to infer where the human will be over the course of and
after the motion. In other words, the network should ignore the location of a
human for everything except its trajectory planning. But internally, a network
consists of matrix vector products, and the results will vary a lot between a pose
close to the origin and one far away. Consequently, it is best to shift the whole
motion so that it evolves around the origin. The most straight-forward solution
is to compute the center of mass of all joints and translate the poses so that
the center of mass coincides with the origin. Note that special care has to be
taken for multi-person scenarios. If every human was centered individually, their
absolute locations would be meaningless in relation to each other. But one goal
of our work is to aid positioning by aggregating information across interacting
humans. Thus, we compute the center of mass across all people and all frames
in a training sample.
The final normalization step has a similar purpose but works on a different level.
After the previous translation, the action now mainly evolves around the ori-
gin. However, there are still massive differences between different features. In a
bone vector representation for example, the pelvis location encodes the absolute
position whereas each other joint is encoded relative to its parent joint. Thus,
the pelvis joint is subject to a high variance, while the toes can only move by a
small amount relative to the ankle. We therefore employ a second normalization
independently for each feature. As a result, each feature, i.e., each bone vector
entry, is a variable with zero mean and unit variance. The mean and variance
are computed once over the complete training set and are not updated with test
data because these statistics are not known in real inference either. This is un-
like the centering operation described above which can still be performed during
inference with the help of the known input part of the motion. Note that in the
current implementation, the centering is performed on the whole video. After-
wards, feature-wise mean and variance are computed and long videos are split
into smaller training samples, as described in Section 6.3.2. A better approach
would be to first split long training videos into smaller samples, then center each
sample individually based on its input part, and compute feature-wise mean and
variance of the training data last. That way, each individual motion sample would

38

6.4. Preprocessing Chapter 6. Motion Datasets and Processing

be centered more accurately and centering would be closer to the inference mode
as well. Unfortunately, time constraints kept us from realizing that improvement.

6.4.2. Enhancing Multi-Person Data

While the Kinect can easily deal with multiple people in the receptive field, its
quality is significantly lower than that of professional motion capturing systems.
We therefore performed multiple preprocessing steps to deal with occlusion, chal-
lenging poses and missing detections. The preprocessing consists of the following
steps:

1. Pose detection with state of the art method

2. Intra-view person identification

3. Inter-view person identification

4. Synchronization between views

5. Calibration of extrinsic camera parameters

6. Filtering of implausible poses

7. Fusion of the different views

8. Filtering of implausible poses

9. Aligning ground plane with xz-plane (only NTU-RGB+D 120)

Steps 1, 2 and 7 were done in close correspondence with Sárándi [Sár21]. Many
of the design decisions were based on what qualitative looks good as we dis-
covered that quantifiable metrics poorly correlated with what works visually.
Nevertheless, we will try to motivate our preprocessing pipeline in the following
paragraphs.

Detection and Identification

As the first step suggests, we do not utilize the Kinect detections directly as it
tends to struggle with challenging or occlusion-heavy actions like putting on a
jacket or hugging another person. We therefore employ MeTRAbs [SLAL21] as
a detector in order to regress joint locations in world coordinates on a metric scale.

Next, it is necessary to eliminate false detections and track poses across frames
within each Kinect view in the case of dual-person interactions. This is solved
with the method presented by Wojke et al. [WB18] which was trained on the
MARS dataset for person re-identification [ZBS+16]. The resulting tracks have a
high quality but occasionally fail whenever the pose detector only regresses one

39

Chapter 6. Motion Datasets and Processing 6.4. Preprocessing

of the two pose or the same pose twice, which mainly happens during the afore-
mentioned hugging scenes where both people are closely interacting. Therefore,
we first pad the last known pose in those frames with only one detection, which
only occurs on NTU-RGB+D 120, so that each frame in a dual-person sequence
has two poses where one may either be padded from a past frame or a duplicate
of the other pose of the same frame. Afterwards, we apply a Hungarian matching
of the pelvis locations at each later frame with their locations at the first frame.
This works well on these datasets because the actors typically stay close to their
original position and, in case of PKU-MMD, even return to that position after
each interaction. Consequently, the real poses are now correctly grouped to tracks
for the vast majority of dual-person sequences, although tracks may also contain
padded poses. Note that the re-identification step is necessary regardless of the
Hungarian matching, namely in order to clean up the tracks from false positives.
Otherwise, these detections would interfere with the Hungarian matching and
lead to poor tracks.

The next step matches people across different views. Since the poses withing
each view are already matched correctly, this simplifies to a binary decision be-
tween matching the first person of one view to the first or the second person of
the other view. The main problem of this step is that the different views are not
yet synchronized well, especially for PKU-MMD sequences, but synchronization
is difficult without knowing correct pose correspondences. This is why we first
solve the slightly simpler problem of intra-view tracking before we match across
different Kinect cameras. The method used for inter-view matching is applying
synchronization on both possible matches and choosing the one with lower error.
The synchronization method is described next.

Synchronization

Synchronizing the videos is quite difficult for PKU-MMD sequences. Here, multi-
ple interactions are recorded in one video. Unfortunately, the Kinect RGB video,
on which MeTRAbs depends, can record at 15 Hz or at 30 Hz based on lighting.
Qualitative tests confirmed that a constant frame offset is not sufficient to ob-
tain good synchronization. Even worse, the only time stamps Liu et al. provide
are those that mark the start and end of each action. These labels are man-
ually created and are therefore occasionally wrongly ordered, highly inaccurate
or incomplete. Nevertheless, we found it to be helpful to use these time stamps
whenever available, i.e., we apply synchronization on sub-sequences defined by
those time stamps. The algorithm used for synchronization is presented in Sec-
tion 2.3.2. A difficulty at this stage is that the cameras utilize different world
coordinate systems so that one cannot compare joint locations directly, but es-
timation the Euclidean transformation between to cameras is extremely difficult
without synchronization. As a solution, we transform the joint locations to an-

40

6.4. Preprocessing Chapter 6. Motion Datasets and Processing

gles between limbs since angles are preserved by Euclidean transformations such
as camera movement. Note that we explicitly do not refer to joint angles, as
joint angles are in fact rotations with three degrees of freedom and require the
definition of appropriate local coordinate systems at each joint in order to define
these rotations unambiguously. Instead, we compute the angle defined by the
three points of parent joint, current joint and child joint. This representation
of a pose is ambiguous and only used for synchronization. The metric used to
compare two poses is the mean absolute distance clipped to a maximal threshold
for robustness against outliers:

d(x, y) =
1

J

J∑
j=1

min

{
|xj − yj|

T
, 1

}
where J is the number of angles, T the outlier threshold, and xj and yj refer to
the jth angle of pose x and pose y respectively. Note that d is a proper distance
metric. The function d is positive definite and symmetric, which directly follows
from da(x, y) = |x − y| being a distance function. For triangular inequality,
consider

min

{
|xj − yj|

T
, 1

}
= min

{
|xj − zj + zj − yj|

T
, 1

}
≤ min

{
|xj − zj|

T
+
|zj − yj|

T
, 1

}
≤ min

{
|xj − zj|

T
, 1

}
+ min

{
|zj − yj|

T
, 1

}
Since the triangular inequality holds for each summand, it also holds for the whole
sum, therefore we conclude that d(x, y) is a proper distance metric.

Another difficulty during synchronization is that we want to align three views with
each other, but common implementations which are not tailored towards ,e.g.,
DNA sequences only align two time series. Feng et al. [FD87] devised an easy
generalization of pairwise alignment algorithms by aligning multiple sequences
progressively, starting with the most similar ones. We adopted this approach to
our synchronization problem. After the initial alignment, we discard frames in
both sequences such that each frame only aligns to a unique frame in the other
sequence, i.e., until there exists a bijection between the frame indices. Then, this
procedure of dynamic time warping and deleting is repeated to align the pair
with the last camera view.
Alternatively to deleting frames, one might also duplicate frames until a bijection
exists. Both strategies have their drawbacks. On the one hand, deleting frames
can lead to rather abrupt motions which may hinder convergence and are not
really suitable for evaluation either. On the other hand, duplicating frames leads
to slow motions and encourages the network to predict static poses without any

41

Chapter 6. Motion Datasets and Processing 6.4. Preprocessing

movement over time. Since predicting a non-moving poses is neither difficult nor
interesting, we decided for deletion.

Calibration, Filtering and Fusion

Once the synchronization is performed, we can now proceed to determine the
extrinsic camera parameters. This requires estimating a rotation matrix for ad-
justing the viewing angle and a translation vector for moving the camera posi-
tion. The translation can be computed from the two center of masses. In or-
der to compute the special orthogonal matrix rotating between the two centered
point clouds, we employ Kabsch’ algorithm wrapped into RANSAC, compare Sec-
tion 2.3.3. Outlier robustness is necessary due to duplicate detections, padding
and other noisy poses. We consider a point pair to support a transformation hy-
pothesis if the observed point lies within a 5 cm radius of the transformed point.
We always sample 500 transformations, i.e., without early stopping, and choose
the transform with the highest number of inliers. Even if 75 % of all joint pairs
contained an outliers, the chances of a wrong hypothesis are only

(1− 0.253)500 ≈ 0.038%

since only three joint pairs are required, compare [HZ03].

Afterwards, we filter poses where the bone length deviates significantly from
the average bone length of each dataset. In order to consider a pose implausible,
the bone length must deviate at least 15 cm from the average bone length. Fur-
thermore, it must either be twice as long or half as long as the average. Both
conditions are insufficient on their own. Large bones such as the thigh bone can
naturally vary between a small and a large human so that just checking for the
absolute difference is not sufficient. Likewise, some joints like the hands are usu-
ally quite noisy so that a relative difference of factor 2 is not that problematic.
Note that we do not filter poses which were padded from a previous frame yet,
since this padding has acceptable quality for a few frames so it should be kept
for the fusion step.
This step could have been performed earlier in the pipeline as well. Since the
camera calibration benefits from RANSAC regardless, it does not really matter if
the calibration is performed before or after the filtering step. It is rather unclear
whether synchronization would work better after filtering. On the one hand, us-
ing extremely noisy poses for synchronization might lead to bad decisions even
though we employ an outlier-robust distance metric. On the other hand, deleting
frames before synchronization means that many plausible or even optimal align-
ments become impossible so that the synchronization produces worse results.

As mentioned before, the next step is the fusion of the poses after they have
been transformed to the same coordinate system. This is done with the help of

42

6.4. Preprocessing Chapter 6. Motion Datasets and Processing

the geometric median, which is more robust against outliers than the center of
mass. The geometric median is computed for each joint separately, so that the
resulting pose closely sticks to the more similar pair between the three views.
The resulting pose is therefore quite robust as long as at least two of the three
views are not corrupt.
Since there does not exist a closed-form solution, we use the algorithm presented
in [VZ00].

Final Filtering

After the fusion, we filter those frames where a pose is static over multiple frames,
where a pose lies outside the expected range, i.e., more than 10 meters away from
the origin, or the where the bone length check mentioned in Section 6.4.2 fails.
These cases still occasionally occur after the fusion if the majority of poses was
corrupt. However, most motion sequences require minimal or no filtering at all.
Unfortunately, some sequences, especially from NTU-RGB+D 120, contain a lot
of frames deleted by the filtering. This may result in serious discontinuities dur-
ing the motions. We discard sequences with extreme discontinuities from the
validation and test split, compare Section 7.2.2.
One final step is performed for NTU-RGB+D 120. Here, motion sequences are
grouped into set-ups and each set-up has a different placement of the Kinect
sensors. Sometimes, they are placed at an angle so that the ground plane is
not parallel to the xz-plane, which we want to correct in order to analyze global
motion prediction in a more basic form. We therefore collect videos which show
actions related to walking and extract the toe joint locations. By restricting the
collection to walking-related actions, we ensure that the points are not almost
collinear in which case the estimation becomes sensible to outliers. We further-
more perform the ground plane normalization set-up wise to have a larger sample
size for estimation. After we collected a sufficient number of toe locations and
centered the point cloud, we project these points onto the xz-plane by setting the
y-coordinate to zero. After rescaling the vectors to their original length, we can
apply Kabsch algorithm [Kab78] to compute a rotation between the xz-plane and
the oblique plane containing the toe joints.

6.4.3. AMASS Dataset

Since AMASS consists of videos with high-quality data from motion capturing
systems, the preprocessing only consists of two steps. The first one is to apply
forward kinematics to the axis-angle representation in order to obtain joint loca-
tions in world coordinates.
The other step is the normalization of frame rates. The frame rates of the motion
data in AMASS varies between 250 Hz and 60 Hz. In order to have meaningful
state transitions in an RNN and a meaningful positional encoding for trans-
former, the frame rate should be more or less the same for all training samples.

43

Chapter 6. Motion Datasets and Processing 6.5. Data Augmentation

The easiest solution is to take equidistant frames from all sequences, e.g., if every
25th and every 6th frame are taken respectively, both sequences would have a
frame rate of 10 Hz. Unfortunately, such a frame rate would have insufficient
quality and 10 is already the greatest common divisor of 250 and 60, so that
each larger divisor leads to non-integer stride sizes for at least on type of frame
rate. Mao et al. [MLS20] address this by rounding down fractional stride sizes
to the next integer. Since their target frame rate is 25 Hz, they therefore sample
the low-frequency sequences with a stride size of

⌊
60
25

⌋
= 2. Consequently, they

are downsampled to 30 Hz, which means that when predicting 25 frames on a
low-frequency sequence, in reality only approximately 0.83 s are predicted. We
therefore use the same method but with a target frame rate of 30 Hz so that at
most 0.1 s are missing on those samples with a frame rate of 100 Hz.
A more elaborated solution would be to not round the stride size but the indices
to sample, e.g., sample frames 0, 1, 3, 4, etc., for a stride size of 1.3. However,
one can already see that the resulting frame rate varies by factor 2 within such
a sequence which is undesirable as well. Another possibility when using non-
integer stride sizes is to interpolate between the two neighboring frames, but this
degrades the data quality so we decided for the much simpler heuristic used by
Mao et al. [MLS20].

6.5. Data Augmentation

Now that we described the preprocessing, we can look at data augmentation.
This technique is designed to reduce overfitting and diversify the datasets by
modifying each motion so that the network never sees the exact data sequence
twice. To that end, we implemented transformations which are expected to occur
for poses detected in the real world as well.
Our first augmentation is a random rotation. We rotate around the y-axis so
that the ground plane stays horizontal. A random rotation angle is sampled, the
according rotation matrix is constructed and the whole video is rotated by the
resulting matrix. This provides robustness against different camera angles on the
same scene.
The second augmentation is a simple scaling operation, i.e., all poses are scaled
by a random factor between 0.8 and 1.2 since humans can naturally vary in size.
The correct way to achieve this would be to transform the poses to bone vectors
and then scale theses bone vectors. However, the augmentation should be applied
to all types of input representation. A cheap approximation is to just multiply
the joint location by the factor. This will stretch some bones more than others
which may provide additional robustness.
The last augmentation is flipping, which is applied with a probability of 50 %.
Most actions can be performed by the right hand as much as the left one. Flipping
consists of two steps. The first one is reflection, which can for example be achieved
by multiplying the x-coordinate with −1. The other step is to swap right and

44

6.5. Data Augmentation Chapter 6. Motion Datasets and Processing

left joints. To see why this is necessary, consider a person standing at the origin
and stretching its right arm to its right side. Reflection will result in the right
arm pointing to its left with the person still looking into the same direction.
But right should and left shoulder cannot exchange their position without the
person turning around by 180◦. Therefore, exchanging right and left labels lead
to the left arm pointing to the left, which is what was desired. In terms of
implementation, this step is implemented as a fixed permutation of the joint
order. Note that the permutation of joints depends on the pose representation
so it is best to apply augmentations before pose transformation to only require a
single implementation.

45

7
Evaluation

In order to compare the transformer architecture with the adopted recurrent
network and state of the art methods, we utilize different metrics in order to
analyze their performances from different angles. We will therefore first define
these metrics and compare how they work. Afterwards, we are going to present
the evaluation protocol, which is adopted from [MLS20] for maximum compara-
bility. We also introduce a new protocol for multi-person evaluation which we
will motivate thoroughly.

7.1. Metrics

Since all metrics are computed in a similar way, we will first explain the general
procedure before defining them mathematically.
On Human3.6M, metrics are evaluated on each action individually, as difficulty
and performance greatly varies between simple actions like walking and compli-
cated ones like greeting (compare [MBR17]). Unfortunately, AMASS consists of
a wide variety of different datasets and therefore has a large amount of different
actions, similar to NTU-RGB+D 120, which was originally designed for action
recognition. Thus, for the sake of overview, we will evaluate all actions jointly
although we will also describe how one would proceed otherwise.

The procedure is similar to how the loss is computed in Section 4.3.2 and sum-
marized in the following equation:

M (f) =
1

Pf

Pf∑
p=1

1

J

J∑
j=1

M(yf,p,j, ŷf,p,j) ∀f ∈ {1, . . . , 30}

For each frame and each person, a pose error metric
∑J

j=1M(yf,p,j, ŷf,p,j) is com-
puted similar to the pose loss in Section 4.3.2. The concrete formula for M
depends on the metric, but all metrics are averaged over the number of joints J

47

Chapter 7. Evaluation 7.1. Metrics

similar to Section 4.3.2.
Unlike the scalar loss in deep learning, analyzing the performance at different
time horizons might be interesting so the aggregation over time is postponed to
a later stage of the metric computation. Instead, after computing the per-pose
metric, the next step is to compute the analogue of the batch loss. This means,
that for each time step the sum of all per-pose metrics of that action type is
computed, and divided by the number of occurrences Pf of that action type.
Two special cases might occur here. Firstly, some samples of that action type
might have less than 30 frames and therefore less than 30 per-pose metrics. In
that case, the afflicted sample does not contribute to the error metric at the later
time steps, which is the reason why Pf might not be the same for different frames
f . The second special case occurs with dual-person actions. Here, each person
contributes an individual per-pose metric, i.e., the number of per-pose metrics is
two times the number of such dual-person videos. For our data, this is equivalent
to explicitly averaging over the number of people, because the number of people
is constant for each action. The equality can easily be verified by applying the
distributive law. Whenever we evaluate all action types jointly, we considered
them to be of the same action type. Consequently, the error metric at the first
prediction step is then the arithmetic mean of the entire test set at that predic-
tion step and P1 becomes the test set size.
At this stage, there are 30 metrics Mf per action (or in total when computing
metrics jointly) describing different time horizons. The next step is the tem-
poral aggregation. Since it is interesting to evaluate the network for different
tasks, the metrics at different time steps are relevant. A common distinction
(compare [MBR17], [MLS20]) is between short-term motion forecasting, which
measures the performance after 400 ms (12 frames at 30 Hz), and long-term mo-
tion forecasting, which measures the performance after 1 s (30 frames). Longer
time horizons are sometimes used as well [KBM+20, GSAH17], however, those
require less prevalent evaluation techniques because of the inherent ambiguity of
the task over such time horizons. Since this is not the goal of this thesis, we
concentrate on the aforementioned time horizons of 12 and 30 frames. Instead of
computing the average performance over the first 12 frames, another possibility
is to simply take the performance at frame 12. This works just as well because
of how correlated the prediction at frame 12 is with all previous time steps. If
the prediction in previous frames is highly inaccurate, the performance at that
frame will most likely be inaccurate as well. Indeed, we never encountered a case
where the error was not monotonically increasing with time. Since the prediction
at the twelfth frame is by far the hardest of the first 12 predictions, using the
performance at frame 12 amounts to a worst-case analysis, whereas the average
performance over all 12 frames amounts to an average-case analysis. We will
switch between both approaches depending on the concrete evaluation goal.

Note that the entire evaluation protocol described above is consistent with the

48

7.1. Metrics Chapter 7. Evaluation

literature [AKH19, MLS20]. This is crucial for a meaningful comparison. Since
the evaluation of short sequences and dual-person sequences is to the best of our
knowledge not yet consistent in the literature, we integrated those special cases
in what seemed to be the most consistent way to us.

7.1.1. Definitions

Let f ∈ {1, . . . , 30} denote the index of the 30 predicted frames. Let Pf ∈ N be
the number of people performing a certain action type and let J ∈ N denote the
number of joints in the underlying skeletal representation of human body poses.
Lastly, let ŷf,p,j denote the estimated location of joint j from person p in frame
f and yf,p,j the corresponding ground truth location.
The percentage of correct keypoints (PCK) [MRC+17] is defined as:

M
(f)
pck(τ) =

1

Pf

Pf∑
p=1

|{ŷf,p,j | ‖yf,p,j − ŷf,p,j‖2 ≤ τ}|
J

Here, τ denotes the threshold describing the accuracy required to consider a pre-
dicted joint as correct.

The mean per joint positioning error (MPJPE) [IPOS14] is defined as:

M
(f)
mpjpe =

1

Pf

Pf∑
p=1

1

J

J∑
j=1

‖yf,p,j − ŷf,p,j‖2

The area under the PCK curve (PCK AUC) [MRC+17] is defined as:

M (f)
auc(T) =

1

T

T∫
0

M
(f)
pck(τ) dτ

Sárándi et al. [Sár21] showed that PCK AUC has the closed-form solution:

M (f)
auc(T) =

1

Pf

Pf∑
p=1

1

J

J∑
j=1

max

{
0, 1− ‖yf,p,j − ŷf,p,j‖2

T

}
Note that for all metrics, it does not matter whether we explicitly normalize over
the number of people n in a multi-person scene, treat them as nJ instead of J
joints or treat them as nP instead of P independent samples:

1

P

∑
p

n∑
i=1

1

nJ

∑
j

xp,n,j =
1

P

∑
p

1

n

n∑
i=1

1

J

∑
j

xp,n,j =
1

nP

∑
p

n∑
i=1

1

J

∑
j

xp,n,j

49

Chapter 7. Evaluation 7.1. Metrics

which follows from the distributive law. We chose the last possibility and implic-
itly assume that Pf = nP where n is the number of subjects in that action type.
This equality only holds for a constant number of people in each action, which
works out with the chosen datasets. However, when evaluating all actions jointly,
this assumption is violated. For example, consider a test set with one single-
person sequence and one dual-person sequence. For simplicity, assume that the
single-person sequence results in an MPJPE of 1 mm and each person in the dual-
person sequences is predicted with an error of 2 mm. Explicitly normalizing over
the number of people results in 1

2
(1
1

+ 2+2
2

) = 3
2
, whereas considering the dual-

person sequence as two independent samples results in 1
3
(1 + 2 + 2) = 5

3
. We can

see that explicitly normalizing over the number of people leads to a final error
closer to that of the single-person sequence. In other words, the importance of the
two dual-person predictions is diminished because they are logically grouped into
one motion sample. This does not make sense for our analysis as the goal is to
properly model human motion with multiple people involved. Therefore, we will
not group dual-person sequences into one sample so that each generated future
motion sequence has the same importance regardless of the number of people
involved in the original interaction. Consequently, we assume in the aforemen-
tioned metric definitions that Pf = Ps + 2Pd for Ps single-person videos and Pd

dual-person videos in the test set.

7.1.2. Differences Between the Metrics

The mean per joint positioning error at frame f is, as the name suggests, the
average euclidean distance between each predicted joint and its ground truth lo-
cation at frame f . It is usually computed in millimeters [IPOS14] and higher
scores denote a worst prediction quality. The metric is quite susceptible to out-
liers, i.e., the MPJPE can become arbitrary large due to a single prediction error
caused by corrupt data.

The percentage of correct keypoints works quite differently. A predicted joint
is considered correct if and only if it lies within a certain ball around the ground
truth location so that accurate models will obtain a higher percentage. The exact
distance does not matter, which is reasonable considering that data is never com-
pletely accurate and that for example a hand is in reality not a zero-dimensional
point in space. Likewise, it does not matter if a human is located 1 m or 2 m away
from the prediction, since in both cases, the prediction system failed completely.
However, the hard decision threshold between correct and wrong prediction is of
course arbitrary. On the one hand, it needs to be chosen large enough so that one
can say that a higher error is equally wrong no matter how much larger it is. On
the other hand, choosing the threshold higher means that one cannot properly
differentiate between a highly accurate model and one that is always wrong by a
small amount. Since MPJPE does not have this problem, ties in PCK should be

50

7.2. Evaluation Protocols Chapter 7. Evaluation

solved by comparing the mean per joint positioning error to see if one model is
systematically more accurate.

The PCK AUC is normalized to a value between [0, 1]. If the normalized area
under the PCK curve becomes 1 in the interval τ ∈ [0, T], it means that even
under the most rigorous PCK threshold, all joints are considered to be correct.
A lower PCK AUC means that only more relaxed PCK thresholds result in sat-
urated PCK scores, e.g., only at a threshold of 10 cm or more are most joints
predicted correctly.
In order to compare PCK AUC to the other metrics, let us first reformulate it.
To this end, define df,p,j = ‖yf,p,j − ŷf,p,j‖2. As mentioned in Section 7.1.1, the
PCK AUC can be computed with:

M (f)
auc(T) =

1

Pf

Pf∑
p=1

1

J

J∑
j=1

max

{
0, 1− df,p,j

T

}

Rewriting the expression as:

M (f)
auc(T) =

1

Pf

Pf∑
p=1

1

J

J∑
j=1,

df,p,j≤T

(
1− df,p,j

T

)

=
|{(p, j) | df,p,j ≤ T}|

PfJ
− 1

T

 1

Pf

Pf∑
p=1

1

J

J∑
j=1,

df,p,j≤T

df,p,j



We can see that the term in brackets is the MPJPE where outliers, i.e., errors
larger than T , are ignored. The other two terms then transform the range into the
interval [0, 1]. Note that the transform would almost be linear if the fraction was
not the percentage of outliers. In summary, the PCK AUC is the percentage of
inliers minus the MPJPE on the inliers, where the scale of the MPJPE is defined
by the threshold T . It can therefore be viewed as a middle ground between
MPJPE and PCK showing fine-grained differences comparably to MPJPE but
being robust to outliers similar to PCK.

7.2. Evaluation Protocols

We will use three evaluation protocols: One for hyperparameter studies, to which
we will refer as ablation protocol, one for evaluating multi-person performance
and one for comparison to existing literature. In general, all three protocols are
similar, but some of the settings in the literature protocol may not be optimal

51

Chapter 7. Evaluation 7.2. Evaluation Protocols

for multi-person evaluation.

As is common in motion modeling, we report the performance of the models
after 0.4 s and after 1 s of forecasting. Note that unlike some previous authors
like Martinez et al. [MBR17] we do not specifically train our network for shorter
time horizons, i.e., all scores are achieved by models trained on 1 s of forecasting.
Preliminary tests showed that training on short-term forecasting improved the
MPJPE by 5 mm after 0.4 s, while increasing the error by roughly 7 mm after 1 s.
Thus, the overall performance is really similar for both time horizons, which is
why we simplify the evaluation procedure and only consider long-term forecasting
models at the cost of slightly higher scores after 400 ms.

7.2.1. Comparison to Literature

To our knowledge only [MLS20, ACKH20, AKH19] evaluated on the AMASS
dataset. However, their are two problems with the evaluation from [ACKH20,
AKH19]: firstly, they use a preliminary version of AMASS because the full version
was not yet available. Secondly, they only use 15 of the 24 joints for evaluation.
While most of the literature removes global motion by translating the origin to
the pelvis joint, Aksan et al. also ignore wrists, hands, ankles and toes. These are
by far the most difficult joints to predict because they have naturally the highest
variance in location and also suffer from error propagation if a method uses local
joint coordinate systems. In contrast, Mao et al. [MLS20] ignore the pelvis (due
to root-relative setting), hips, the spine joint at the height of the belly and the
hand joints. The joints adjacent to the pelvis are presumably ignored because
they become trivial in a root-relative evaluation. The hand joint locations are
tightly correlated with the wrist joint locations so that the network still has to
learn their movement (although the final metrics put less emphasis on them be-
cause a wrongly predicted arm configuration is only penalized through one joint
instead of two). Therefore, we will focus on the comparison to Mao et al., who
only report MPJPE. Additionally, we will provide PCK AUC with a threshold
of 110 ms analogue to Aksan et al., but evaluated over the difficult joints as well.
Note that the train-validation-test split from Mao et al. results in a validation
split which is significantly more difficult than the test split. Their method obtains
67 mm MPJPE during testing but 112 mm error during ablation which is backed
up by our own results.

7.2.2. Differences of the Evaluation Protocols

In Table 7.1, we will see a direct comparison of the evaluation protocols. The lit-
erature protocol is identical to [MLS20], and we will now explain why we deviated
from that protocol for ablation and multi-person evaluation.

52

7.2. Evaluation Protocols Chapter 7. Evaluation

setting ablation literature multi-person

datast Kinect / AMASS AMASS Kinect

split validation testing testing

use short sequences yes no yes

use idle sequences yes yes yes

skip rate 30 5 5

augmentation / shuffle no no no

Kinect filter threshold 0.4 m - 0.4 m

input length varies 2 s 2 s

output length 1 s 1 s 1 s

frame rate of AMASS 30 Hz 25 Hz -

mean over time yes no yes

less joints no yes no

keep global orientation yes no yes

absolute and relative yes yes yes

short term and long term yes yes yes

Table 7.1.: Differences in the evaluation protocols.

Unlike Mao et al., we also evaluate on short sequences with the help of reduced
input lengths and masking if less than 1 s is available for output. The reason lies
in the Kinect datasets which consist of a large number of short sequences. This
also affects how we evaluate: Mao et al. evaluate the performance after the dura-
tion, i.e., at the fth frame. However, we evaluate the performance until each time
step, i.e., the average performance over time. The reason is that if a sequence is
so short that it only yields 29 of the required 30 frames of future ground truth,
an evaluation at the 30th frame would completely ignore this sequence because
the performance at the 30th frame is the performance averaged over all sequences
with 30 frames available. This is avoided by the temporal mean.
The skip rate defines how many samples are extracted from long videos, e.g., a
rate of five means that each fifth frame becomes the first frame of ground truth.
We use higher skip rates during tuning to reduce execution time. Furthermore,
we experiment with different input lengths during ablation unlike most related
research. Another difference comes from the number of joints which are evalu-
ated. As mentioned before, Mao et al. [MLS20] ignore some joints trivial in a
root-relative setting as well as the hand joints. Since we want to model absolute
positions and see how multi-person modeling can improve the predictions, the
hand joints are crucial for our tests, as they are probably the most interactive
joint in a multi-person scenario.

53

Chapter 7. Evaluation 7.2. Evaluation Protocols

As mentioned several times, existing literature typically removes global rotation
and position. In order to make the comparison to state of the art fair, we use
Kabsch’ algorithm (see Section 2.3.3) to remove the rotation between predicted
and target pose but only in the literature protocol. We provide the performance
when alignment is computed over the minimal amount of three joints and over
all joints. The former is a lower bound since our network is not aware during
training that a subset of joints is used for rotation. The latter approach is an
upper bound because the best possible alignment is used.
The last difference is the frame rate to which AMASS is downsampled to. As
discussed in Section 6.4.3, a frame rate of 30 Hz leads to a time horizon closer to
1 s.

As mentioned in Section 6.4.2, our preprocessing on PKU-MMD and NTU-
RGB+D 120 occasionally results in large discontinuities. We filter sequences
where joints move more than a threshold between consecutive frames even in
evaluation. In Table 7.2, we can see that 0.4 m retains more than 90 % of the
test data while filtering at a reasonable high velocity of 43 km h−1. AMASS data
quality is high enough to omit this step.

threshold (m) velocity (km h−1) data kept (%)

10 1080 100
1 108 99.3
0.5 54 93.6
0.4 43 92.3
0.3 32 88.5
0.2 22 74.5
0.1 11 32.0

Table 7.2.: Effect of different filtering thresholds for Kinect data.

54

8
Results on AMASS Dataset

After having presented the evaluation protocols used, it is now time to analyze
the results. This chapter focuses on high quality single-person data from the
AMASS dataset, while in Chapter 9, we investigate the performance on multi-
person data. Here, we will evaluate the impact of important hyperparameters on
LSTMs, GRUs and transformers. The less important hyperparameter analyses
can be found in Appendix A. After all hyperparameters are tuned, we evaluate the
performances of our models on test data from AMASS. The evaluation consists
of a quantitative comparison to state of the art and a qualitative analysis.

8.1. LSTM Tuning

The first hyperparameter analysis aims at finding a suitable LSTM architecture.
We will look for an optimal number of layers and then compare the performance
with a GRU in order to decide which RNN design should be analyzed in more
details.

8.1.1. Number of Layers

Martinez et al. [MBR17] used a single-layer GRU, but AMASS is considerably
larger and more difficult than Human3.6M. Therefore, we will investigate how
deep the RNN should be, i.e., how many identical recurrent layers need be stacked
for optimal performance.
In Table 8.1, we can clearly see that two layers are optimal. It allows a consid-
erable improvement of 4 mm over just having a single recurrent layer while more
layers do not yield a performance gain above statistical variation. Table 8.2 re-
inforces the point that two layers and three layers lead to the same performance
as the PCK scores equal over the time of 1 s. Since adding a third layer requires
30 additional computation steps due to the temporal dependency, it is definitely
not recommended to use more than two layers.

55

Chapter 8. Results on AMASS Dataset 8.1. LSTM Tuning

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

1 layer 53.5 124.2 86.2 61.8 0.635 0.405
2 layers 49.9 119.7 87.4 63.2 0.655 0.422
3 layers 50.6 120.2 87.2 63.0 0.651 0.420

Table 8.1.: Absolute error metrics for LSTM with different number of layers.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

1 layer 42.3 82.5 89.5 75.6 0.703 0.543
2 layers 40.0 80.3 90.2 76.4 0.716 0.555
3 layers 40.6 80.8 90.1 76.4 0.713 0.553

Table 8.2.: Relative error metrics for LSTM with different number of layers.

8.1.2. LSTM and GRU

Next, we are going to compare the performance of an LSTM to the simplified
GRU architecture. All parameters including the dimension of the hidden state
are chosen to be identical for maximum comparability. Note that it is hard to
decide whether the hidden state size should be equal during this comparison.
The internal state of an LSTM consists of the cell state and the output at the
previous time step, therefore it has double the size of the GRU hidden state. On
the other hand, only the cell state is protected by forget and input gate so that
the previous hidden state cannot be considered as an extension to the memory
of the RNN cell.
Table 8.3 and Table 8.4 shows that the GRU architecture completely outperforms
LSTMs on the validation split both in global tracking and in relative pose quality.
Note that this backs up [MBR17]. We will therefore focus on tuning GRUs for
the rest of this work.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

LSTM 49.9 119.7 87.4 63.2 0.655 0.422
GRU 41.7 104.8 90.5 67.0 0.694 0.451

Table 8.3.: Absolute error metrics for LSTM and GRU.

56

8.2. GRU Tuning Chapter 8. Results on AMASS Dataset

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

LSTM 40.0 80.3 90.2 76.4 0.716 0.555
GRU 36.1 75.0 91.9 78.2 0.736 0.568

Table 8.4.: Relative error metrics for LSTM and GRU.

8.2. GRU Tuning

Since GRUs work better on the validation split, it is now necessary to investigate
the other GRU parameters for choosing optimal values.

8.2.1. Number of Layers

Comparably to Section 8.1.1, we start with varying the number of stacked recur-
rent layers. In Table 8.5, we can clearly see that one GRU layer, in contrast to one
LSTM layer, is not enough as the model clearly underfits. However, the choice
between two and three layers is not so trivial. We can observe a clear increase in
performance by moving from two layers to three. However, the resulting network
is almost 50 % larger and likewise, the training duration increased by roughly
50 % from 92 min to 136 min. Thus, we conclude that the additional overhead
does not justify the rather small increase in accuracy and therefore continue our
experiments with two layers. Using three layers for an application is however still
viable if accuracy is of uttermost importance.
The relative pose quality visualized in Table 8.6 shows an identical behavior so
that we know that one layer not only fails to model global movement but also to
produce realistic poses.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

1 layer 91.7 173.3 72.3 48.6 0.451 0.280
2 layers 41.7 104.8 90.5 67.0 0.694 0.451
3 layers 40.0 102.6 91.0 67.8 0.705 0.460

Table 8.5.: Absolute error metrics for GRU with different number of layers.

8.2.2. Dropout

Regularization techniques like dropout are crucial to deeper networks. In our
case however, dropout does not help to produce more realistic poses according
to Table 8.8. It is even more detrimental to the modeling of global positions.
Consequently, we will keep dropout disabled.

57

Chapter 8. Results on AMASS Dataset 8.2. GRU Tuning

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

1 layer 71.4 110.3 80.4 67.4 0.557 0.442
2 layers 36.1 75.0 91.9 78.2 0.736 0.568
3 layers 34.8 74.3 92.3 78.5 0.744 0.573

Table 8.6.: Relative error metrics for GRU with different number of layers.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

p = 0.0 41.7 104.8 90.5 67.0 0.694 0.451
p = 0.01 43.0 107.2 90.1 66.4 0.688 0.446
p = 0.1 45.5 111.2 89.3 65.5 0.676 0.437

Table 8.7.: Absolute error metrics for GRU with different dropout probabilities
p.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

p = 0.0 36.1 75.0 91.9 78.2 0.736 0.568
p = 0.01 36.2 75.3 91.9 78.1 0.736 0.568
p = 0.1 36.9 76.0 91.6 77.9 0.732 0.566

Table 8.8.: Relative error metrics for GRU with different dropout probabilities p.

8.2.3. Dimension of Hidden State

From Table 8.9, we can see that Martinez et al. choice of 1024 latent features
is indeed appropriate. Less cell state memory clearly hurts the performance.
Interestingly enough, more cell memory seems to pose a problem as well, possibly
due to the lack of regularization which was not needed prior to increasing the
hidden state dimensionality. The relative errors in Table 8.10 do not provide any
additional insights.

8.2.4. Pose Representation

The different input representations (see Section 6.2) have vastly different perfor-
mance results. Until now, we have only used bone vectors. From Table 8.11 and
Table 8.12, we can see that bone vectors and a mixed representation obtain some-
what similar results. Bone vectors are better both in the absolute and relative
sense.
Unsurprisingly, modeling each joint in world coordinates does not work well. The

58

8.2. GRU Tuning Chapter 8. Results on AMASS Dataset

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

h = 512 48.4 115.2 88.0 63.8 0.658 0.422
h = 1024 41.7 104.8 90.5 67.0 0.694 0.451
h = 2048 1378.5 1390.5 0.1 0.1 0.000 0.000

Table 8.9.: Absolute error metrics for GRU with different hidden state dimensions
h.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

h = 512 40.2 79.7 90.4 76.5 0.714 0.551
h = 1024 36.1 75.0 91.9 78.2 0.736 0.568
h = 2048 1262.1 1275.6 4.3 4.3 0.042 0.042

Table 8.10.: Relative error metrics for GRU with different hidden state dimensions
h.

problem is that each joint must be moved correctly through space but also posi-
tioned correctly with respect to its neighbors, whereas for bone vectors or mixed
poses, each non-root joint must only be positioned correctly with respect to a
parent joint. The difficult problem of moving all points as a connected unit is
avoided by only moving the root joint and applying that movement to all other
joints implicitly.
It is rather unclear why just modeling relative joints works poorly but apparently
the parameter setting favors some sort of absolute movement as well.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

absolute 85.3 166.8 74.0 49.8 0.501 0.310
bones 41.7 104.8 90.5 67.0 0.694 0.451
mixed 44.9 108.5 89.3 65.9 0.677 0.440
relative - - - - - -

Table 8.11.: Absolute error metrics for GRU with different input representations.

8.2.5. Batch Size

For the GRU architecture, Table 8.13 and Table 8.14 clearly show that large
batch sizes work best. Consequently, we stick to the batch size of 128. Like in
some of the previous analyses, we can see that the GRU architecture is rather

59

Chapter 8. Results on AMASS Dataset 8.2. GRU Tuning

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

absolute 69.0 111.2 79.8 66.7 0.596 0.464
bones 36.1 75.0 91.9 78.2 0.736 0.568
mixed 38.4 77.1 91.1 77.6 0.724 0.561
relative 73.5 115.6 78.6 65.7 0.575 0.447

Table 8.12.: Relative error metrics for GRU with different input representations.

unstable with respect to certain design choices, i.e., performance varies by a large
margin when changing certain parameters.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

b = 64 93.0 179.7 70.7 47.1 0.468 0.287
b = 128 41.7 104.8 90.5 67.0 0.694 0.451
b = 256 45.2 110.0 89.2 65.5 0.675 0.437

Table 8.13.: Absolute error metrics for GRU with different batch sizes b.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

b = 64 70.1 112.3 79.5 66.4 0.592 0.461
b = 128 36.1 75.0 91.9 78.2 0.736 0.568
b = 256 37.9 77.2 91.3 77.4 0.726 0.560

Table 8.14.: Relative error metrics for GRU with different batch sizes b.

8.2.6. Loss Function

According to Table 8.15, the L2 loss penalizes difficult joints too much so that the
network seems to learn a a low-risk prediction, which leads to a lower accuracy
compared to a more balanced L1 loss term. The result is similarly present in
relative predictions. Therefore, we will keep using the L1 loss.

8.2.7. Data Normalization

We mentioned in Section 6.4.1 that data normalization mainly consists of a cen-
tering translation of the point cloud of all joints at all frames and an additional
feature-wise normalization. The centering translation is always performed but

60

8.2. GRU Tuning Chapter 8. Results on AMASS Dataset

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

L1 loss 41.7 104.8 90.5 67.0 0.694 0.451
L2 loss 48.2 112.6 89.1 63.7 0.637 0.398

Table 8.15.: Absolute error metrics for GRU with different loss functions.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

L1 loss 36.1 75.0 91.9 78.2 0.736 0.568
L2 loss 41.7 80.8 90.7 76.0 0.687 0.524

Table 8.16.: Relative error metrics for GRU with different loss functions.

we want to investigate the importance of zero-mean unit-variance features. Ta-
ble 8.17 and Table 8.18 show a massive increase in performance across all metrics
so that we conclude that centered features are crucial for good results. Martinez
et al. [MBR17] employed feature normalization as well.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ normalize 41.7 104.8 90.5 67.0 0.694 0.451
w/o normalize 60.8 131.3 84.3 58.5 0.592 0.368

Table 8.17.: Absolute error metrics for GRU with and without normalization.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ normalize 36.1 75.0 91.9 78.2 0.736 0.568
w/o normalize 52.3 92.9 86.9 72.4 0.650 0.503

Table 8.18.: Relative error metrics for GRU with and without normalization.

8.2.8. Summary of RNN Tuning

We will shortly summarize the most important discoveries of how our RNN archi-
tectures behaved. We saw that LSTMs are significant worse than GRUs on the
validation data. Furthermore, we determined that GRUs are quite sensitive to
many settings, especially the number of parameters. The one-layered GRU was

61

Chapter 8. Results on AMASS Dataset 8.3. Transformer Tuning

outperformed by its corresponding LSTM, and too large cell states are detrimen-
tal as well. However, using regularization on GRUs with the right size should be
avoided as well.

8.3. Transformer Tuning

The next hyperparameter study will focus on finding good settings for train-
ing transformers to perform motion prediction. The study is as thorough as
Section 8.2 but we again refer to Appendix A for redundant or less interesting
results.

8.3.1. Number of Layers

From Table 8.19 and Table 8.20, we can conclude that four layers are not enough
for optimal performance. Likewise, using ten layers yields not advantage justify-
ing the additional complexity. The decision between six and eight layers is rather
ambiguous. The performance increase with the two additional layers could result
from experimental noise or a stronger model. When confronted with a similar
decision for the number of stacked GRU layers (see Section 8.2.1), we decided
in favor of the smaller model because of the 50 % increase of training duration.
However, the eight-layered transformers achieved a much higher GPU utilization
than those with four or six layers so that the additional complexity does not
matter that much. In fact, many eight-layered networks trained faster (about
90 min) than the six-layered one (105 min) although this should be taken with a
grain of salt because execution times on Claix18 naturally varied. Taking this
into account, we decided for the eight-layered transformer.
Training results are not reproducible with newer code versions, because the initial
order of the training data depended on the hardware.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

4 layers 53.5 122.2 85.7 61.7 0.636 0.410
6 layers 51.1 118.4 86.7 62.9 0.647 0.420
8 layers 50.6 117.5 86.8 63.2 0.649 0.422
10 layers 51.0 118.1 86.8 63.1 0.648 0.421

Table 8.19.: Absolute error metrics for transformer with different number of lay-
ers.

62

8.3. Transformer Tuning Chapter 8. Results on AMASS Dataset

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

4 layers 43.5 85.3 89.0 74.6 0.702 0.539
6 layers 41.9 83.1 89.6 75.3 0.709 0.546
8 layers 41.8 82.7 89.6 75.4 0.709 0.546
10 layers 42.0 82.9 89.6 75.4 0.710 0.547

Table 8.20.: Relative error metrics for transformer with different number of layers.

8.3.2. Dropout

Since the transformer architecture is much deeper than the GRU, we analyze
higher dropout probabilities than for GRUs. Similar to the results in Section 8.2.2,
high dropout probabilities seem to be problematic both for relative pose quality
and for global motion, as can be seen in Table 8.21 and Table 8.22. Indeed, our
initial choice of 10 % turned out to be too high.
Training results are not reproducible with newer code versions, because the initial
order of the training data depended on the hardware.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

p = 0.05 49.0 115.1 87.5 63.9 0.658 0.428
p = 0.1 50.6 117.5 86.8 63.2 0.649 0.422
p = 0.2 54.8 124.3 85.3 61.5 0.630 0.407

Table 8.21.: Absolute error metrics for transformer with different dropout prob-
abilities p.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

p = 0.05 40.6 81.4 90.1 75.9 0.717 0.552
p = 0.1 41.8 82.7 89.6 75.4 0.709 0.546
p = 0.2 44.4 86.2 88.6 74.3 0.696 0.536

Table 8.22.: Relative error metrics for transformer with different dropout proba-
bilities p.

8.3.3. Weight Decay

In Table 8.23 and Table 8.24, we can see that both types of error are improved
when using a weight decay coefficient of 0.01. The improvement is only marginal,

63

Chapter 8. Results on AMASS Dataset 8.3. Transformer Tuning

but large enough to exceed normal statistical variation. In the previous experi-
ments, weight decay was disabled which may therefore be not optimal.
Training results are not reproducible with newer code versions, because the initial
order of the training data depended on the hardware. This experiment still uses
a dropout probability of 10 %.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w = 0 50.6 117.5 86.8 63.2 0.649 0.422
w = 10−3 50.9 117.8 86.7 63.1 0.647 0.421
w = 10−2 49.9 116.3 87.1 63.5 0.653 0.425

Table 8.23.: Absolute error metrics for transformer with different weight decay
coefficients w.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w = 0 41.8 82.7 89.6 75.4 0.709 0.546
w = 10−3 42.0 83.2 89.5 75.4 0.709 0.546
w = 10−2 41.1 82.0 89.9 75.7 0.713 0.550

Table 8.24.: Relative error metrics for transformer with different weight decay
coefficients w.

8.3.4. Dimension of Embedding Space

Changing the internal feature space dimension leads to similar behavior as in
Section 8.2.3 for GRUs. A smaller feature space leads to slightly worse absolute
and relative errors in Table 8.25 and Table 8.26, while a larger feature space
converges to massively worse solutions. However, the variations are, not for the
last time, less extreme than for GRUs, where the larger cell state did not converge
at all.
These and all following results on transformers are fully reproducible. From now
on, we are using an eight-layered transformer with lowered dropout of 5 % and a
weight decay factor of 0.01, i.e., we chose the best setting for each of the three
previously analyzed hyperparameters. Indeed, applying higher weight decay and
lower dropout at the same time improves the overall performance compared to
only applying one of these improvements (observe that the MPJPE for h = 128
in Table 8.25 decreased compared to all models in Table 8.21 and in Table 8.23).
Note that we did not experiment with even lower dropout rates or higher weight
decays, but instead refer to Section 10.2.

64

8.3. Transformer Tuning Chapter 8. Results on AMASS Dataset

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

h = 64 50.6 116.8 86.9 63.3 0.651 0.423
h = 128 47.6 112.9 88.0 64.3 0.664 0.432
h = 256 136.7 282.5 58.1 40.5 0.404 0.273

Table 8.25.: Absolute error metrics for transformer with different embedding
space dimensions h.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

h = 64 42.2 83.1 89.5 75.2 0.709 0.546
h = 128 39.8 80.3 90.4 76.2 0.720 0.554
h = 256 77.0 125.3 77.3 64.1 0.581 0.455

Table 8.26.: Relative error metrics for transformer with different embedding space
dimensions h.

8.3.5. Pose Representation

The underlying pose representation is a parameter independent from the choice
between transformer and GRU so one would expect similar results for both archi-
tectures. Indeed, bone vectors again turn out to be extremely powerful so that
we will keep using this representation, see Table 8.27. The mixed poses seems to
be slightly better, but the improvement is only marginal and may therefore not
be of statistical significance.
An important difference to the GRUs is that the choice of input representation
is significantly more crucial to the GRU than to the transformer, i.e., Table 8.28
shows that transformers with absolute joint locations and root-relative joint lo-
cations do not perform significantly worse in terms of relative pose quality. The
relative representation even obtains the highest quality in relative pose configu-
ration which is something we also expected to see for the GRU. However, relative
poses are obviously inferior when considering global movement so that we will
not consider them in future experiments.

8.3.6. Learning Rate Warm-Up

Many authors [ACKH20,VSP+17] report that an alternative learning rate sched-
ule with an initial warm-up phase of increasing learning rates followed by an
exponential decay is beneficial to the performance. We adopted the algorithm
from [VSP+17] but found it to be harmful for modeling global motion (see Ta-

65

Chapter 8. Results on AMASS Dataset 8.3. Transformer Tuning

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

absolute 48.0 113.8 87.9 64.0 0.664 0.430
bones 47.6 112.9 88.0 64.3 0.664 0.432
mixed 47.1 112.3 88.2 64.5 0.667 0.433
relative - - - - - -

Table 8.27.: Absolute error metrics for transformer with different input represen-
tations.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

absolute 40.6 81.7 90.1 75.7 0.716 0.549
bones 39.8 80.3 90.4 76.2 0.720 0.554
mixed 39.4 79.9 90.5 76.4 0.722 0.556
relative 38.9 79.4 90.6 76.5 0.725 0.558

Table 8.28.: Relative error metrics for transformer with different input represen-
tations.

ble 8.29). We therefore kept our original learning rate starting at 0.001 and using
an exponential decay with factor 0.98.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ warm-up 50.2 117.4 87.0 63.1 0.650 0.419
w/o warm-up 47.6 112.9 88.0 64.3 0.664 0.432

Table 8.29.: Absolute error metrics for transformer with and without warming up
the learning rate.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ warm-up 41.3 81.9 89.8 75.6 0.713 0.548
w/o warm-up 39.8 80.3 90.4 76.2 0.720 0.554

Table 8.30.: Relative error metrics for transformer with and without warming up
the learning rate.

66

8.4. Comparison Chapter 8. Results on AMASS Dataset

8.3.7. Summary of Transformer Tuning

In Section 8.2.8, we have seen that GRUs have much potential, but are in turn
quite susceptible to certain settings like the pose representation. In contrast, the
transformer has almost the same performance with all different input types. Like
the GRUS, a latent space with too many dimensions is detrimental, but to a much
lesser degree than for GRUs. Lastly, we saw that regularization is beneficial to
transformers but not to GRUs.

8.4. Comparison

With our tuned architectures, we can now move on to evaluating the performance
on independent test data. This section will contain quantitative comparisons
between the methods and also consider a state of the art method presented by
Mao et al. [MLS20], which uses the same evaluation protocol. We will investigate
the same performance metrics as before, but unlike before, we will remove global
rotation in the relative setting for better comparability to [MLS20].

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

Zero Motion 149.8 254.7 58.2 53.4 0.417 0.377
Const. Velocity 152.4 444.9 59.1 27.0 0.378 0.166
LSTM 158.2 366.7 55.5 36.8 0.401 0.240
GRU 70.8 152.2 78.7 46.9 0.519 0.274
Transformer 118.4 200.9 54.6 37.2 0.349 0.237

Table 8.31.: Absolute error metrics for the different methods. The metrics show
the performance at the corresponding point in time, i.e., no temporal
averaging is used.

Table 8.31 shows the performances for motion prediction with global orientation
and movement. Since [MLS20] removes global information, it is not represented
in the table.
The first thing to notice is that the performance between short term and long term
prediction can differ a lot across methods, e.g., when looking at the percentage
of correct keypoints. Especially the constant velocity baseline (see Section 5.3) is
quite competitive for short term goals but has a horrible performance in the long
run. This is not surprising since there are many joint constraints which limit how
long a motion can continue. In contrast, the zero-motion baseline from [MBR17]
almost loses no accuracy over the course of 600 ms. This demonstrates that the
majority of joints does not move more than 10 cm during the predicted time hori-
zon. The RNN and transformer architectures are somewhat in the middle. Both
recurrent networks lose a little bit more accuracy over time and the transformer

67

Chapter 8. Results on AMASS Dataset 8.4. Comparison

starts with a lower PCK but is able to retain it better. Overall, the PCK suggests
to either use the GRU model or the zero motion baseline heuristic. For short term
predictions, the constant velocity baseline works as well.

When looking at PCK AUC, the results are extremely similar. Zero motion base-
line and GRU are still by far the best methods. Some nuances differ, e.g., the
constant velocity baseline looks worse under PCK AUC and the LSTM seems to
work a bit better compared to PCK. As explained in Section 7.1.2, the PCK AUC
is less of a binary decision and more of a continuous MPJPE ignoring outliers.
Note that the PCK AUC threshold and the PCK threshold are close together so
that this difference is not explained by the outliers. Thus, the LSTM might not
be correct as often (lower PCK than constant velocity baseline), but when it is,
it is consistently more accurate (higher PCK AUC compared to baseline). The
transformer architecture is rather bad under both metrics.

This changes drastically when looking at MPJPE. Here, the GRU is the best
method by a large margin. The transformer comes second; it is definitely less
accurate than the GRU but still significantly better than the rest. The LSTM
and the two baselines have poor performance, especially for long-term prediction.
Hence, we conclude that LSTM and baselines occasionally fail completely which
then results in MPJPE scores that do not reflect the average performance. In
summary, the GRU is the best method. The transformer is comparable to other
approaches under PCK but has really good performance on MPJPE.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

Zero Motion 107.3 114.8 67.2 64.7 0.437 0.422
Const. Velocity 148.1 392.8 55.5 22.4 0.326 0.121
LSTM 43.7 73.1 91.0 78.9 0.669 0.530
GRU 54.9 91.3 85.2 71.8 0.593 0.466
Transformer 69.8 92.5 78.0 69.5 0.529 0.446
[MLS20] 42.0 67.2 - - - -

Table 8.32.: Relative error metrics for the different methods. Global rotation is
removed using all joints. The metrics show the performance at the
corresponding point in time, i.e., no temporal averaging is used.

When comparing to the literature, one difficulty is that existing methods re-
move global rotation before applying forward kinematics. Since we trained our
models on data with global movement, we therefore need to align ground truth
and predicted pose, which is explained in Section 7.2. We therefore provide a

68

8.4. Comparison Chapter 8. Results on AMASS Dataset

relative pose quality upper bound in Table 8.32 and a lower bound in Table 8.33.
The results within each table are extremely similar and the only difference is
how close the performance is to the state of the art method. We therefore fo-
cus on Table 8.32. One thing to immediately notice is that the performances
are maximally consistent across different time horizons and different metrics. It
is therefore extremely easy to rank our methods from best to worst: our best
method is the LSTM, followed by GRU and transformer, whereas both baselines
have extremely poor relative quality. We emphasize that the difference between
transformer and GRU are minuscule for long-term prediction.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

Zero Motion 111.4 119.4 66.2 64.0 0.460 0.439
Const. Velocity 158.0 425.7 57.2 27.8 0.355 0.150
LSTM 49.7 79.2 88.6 76.8 0.637 0.513
GRU 61.0 97.3 81.9 70.1 0.573 0.455
Transformer 76.4 100.0 75.3 67.0 0.517 0.437
[MLS20] 42.0 67.2 - - - -

Table 8.33.: Relative error metrics for the different methods. Global rotation is
removed using the minimum number of three joints. The metrics
show the performance at the corresponding point in time, i.e., no
temporal averaging is used.

There are two things to notice here. Firstly, these results seem paradox com-
pared to our hyperparameter study. On the validation split, the LSTM was out-
performed by the GRU in terms of relative pose quality by a significant amount of
5 mm. Furthermore, it was at par with the transformer (also in terms of relative
pose quality). Note that we specifically only applied improvements to GRU and
transformer if the performance increased significantly, e.g., at least 1 mm decrease
of absolute MPJPE. Therefore, the extreme performance gap of 18 mm on test
data is hard to explain. The best solution would be to gather more unseen data
in order to find out whether validation or testing split are more representative of
the real generalization performance.

The second thing to investigate is the difference between relative and absolute
error. Our GRU outperforms the LSTM across all absolute metrics but is outper-
formed across all relative metrics. This strongly indicates that the tuned LSTM
is worse at modeling global motion but shines at relative pose quality. However,
it also contrasts the fact that Martinez et al. preferred a GRU design over an
LSTM. One possibility is that the experimental set-up in [MBR17] is more simi-

69

Chapter 8. Results on AMASS Dataset 8.5. Qualitative Results

lar to our hyperparameter study than to the comparison currently presented.
Note that one reason for the bad performance of GRU and transformer might
be that the test split defined by Mao et al. contained many treadmill exercises.
If those were underrepresented in the training split, the learned dependency be-
tween moving legs and changes in global positioning would generalize badly to
the test data. We unfortunately do not know whether training data contained
treadmill motions.
From Table 8.33 and Table 8.32, we can see that our LSTM inspired by [MBR17]
is close to state of the art for short term prediction since it is between 1.7 mm and
7.7 mm worse. For long term prediction, the gap lies between 5.9 mm and 12 mm
which is still considerable but not insurmountable. It is important to keep in
mind that our models were trained to be aware of global orientation and position
so that Mao’s method has a critical advantage.

8.5. Qualitative Evaluation

Although qualitative evaluation may not be representative of the real performance
at all, it is nevertheless important to ensure that the deep learning framework
did not find loopholes in the task formulation. We will therefore provide two
examples of visual results.

In Figure 8.1, we can see a human at different points in time during a jump.
The apex of the jump is reached at about 0.4 s. All three prediction methods
correctly model that the legs fully extend in the air. Furthermore, all methods
predict arm positions which are realistic during a jump, although those from the
transformer (purple) do not correspond to what the subject is actually doing.
We can furthermore see that the transformer either has a temporal delay or gets
stuck in the animation. Overall, the LSTM (cyan) predicts the height during the
apex best (compare to ground truth in red).

(a) Jumping after 0.4 s. (b) Jumping after 0.8 s. (c) Jumping after 1.0 s.

Figure 8.1.: Human jumping. Ground truth is red, transformer purple, GRU
beige and LSTM cyan.

70

8.6. Final Summary Chapter 8. Results on AMASS Dataset

Walking is a periodic action where convergence against a still pose is not de-
sired. Figure 8.2 demonstrates that none of the three methods does that. More-
over, we can see that all three models predict steps synchronized with the ground
truth (red). Both RNNs are highly accurate, whereas the transformer predicts
positions which are slightly off. The residual seems to be constant over time
which indicates that the transformer still learns realistic trajectories.

(a) Walking after 0.4 s. (b) Walking after 0.8 s. (c) Walking after 1.0 s.

Figure 8.2.: Human walking. Ground truth is red, transformer purple, GRU beige
and LSTM cyan.

8.6. Final Summary

We have seen in Section 8.2.8 and Section 8.3.7 that GRUs perform well on
validation data but are harder to tune than transformers. In the quantitative
comparison, it turned out that LSTMs can be quite powerful as well. We em-
phasize that those models (GRU and transformer) with good global positioning
are much farther away from state of the art than the LSTM with mediocre posi-
tioning. This highlights the difficulty of global components in motion forecasting
and demands for further research. In summary, our best method is the adopted
GRU, as it performs well over a wide variety of metrics. Under some metrics,
our proposed transformer can achieve comparable results to the GRU. All three
models created realistic poses in our visualizations.

71

9
Results on Multi-Person Data

One of the main focuses of the master thesis is how absolute positioning in space
can be improved from considering interacting humans jointly. This chapter is
dedicated to analyzing these effects quantitatively. The hyperparameters are
mostly taken from Chapter 8, but we revisit a few of them for the multi-person
data from PKU-MMD and NTU-RGB+D 120. Most of them are analyzed in Ap-
pendix B. We will also provide an ablation study on our person attention module.
Lastly, we will compare our different methods on the test data quantitatively and
qualitatively.

9.1. Transformer Tuning

Since a complete tuning was already conducted for AMASS, we focus on those
hyperparameters related to the Kinect datasets. Here, we will present relevant
tables for transformers. The results for GRUs as well as a further comparison for
transformer do not provide new insights, therefore we refer to Appendix B.

9.1.1. Dimension of Embedding Space

The datasets NTU-RGB+D 120 and PKU-MMD are significantly smaller than
AMASS and we previously saw, e.g., in Section 8.3.4, that too many weights can
be devastating to the performance. Therefore, Table 9.1 and Table 9.2 demon-
strate that an embedding space dimension of 64, which was noticeably too small
for AMASS, is almost competitive with the default size of 128. However, it also
does not improve the performance so that we will keep the default value.

9.1.2. Ablation of Person Attention

Perhaps the most important comparison is presented in Table 9.3, which shows
the performance gain of modeling both interacting humans jointly. The usage

73

Chapter 9. Results on Multi-Person Data 9.1. Transformer Tuning

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

h = 64 38.5 55.8 91.2 84.0 0.700 0.614
h = 128 37.5 54.4 91.6 84.5 0.704 0.619

Table 9.1.: Absolute error metrics for transformer with different embedding space
dimensions h.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

h = 64 27.3 39.7 94.1 89.5 0.789 0.718
h = 128 26.6 38.5 94.4 90.0 0.792 0.723

Table 9.2.: Relative error metrics for transformer with different embedding space
dimensions h.

of person attention leads to small improvements for short term predictions but
the long term predictions is what profits most. The percentage of correct joints
increases by 2 % and the MPJPE decreases by 6 mm. This might not seem like
much compared to some of the variations on AMASS, but the Kinect datasets
are considerably easier so that improvement is likely more difficult to achieve. In
fact, improvements of 10 % like this one only occurred for transformers when a
hyperparameter was chosen significantly too high, e.g., 20 % dropout probability
instead of 5 %. Most importantly, the best GRU, which is provided for compa-
rability, outperforms the single-person transformer but cannot keep up with the
person attention under MPJPE. We therefore conclude that the performance ad-
vantage of the GRU in comparison to the transformer is undone by multi-person
modeling which was the goal of our work.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ attention 37.5 54.4 91.6 84.5 0.704 0.619
w/o attention 39.6 60.5 90.6 82.8 0.696 0.608
best GRU 38.4 57.3 91.4 84.2 0.700 0.615

Table 9.3.: Absolute error metrics for transformer with and without person at-
tention. Best GRU performance is shown for comparability.

We want to mention that relative pose quality does not benefit nearly as much
from person attention, see Table 9.4. As mentioned before, important constraints

74

9.2. Comparison Chapter 9. Results on Multi-Person Data

on absolute positioning can be derived from interactions, e.g., during a hand-
shake, the right palms have to touch, which restricts the distance between the
two individuals. However, the rest of the pose cannot be directly inferred from
a handshake. Consequently, it should not be surprising that the relative pose
accuracy of transformer and GRU are within statistical noise.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ attention 26.6 38.5 94.4 90.0 0.792 0.723
w/o attention 27.1 39.7 94.2 89.5 0.790 0.719
best GRU 26.4 38.1 94.6 90.4 0.791 0.724

Table 9.4.: Relative error metrics for transformer with and without person atten-
tion. Best GRU performance is shown for comparability.

9.2. Comparison

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

Zero Motion 44.7 76.0 88.3 79.8 0.694 0.599
Const. Velocity 84.6 195.0 76.7 52.2 0.520 0.314
LSTM 34.0 53.8 92.9 85.1 0.729 0.633
GRU 33.4 52.5 93.2 85.5 0.732 0.636
Transformer 33.1 50.9 93.2 85.7 0.735 0.641

Table 9.5.: Absolute error metrics for the different methods.

In our final quantitative evaluation, we compare our three models and the
two baselines (see Section 8.4) on the Kinect test data. Both RNNs and the
transformer outperform the baselines absolutely in Table 9.5 and relatively in
Table 9.6. The constant velocity baseline is not even competitive for short term
predictions. The zero-motion baseline performs acceptable for relative PCK but
is still outperformed by 2 %.
Table 9.6 shows that all three networks achieve the same quality for relative poses,
which is at stark contrast to Section 8.4 where the LSTM was significantly better
for relative accuracy. This indicates that LSTMs are probably not intrinsically
better at relative performance. Instead, that specific setup of LSTM training may
have resulted in a particularly accurate model for relative motion estimation or
in a model that generalizes exceptionally well to the data distribution of the test
set, or a combination of both.

75

Chapter 9. Results on Multi-Person Data 9.3. Qualitative Results

Lastly, we can see in Table 9.5 that the transformer with person attention slightly
outperforms both RNNs. The performance gain is more apparent for long term
prediction and becomes most evident under MPJPE. Keep in mind that on
AMASS, transformers performed significantly worse than the GRUs. This boost
can be explained by the person attention module, which is also reinforced by
the fact that the transformer without person attention in Table 9.3 performed
worse than the best GRU on the validation data. We therefore conclude that
transformers with person attention perform best on the Kinect datasets.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

Zero Motion 27.8 44.1 93.7 88.3 0.801 0.725
Const. Velocity 49.9 115.7 88.4 71.9 0.691 0.505
LSTM 22.7 36.3 95.7 90.8 0.818 0.740
GRU 22.4 35.6 95.9 91.1 0.819 0.742
Transformer 22.5 35.6 95.7 90.8 0.820 0.744

Table 9.6.: Relative error metrics for the different methods.

9.3. Qualitative Evaluation

(a) Hugging after 0.4 s. (b) Hugging after 0.8 s. (c) Hugging after 1.0 s.

Figure 9.1.: Two people after hugging. The second person is not visualized.
Ground truth is red, transformer purple, GRU beige and LSTM cyan.

Again, we conclude the comparison with visual results. Figure 9.1 shows one
of two individuals hugging each other. The prediction interval contains a part of
the hugging and the process of releasing the other person, although the former is
not apparent from the images. We can clearly see that the transformer (purple)
predicts the most accurate global positions as it is significantly closer to the
ground truth (red). The LSTM (cyan) performs worst. All three methods predict

76

9.4. Summary Chapter 9. Results on Multi-Person Data

similar relative pose configurations, where each one is plausible.
The second person of the interaction is visualized in Figure 9.2. Here, we can
see that all three methods correctly predict how the person lowers the arms.
In contrast, only the GRU correctly predicts the step backwards but its global
location prediction is only slightly superior.

(a) Hugging after 0.4 s. (b) Hugging after 0.8 s. (c) Hugging after 1.0 s.

Figure 9.2.: Two people after hugging. This visualization shows the other person.
Ground truth is red, transformer purple, GRU beige and LSTM cyan.

9.4. Summary

Compared to Section 8.4, the three architectures lead to much closer performances
on the Kinect datasets. The most likely reason is that the Kinect data is easier
than AMASS, which can be seen in the significantly higher accuracy of each
method. Moreover, the performance between LSTM and GRU is now within a
range that we expected. Further tests are nevertheless required to understand
the performance difference on AMASS.
Again, the accuracy of the transformer was low compared to the RNNs. With
the help of our new person attention module, we were able to completely close
the gap. We can therefore conclude that multi-person motion forecasting should
indeed be investigated more closely, e.g., one might extend GRUs with person
attention, see also Section 10.2.

77

10
Conclusion

In the previous chapters, we have extensively shown how model size, regular-
ization, etc., affect our attention-based method and the adopted approach using
recurrent networks. Moreover, we have compared our methods with baseline
heuristics and literature, which demonstrated that the methods converge against
largely different solutions. Lastly, we will summarize our most important results
and formulate future questions that came up during our research.

10.1. Summary

Our main research question was how motion forecasting profits from modeling
multiple people jointly. We have seen that our transformer architecture, which
failed to compete on the single-person dataset AMASS, was able to perform on
par with the recurrent architectures on the enhanced multi-person dataset. The
ablation showed that the performance gain was most prominent in the absolute
sense, i.e., when modeling global motion, which matches our expectation because
it allows to spatially group interacting humans. Therefore, we conclude that mo-
tion forecasting definitely benefits from multi-person modeling.
We have also seen that it is hard to determine a best model. Our LSTM vari-
ant under-performed on the AMASS validation split and in an absolute sense,
but came closest to state of the art on the AMASS test split when global move-
ment was removed. On the other hand, the GRU excelled in modeling global
motion across datasets. We emphasize that this research question cannot be fully
answered in the scope of this work, e.g., Martinez et al. preferred a GRU for
relative modeling, which seems to contradict our results. Nevertheless, the GRU
architecture performed well in a wide variety of settings, so that we want to high-
light its versatility and recommend it as a good starting point, although we found
it to be quite unstable with respect to many hyperparameters like the model size
or the underlying pose representation.
Additionally, we want to reinforce our claim that frameworks should not discard

79

Chapter 10. Conclusion 10.2. Future Work

global motion during forecasting. We have seen that one of our models performs
close to state of the art despite being trained on a more difficult task. Further-
more, we observed great disparities in absolute and relative performance between
our models so that we conclude that motion prediction with global movement
components is far from trivial. Nevertheless, we argue that localization of hu-
mans and motion forecasting are inherently linked tasks.

10.2. Future Work

Lastly, let us discuss future directions for research based on the results we pre-
sented. Our suggestions can be summarized into three groups.
Firstly, we recommend to further analyze the result that was most surprising to
us. If GRUs are both absolutely and relatively better than LSTMs on our vali-
dation split, then why does the LSTM perform closest to state of the art? These
extreme variations in performance seem suspicious to us. An easy method to
investigate this question is to design multiple new training-validation splits and
check for each of these splits how LSTMs and GRUs perform. Additionally, one
should use different random seeds and average the performances.
Secondly, we suggest to investigate the accuracy of the transformer more closely.
We note that we spend significantly more time tuning the RNNs compared to
the transformer due to time constraints so that our results in that regard are not
yet set in stone. Some starting points based on our results are weight decay and
dropout, e.g., one could use different dropout probabilities for attention scores
and for other layers. Pre-training on an auxiliary task might improve results as
well. Most importantly, we recommend to investigate how our transformer per-
forms with sampling-based auto-regressive generation analogue to the GRU. We
argued that our formulation is faster but were not able to compare the accuracy
as that would require a custom attention implementation in order to cache old
queries, keys and values.
Finally, we observed that absolute and relative error are not always correlated.
This leads to the question whether these tasks should be separated more clearly.
A draft design might contain a recurrent network for relative forecasting and a
smaller transformer network with person attention for tracking global positions.
These two networks could then exchange intermediate states since we still argue
that both tasks inherently depend on each other.

80

A
Further Results on AMASS Dataset

This chapter is dedicated to provide tables on those hyperparameters with little
influence on performance or those which are redundant between the GRU tuning
and the transformer tuning.

A.1. GRU

First, let us consider the remaining hyperparameters in the GRU experiments.

A.1.1. Weight Decay

From Table A.1 and Table A.2, it becomes evident that increasing amounts of
weight decay do not really affect accuracy of the predictions. This is backed up
by the fact that no dropout is used, meaning that regularization does not seem
necessary for GRUs in motion forecasting.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w = 0 41.7 104.8 90.5 67.0 0.694 0.451
w = 10−3 41.6 104.7 90.5 67.0 0.694 0.450
w = 10−2 41.7 105.1 90.5 67.1 0.695 0.452

Table A.1.: Absolute error metrics for GRU with different weight decay coeffi-
cients w.

A.1.2. Absolute and Relative Loss

The balancing between absolute and relative pose loss, see Section 4.3.2, deter-
mines how important global tracking and accurate relative poses are compared

81

Appendix A. Further Results on AMASS Dataset A.1. GRU

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w = 0 36.1 75.0 91.9 78.2 0.736 0.568
w = 10−3 36.0 75.0 91.9 78.2 0.736 0.568
w = 10−2 36.1 75.2 91.9 78.2 0.736 0.569

Table A.2.: Relative error metrics for GRU with different weight decay coefficients
w.

to each other. Unsurprisingly, relative poses are not more accurately when the
absolute loss term is weighted highly (Table A.4). Vice versa, Table A.3 shows
that low values for α lead to bad tracking quality. A perfectly balanced value
between the two terms provides a considerable increase in modeling global motion
without hurting relative accuracy by too much. We therefore keep the loss terms
balanced.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

α = 0.1 46.4 113.8 89.0 64.6 0.668 0.428
α = 0.5 41.7 104.8 90.5 67.0 0.694 0.451
α = 0.9 41.7 104.0 90.5 67.1 0.694 0.451

Table A.3.: Absolute error metrics for GRU with different importance α of the
absolute loss term.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

α = 0.1 35.9 75.0 91.9 78.2 0.737 0.570
α = 0.5 36.1 75.0 91.9 78.2 0.736 0.568
α = 0.9 37.3 76.5 91.6 77.8 0.727 0.560

Table A.4.: Relative error metrics for GRU with different importance α of the
absolute loss term.

A.1.3. Weight Initialization

Glorot et al. [GB10] derived that network weights should be initialized to pre-
serve variance. Since the default PyTorch deviates from the recommendation, we
decided to compare the results. From Table A.5 and Table A.6, we can see that

82

A.1. GRU Appendix A. Further Results on AMASS Dataset

the PyTorch variant works better for our use case so that we keep the default
initialization active.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ Glorot 122.9 228.7 58.6 35.9 0.326 0.186
w/o Glorot 41.7 104.8 90.5 67.0 0.694 0.451

Table A.5.: Absolute error metrics for GRU with and without Glorot weight ini-
tialization.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ Glorot 82.9 121.8 75.5 62.6 0.501 0.393
w/o Glorot 36.1 75.0 91.9 78.2 0.736 0.568

Table A.6.: Relative error metrics for GRU with and without Glorot weight ini-
tialization.

A.1.4. Learning Rate

The learning rate is generally considered to be extremely important. Table A.7
highlights that the default learning rate of Adam [KB15] works best in our case.
Note that Adam internally rescales the gradients anyways, which may be a reason
why 0.001 seems to be a good choice when using Adam. All three networks utilize
the same exponential learning rate schedule with an additional decay by factor
ten shortly before the end of training.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

l = 2× 10−3 47.4 113.8 88.4 64.2 0.662 0.425
l = 5× 10−4 41.7 104.8 90.5 67.0 0.694 0.451
l = 1× 10−3 97.8 182.1 67.9 46.2 0.444 0.283

Table A.7.: Absolute error metrics for GRU with different learning rates l.

A.1.5. Length of Input

Methods like [MBR17,MLS20] often feed 2 s of conditioning input to the network
but never motivate why. Table A.9 and Table A.10 demonstrate that it does not

83

Appendix A. Further Results on AMASS Dataset A.1. GRU

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

l = 2× 10−3 39.3 78.9 90.7 76.8 0.719 0.554
l = 5× 10−4 36.1 75.0 91.9 78.2 0.736 0.568
l = 1× 10−3 69.3 106.6 79.3 67.4 0.588 0.468

Table A.8.: Relative error metrics for GRU with different learning rates l.

really matter if 1 s is used instead. However, using 3 s of input hurts the relative
pose quality which means that long term dependencies are not relevant to the
task of motion prediction. We will adopt the convention and use 2 s because the
sequence lengths influences the amount of test data you get from a long video.
Therefore, a consistent sequence length increases comparability of performance
metrics.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

s=1 41.5 105.0 90.5 67.0 0.696 0.454
s=2 41.7 104.8 90.5 67.0 0.694 0.451
s=3 43.5 106.6 89.9 66.4 0.684 0.443

Table A.9.: Absolute error metrics for GRU with different input sequence lengths
s in seconds.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

s=1 35.8 75.6 91.9 78.0 0.738 0.569
s=2 36.1 75.0 91.9 78.2 0.736 0.568
s=3 37.5 76.3 91.5 77.7 0.728 0.561

Table A.10.: Relative error metrics for GRU with different input sequence lengths
s in seconds.

A.1.6. Output Length Schedule

In Section 4.2, we described that gradually increasing the target sequence length
every ith epoch by one frame greatly helps the performance. From Table A.11
and Table A.12, we can see that both tracking and relative pose quality increase
with slower schedules, i.e., schedules which train longer on each target length.
The tendency stagnates around increasing the length every fourth epoch. Note

84

A.2. Transformer Appendix A. Further Results on AMASS Dataset

that short term predictions benefit more from i = 4, but long term prediction is
better with i = 3. This is not too surprising considering that the learning rate
decreases strictly monotonously so that a slower output length schedule has less
time to adapt to long term predictions.
The tables do not show the performance without any length schedule but prelim-
inary tests indicated a performance significantly worse than that for i = 2.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

i = 2 43.3 106.3 89.9 66.7 0.685 0.446
i = 3 41.7 104.8 90.5 67.0 0.694 0.451
i = 4 41.2 104.7 90.6 66.9 0.697 0.451

Table A.11.: Absolute error metrics for GRU with different number of epochs i
until the next output length increment.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

i = 2 37.2 76.0 91.6 77.9 0.729 0.565
i = 3 36.1 75.0 91.9 78.2 0.736 0.568
i = 4 35.8 75.1 92.0 78.1 0.738 0.568

Table A.12.: Relative error metrics for GRU with different number of epochs i
until the next output length increment.

A.1.7. Sample Heuristic

The last ablation concerns a heuristic mentioned in Section 6.3.2. We argued
that the training phase should skip misleading motion samples where noticeable
movement only occurred at the end if at all. However, Table A.13 and Table A.14
demonstrate that no advantage is gained from this filtering heuristic. For the sake
of consistency, we leave the filtering heuristic enabled in later tests but discourage
future research from using it since no evidence indicates its helpfulness.

A.2. Transformer

Analogue to the GRU architecture, we also evaluated the common hyperparame-
ters for the transformer. Furthermore, some hyperparameters like the number of
attention heads are analyzed as well.

85

Appendix A. Further Results on AMASS Dataset A.2. Transformer

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ heuristic 41.7 104.8 90.5 67.0 0.694 0.451
w/o heuristic 41.9 104.9 90.4 67.0 0.693 0.450

Table A.13.: Absolute error metrics for GRU with and without filtering idle se-
quences.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ heuristic 36.1 75.0 91.9 78.2 0.736 0.568
w/o heuristic 36.4 75.3 91.8 78.1 0.734 0.568

Table A.14.: Relative error metrics for GRU with and without filtering idle se-
quences.

A.2.1. Absolute and Relative Loss

As we can see in Table A.15 and Table A.16, the importance of absolute and
relative loss term show a similar behavior to that for the GRU architecture. As
a consequence, we keep a perfect balance between absolute and relative loss.
Training results are not reproducible with newer code versions, because the initial
order of the training data depended on the hardware. This experiment still uses
a dropout probability of 10 % and has weight decay disabled.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

α = 0.1 52.4 122.4 86.1 61.9 0.639 0.411
α = 0.5 50.6 117.5 86.8 63.2 0.649 0.422
α = 0.9 50.9 117.3 86.7 63.2 0.648 0.422

Table A.15.: Absolute error metrics for transformer with different importance α
of the absolute loss term.

A.2.2. Number of Attention Heads

In multi-head attention, the number of heads defines under how many aspects
two token can be similar or relevant to each other. A typical choice, e.g., in
[VSP+17,ACKH20], is to use eight heads. From Table A.17, we can see that four
heads are most likely not enough to accurately capture temporal dependencies.
The choice between 8 and 16 heads is rather unclear as the increase in performance

86

A.2. Transformer Appendix A. Further Results on AMASS Dataset

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

α = 0.1 40.3 80.8 90.2 76.0 0.717 0.552
α = 0.5 41.8 82.7 89.6 75.4 0.709 0.546
α = 0.9 43.2 84.7 89.1 74.7 0.701 0.539

Table A.16.: Relative error metrics for transformer with different importance α
of the absolute loss term.

of 16 heads could be caused by chance. We therefore keep using 8 heads to have
more comparability with previous results.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

4 heads 48.2 114.0 87.8 64.1 0.662 0.430
8 heads 47.6 112.9 88.0 64.3 0.664 0.432
16 heads 47.3 112.4 88.2 64.5 0.666 0.433

Table A.17.: Absolute error metrics for transformer with different numbers of
attention heads.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

4 heads 40.1 80.8 90.2 76.1 0.719 0.554
8 heads 39.8 80.3 90.4 76.2 0.720 0.554
16 heads 39.4 79.5 90.5 76.5 0.722 0.557

Table A.18.: Relative error metrics for transformer with different numbers of at-
tention heads.

A.2.3. Batch Size

With a default batch size of 32, our transformer has a significantly smaller batch
size than the GRU. However, Table A.19 and Table A.20 do not highlight a strong
influence of the batch size on the performance, which is unlike Section 8.2.5, where
a batch size of 64 did not work at all. Note that the comparison does not include
the GRU batch size of 128 because tests in an early stage showed a decrease
in performance. These results should probably be reproduced with the current
setup.

87

Appendix A. Further Results on AMASS Dataset A.2. Transformer

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

b = 16 48.0 113.3 87.8 64.2 0.662 0.431
b = 32 47.6 112.9 88.0 64.3 0.664 0.432
b = 64 47.8 113.7 87.9 64.4 0.664 0.433

Table A.19.: Absolute error metrics for transformer with different batch sizes b.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

b = 16 40.4 80.8 90.1 76.1 0.717 0.553
b = 32 39.8 80.3 90.4 76.2 0.720 0.554
b = 64 39.5 80.0 90.5 76.3 0.722 0.556

Table A.20.: Relative error metrics for transformer with different batch sizes b.

A.2.4. Learning Rate

Table A.21 clearly shows that a small learning rate of 0.0005 is as good as the
default learning rate of Adam. Similar to Appendix A.1.4, a higher learning rate
does not lead to stable convergence. These results are reinforced by Table A.22.
We therefore keep the default learning rate of 0.001.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

l = 5× 10−4 47.3 112.6 88.1 64.5 0.666 0.433
l = 1× 10−3 47.6 112.9 88.0 64.3 0.664 0.432
l = 2× 10−3 136.7 282.5 58.1 40.5 0.404 0.273

Table A.21.: Absolute error metrics for transformer with different learning rates
l.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

l = 2× 10−3 39.5 80.1 90.5 76.3 0.722 0.555
l = 5× 10−4 39.8 80.3 90.4 76.2 0.720 0.554
l = 1× 10−3 77.0 125.3 77.3 64.1 0.581 0.455

Table A.22.: Relative error metrics for transformer with different learning rates
l.

88

A.2. Transformer Appendix A. Further Results on AMASS Dataset

A.2.5. Loss Functions

The results for different loss functions in Table A.23 and Table A.24 are basically
identical to those for the GRU in Section 8.2.6. We will therefore keep using the
Manhattan-based loss.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

L1 loss 47.6 112.9 88.0 64.3 0.664 0.432
L2 loss 54.1 119.9 85.9 60.8 0.614 0.384

Table A.23.: Absolute error metrics for transformer with different loss functions.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

L1 loss 39.8 80.3 90.4 76.2 0.720 0.554
L2 loss 44.1 84.6 88.9 74.1 0.687 0.523

Table A.24.: Relative error metrics for transformer with different loss functions.

A.2.6. Length of Input

Similar to the results in Appendix A.1.5, longer inputs rather seem to hurt the
performance than help it, see Table A.25 and Table A.26. We therefore stick to
the convention of using 2 s of input poses prominent in literature.
An interesting difference to Appendix A.1.5 is that longer input sequences do not
obstruct the transformer as much as the GRU. This is probably caused by the
fact that attention works for arbitrarily distant items (within memory constraints)
whereas hidden state propagation needs to balance between short and long term
dependencies.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

s = 1 47.3 113.2 88.0 64.6 0.668 0.437
s = 2 47.6 112.9 88.0 64.3 0.664 0.432
s = 3 47.6 113.4 88.0 64.1 0.664 0.430

Table A.25.: Absolute error metrics for transformer with different input sequence
lengths s in seconds.

89

Appendix A. Further Results on AMASS Dataset A.2. Transformer

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

s = 1 39.4 79.9 90.5 76.4 0.724 0.559
s = 2 39.8 80.3 90.4 76.2 0.720 0.554
s = 3 39.7 80.6 90.4 76.1 0.721 0.553

Table A.26.: Relative error metrics for transformer with different input sequence
lengths s in seconds.

A.2.7. Output Length Schedule

The tables in Table A.27 and Table A.28 do not indicate a clear result on what
output length schedules work well for transformers. Unlike the schedules for
GRUs, they do not seem to have a huge impact on the performance which is
again probably related to how attention works in comparison to hidden states.
We therefore conclude that the output length schedule is largely irrelevant to the
performance of the transformer.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

i = 2 48.0 112.5 87.8 64.5 0.663 0.432
i = 3 47.6 112.9 88.0 64.3 0.664 0.432
i = 4 47.8 115.2 88.0 63.8 0.664 0.429

Table A.27.: Absolute error metrics for transformer with different number of
epochs i until the next output length increment.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

i = 2 40.0 80.0 90.3 76.4 0.719 0.555
i = 3 39.8 80.3 90.4 76.2 0.720 0.554
i = 4 39.6 80.9 90.5 76.0 0.722 0.553

Table A.28.: Relative error metrics for transformer with different number of
epochs i until the next output length increment.

A.2.8. Data Normalization

The results for feature-wise data normalization can be found in Table A.29 and
Table A.30. Similar to GRUs, transformers seem to perform better when each

90

A.2. Transformer Appendix A. Further Results on AMASS Dataset

feature is centered and has unit-variance. However, the impact of normalized
features is more minuscule for transformers. This is almost certainly caused
by the large number of layer normalization operations in a transformer, which
already ensure that the set of features are normalized.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ normalize 47.6 112.9 88.0 64.3 0.664 0.432
w/o normalize 49.7 115.8 87.2 63.3 0.655 0.424

Table A.29.: Absolute error metrics for transformer with and without normaliza-
tion.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ normalize 39.8 80.3 90.4 76.2 0.720 0.554
w/o normalize 42.0 83.3 89.6 75.2 0.710 0.544

Table A.30.: Relative error metrics for transformer with and without normaliza-
tion.

A.2.9. Sample Heuristic

The results for filtering misleading motions can be found in Table A.31 and Ta-
ble A.32. They are completely analogue to those for GRUs in Appendix A.1.7,
which is to say that the heuristic is not able to proof its usefulness. Again,
we keep it activated for higher consistency between all experiments but do not
recommend it in new experimental setups.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ heuristic 47.6 112.9 88.0 64.3 0.664 0.432
w/o heuristic 47.9 113.7 87.8 64.2 0.663 0.431

Table A.31.: Absolute error metrics for transformer with and without filtering
idle sequences.

91

Appendix A. Further Results on AMASS Dataset A.2. Transformer

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ heuristic 39.8 80.3 90.4 76.2 0.720 0.554
w/o heuristic 39.8 80.3 90.3 76.2 0.720 0.555

Table A.32.: Relative error metrics for transformer with and without filtering idle
sequences.

A.2.10. Temporal Masking

As mentioned before, most transformers apply masked self-attention for sequence
generation because the auto-regressive connection implies that future inputs re-
veal the solution at the current step during training. Consequently, masking is
used to prevent the network from cheating by accessing information it will not
have during inference. However, in our training, future poses in the input are
replaced a simple heuristic which can also be applied in inference. Consequently,
the masking is not necessary. Since it restricts information to only flow forward
in time, it is not surprising that applying temporal masking in our case impedes
the prediction, which can be seen in Table A.33 and Table A.34.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ mask 51.2 117.4 86.8 63.4 0.643 0.421
w/o mask 47.6 112.9 88.0 64.3 0.664 0.432

Table A.33.: Absolute error metrics for transformer with and without temporal
masking.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ mask 41.6 81.6 89.8 75.8 0.707 0.548
w/o mask 39.8 80.3 90.4 76.2 0.720 0.554

Table A.34.: Relative error metrics for transformer with and without temporal
masking.

A.2.11. Scaling Features

In the original transformer [VSP+17], the word embedding is scaled up by a
constant factor before adding the positional encoding, however, Vaswani et al.

92

A.2. Transformer Appendix A. Further Results on AMASS Dataset

do not provide any motivation. Unlike a word embedding which simply clusters
“similar” words, joint locations have a clear interpretable meaning and scale.
Table A.36 demonstrates that it is best not to interfere with that scale. This is
even more crucial for modeling global positions, see Table A.35.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ scaling 51.9 118.9 86.5 62.9 0.643 0.418
w/o scaling 47.6 112.9 88.0 64.3 0.664 0.432

Table A.35.: Absolute error metrics for transformer with and without scaling up
the embedding vector.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

w/ scaling 42.0 82.5 89.6 75.5 0.708 0.546
w/o scaling 39.8 80.3 90.4 76.2 0.720 0.554

Table A.36.: Relative error metrics for transformer with and without scaling up
the embedding vector.

93

B
Further Results on Multi-Person Data

Most of the hyperparameters were tuned on AMASS validation data, but some
parameters might be reconsidered on a different dataset. In the following, these
parameters are analyzed for transformers and GRUs. Some of the tuning results
for transformers can also be found in Section 9.1.

B.1. Transformer

Although most tuning results for transformers are presented in Section 9.1, the
following hyperparameter showed little influence and is therefore presented in this
appendix.

B.1.1. Filtering Threshold

As mentioned in Section 6.4.2 and Section 7.2.2, some Kinect sequences con-
tained too many consecutive frames with poor quality which resulted in unreal-
istic discontinuities. We filter those sequences for the test split, but maybe those
sequences should still be included in the training data. Table B.1 show that a
lower threshold has a bad effect on the performance. This is obvious since the
network will lack robustness against these discontinuities if it never encounters
them during training. However, we can also see in Table B.2 that a higher thresh-
old does not hinder the network, which suggests that the transformer is robust
against such discontinuities. Interestingly enough, the same holds for GRUs, i.e.,
the discontinuity does not corrupt the hidden state (compare Appendix B). In
the following experiments, we will keep the threshold at 0.4 m.

B.2. GRU

Analogously to the transformer fine-adaption on Kinect data, we also performed
the same tests for our GRU.

95

Appendix B. Further Results on Multi-Person Data B.2. GRU

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

t = 0.2 38.6 56.3 91.2 84.0 0.701 0.615
t = 0.4 37.5 54.4 91.6 84.5 0.704 0.619
t = 0.6 37.8 55.1 91.5 84.3 0.702 0.615

Table B.1.: Absolute error metrics for transformer with different filter thresholds
t during training.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

t = 0.2 27.5 39.9 94.2 89.6 0.789 0.719
t = 0.4 26.6 38.5 94.4 90.0 0.792 0.723
t = 0.6 26.7 38.9 94.4 89.8 0.791 0.721

Table B.2.: Relative error metrics for transformer with different filter thresholds
t during training.

B.2.1. Filtering Threshold

As for transformers in Appendix B.1.1, the filtering threshold for discontinuities
during training has little impact on the performance of GRUs, see Table B.3.
Note in Table B.4 that large discontinuities do not corrupt the hidden state of
the GRU.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

t = 0.2 39.5 59.5 90.9 83.6 0.696 0.611
t = 0.4 38.4 57.3 91.4 84.2 0.700 0.615
t = 0.6 38.4 57.7 91.3 84.0 0.699 0.613

Table B.3.: Absolute error metrics for GRU with different filter thresholds t dur-
ing training.

B.2.2. Dimension of Hidden State

As in Section 9.1.1, the hidden state dimension can be chosen smaller for the
Kinect datasets, see Table B.5 and Table B.6. In Section 8.2.3, a hidden state of
512 neurons was too small to accurately capture the complexity of AMASS.

96

B.2. GRU Appendix B. Further Results on Multi-Person Data

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

t = 0.2 27.3 39.4 94.4 90.1 0.789 0.720
t = 0.4 26.4 38.1 94.6 90.4 0.791 0.724
t = 0.6 26.4 38.1 94.7 90.4 0.791 0.724

Table B.4.: Relative error metrics for GRU with different filter thresholds t during
training.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

h = 512 38.9 58.8 91.0 83.7 0.698 0.611
h = 1024 38.4 57.3 91.4 84.2 0.700 0.615

Table B.5.: Absolute error metrics for GRU with different hidden state dimen-
sions h.

MPJPE PCK 10 cm PCK AUC

milliseconds 400 1000 400 1000 400 1000

h = 512 26.8 38.8 94.5 90.1 0.790 0.721
h = 1024 26.4 38.1 94.6 90.4 0.791 0.724

Table B.6.: Relative error metrics for GRU with different hidden state dimensions
h.

97

Bibliography

[AAR+20] Vida Adeli, Ehsan Adeli, Ian Reid, Juan Carlos Niebles, and Hamid
Rezatofighi. Socially and contextually aware human motion and pose
forecasting. IEEE Robotics and Automation Letters, 5(4):6033–40,
2020.

[ACKH20] Emre Aksan, Peng Cao, Manuel Kaufmann, and Otmar Hilliges.
A spatio-temporal transformer for 3D human motion prediction.
arXiv:2004.08692v2, 2020.

[AGR+16] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre
Robicquet, Li Fei-Fei, and Silvio Savarese. Social LSTM: Human
trajectory prediction in crowded spaces. In IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[AKH19] Emre Aksan, Manuel Kaufmann, and Otmar Hilliges. Structured
prediction helps 3D human motion modelling. In International Con-
ference on Computer Vision, 2019.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag, 1 edition, 2006.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
normalization. arXiv:1607.06450v1, 2016.

[CGM+20] Zhe Cao, Hang Gao, Karttikeya Mangalam, Qizhi Cai, Minh Vo,
and Jitendra Malik. Long-term human motion prediction with scene
context. In European Conference on Computer Vision, 2020.

[CMS+20] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko. End-to-end object de-
tection with transformers. In European Conference on Computer
Vision, 2020.

99

Bibliography Bibliography

[Cro16] David F. Crouse. On implementing 2D rectangular assignment al-
gorithms. IEEE Transactions on Aerospace and Electronic Systems,
52(4):1679–96, 2016.

[CSWS17] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime
multi-person 2D pose estimation using part affinity fields. In IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[CvMG+14] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using RNN encoder-decoder for sta-
tistical machine translation. In Empirical Methods in Natural Lan-
guage Processing, 2014.

[CZ17] João Carreira and Andrew Zisserman. Quo vadis, action recognition?
A new model and the Kinetics dataset. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[DVJR19] Xiaoxiao Du, Ram Vasudevan, and Matthew Johnson-Roberson.
Bio-LSTM: A biomechanically inspired recurrent neural network for
3-D pedestrian pose and gait prediction. IEEE Robotics and Au-
tomation Letters, 4(2):1501–8, 2019.

[FB81] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–95,
1981.

[FD87] Da-Fei Feng and Russel F. Doolittle. Progressive sequence alignment
as a prerequisite to correct phylogenetic trees. Journal of Molecular
Evolution, 25(4):351–60, 1987.

[FLFM15] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra
Malik. Recurrent network models for human dynamics. In Interna-
tional Conference on Computer Vision, 2015.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In International Confer-
ence on Artificial Intelligence and Statistics, 2010.

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. MIT Press, 1 edition, 2016.

[GBXAP21] Wen Guo, Xiaoyu Bie, and Francesc Moreno-Noguer Xavier
Alameda-Pineda. Multi-person extreme motion prediction.
arXiv:2105.08825v3, 2021.

100

Bibliography Bibliography

[GSAH17] Partha Ghosh, Jie Song, Emre Aksan, and Otmar Hilliges. Learning
human motion models for long-term predictions. In International
Conference on 3D Vision, 2017.

[HGM19] Alejandro Hernandez, Jürgen Gall, and Francesc Moreno. Human
motion prediction via spatio-temporal inpainting. In International
Conference on Computer Vision, 2019.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–80, 1997.

[HZ03] Richard Hartley and Andrew Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, 2 edition, 2003.

[IPOS14] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchis-
escu. Human3.6M: Large scale datasets and predictive methods for
3D human sensing in natural environments. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(7):1325–39, 2014.

[JLT+15] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain
Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser Sheikh.
Panoptic Studio: A massively multiview system for social motion
capture. In International Conference on Computer Vision, 2015.

[Kab78] Wolfgang Kabsch. A discussion of the solution for the best rota-
tion to relate two sets of vectors. Acta Crystallographica Section A,
34(5):827–8, 1978.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In International Conference on Learning Representa-
tions, 2015.

[KBM+20] Jogendra Nath Kundu, Himanshu Buckchash, Priyanka Mandikal,
Rahul M V, Anirudh Jamkhandi, and R. Venkatesh Babu. Cross-
conditioned recurrent networks for long-term synthesis of inter-
person human motion interactions. In IEEE Winter Conference on
Applications of Computer Vision, 2020.

[LH19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regular-
ization. In International Conference on Learning Representations,
2019.

[LHL+17] Chunhui Liu, Yueyu Hu, Yanghao Li, Sijie Song, and Jiaying Liu.
PKU-MMD: A large scale benchmark for skeleton-based human ac-
tion understanding. In Workshop on Visual Analysis in Smart and
Connected Communities, 2017.

101

Bibliography Bibliography

[LMR+15] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-
Moll, and Michael J. Black. SMPL: A skinned multi-person linear
model. ACM Transactions on Graphics, 34(6):248:1–248:16, 2015.

[LSP+19] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu
Duan, and Alex C. Kot. NTU RGB+D 120: A large-scale bench-
mark for 3D human activity understanding. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(10):2684–701, 2019.

[LWJ+19] Zhenguang Liu, Shuang Wu, Shuyuan Jin, Qi Liu, Shijian Lu, Roger
Zimmermann, and Li Cheng. Towards natural and accurate future
motion prediction of humans and animals. In IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[LYRK21] Ruilong Li, Shan Yang, David A. Ross, and Angjoo Kanazawa.
AI choreographer: Music conditioned 3D dance generation with
AIST++. In International Conference on Computer Vision, 2021.

[MBR17] Julieta Martinez, Michael J. Black, and Javier Romero. On human
motion prediction using recurrent neural networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2017.

[MGT+19] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard
Pons-Moll, and Michael J. Black. AMASS: Archive of motion cap-
ture as surface shapes. In International Conference on Computer
Vision, 2019.

[MKLTF21] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixé, and
Christoph Feichtenhofer. TrackFormer: Multi-object tracking with
transformers. arXiv:2101.02702v2, 2021.

[MLS20] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. History repeats
itself: Human motion prediction via motion attention. In European
Conference on Computer Vision, 2020.

[MLSL19] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li.
Learning trajectory dependencies for human motion prediction. In
International Conference on Computer Vision, 2019.

[MRC+17] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr
Sotnychenko, Weipeng Xu, and Christian Theobalt. Monocular 3D
human pose estimation in the wild using improved CNN supervision.
In International Conference on 3D Vision, 2017.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward

102

Bibliography Bibliography

Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. PyTorch: An imperative style, high-performance deep learning
library. In Neural Information Processing Systems, 2019.

[Sár21] István Sárándi. Personal communication, 2021.

[SC04] Stan Salvador and Philip Chan. FastDTW: Toward accurate dy-
namic time warping in linear time and space. In KDD workshop on
mining temporal and sequential data, 2004.

[SLAL21] István Sárándi, Timm Linder, Kai Oliver Arras, and Bastian Leibe.
MeTRAbs: Metric-scale truncation-robust heatmaps for absolute 3D
human pose estimation. IEEE Transactions on Biometrics, Behav-
ior, and Identity Science, 3(1):16–30, 2021.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine
Learning: From Theory to Algorithms. Cambridge University Press,
1 edition, 2014.

[SSVO10] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Ori-
olo. Robotics: Modelling, Planning and Control. Springer-Verlag, 1
edition, 2010.

[VJ01] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In IEEE Conference on Computer Vision
and Pattern Recognition, 2001.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. At-
tention is all you need. In Neural Information Processing Systems,
2017.

[VZ00] Yehuda Vardi and Cun-Hui Zhang. The multivariate L1-median
and associated data depth. Proceedings of the National Academy of
Sciences, 97(4):1423–6, 2000.

[WB18] Nicolai Wojke and Alex Bewley. Deep cosine metric learning for
person re-identification. In IEEE Winter Conference on Applications
of Computer Vision, 2018.

[WK20] Renjie Wu and Eamonn J. Keogh. FastDTW is approximate and
generally slower than the algorithm it approximates. IEEE Trans-
actions on Knowledge and Data Engineering, 2020. Early Access.

103

Bibliography Bibliography

[ZBS+16] Liang Zheng, Zhi Bie, Yifan Sun, Jingdong Wang, Chi Su, Shengjin
Wang, and Qi Tian. MARS: A video benchmark for large-scale per-
son re-identification. In European Conference on Computer Vision,
2016.

104

	Introduction
	Applications
	Motivation
	Problem Definition
	Outline

	Fundamentals
	3D Modeling
	Distance Functions
	Rotations
	Human Poses

	Deep Learning
	Multi-Layer Perceptrons
	Training
	Recurrent Neural Networks
	Attention Mechanism
	Common Techniques

	Algorithms for Preprocessing
	Linear Assignment
	Sequence Alignment
	Estimating Rotations
	Geometric Median

	Related Work
	Related Tasks
	Modeling Humans
	Sequence Generation

	Motion Forecasting

	Forecasting with RNNs
	Architecture
	Towards Long Predictions
	Training
	Batch Packing
	Loss Function
	Implementation Details

	Forecasting with Transformers
	Architecture
	Usage of Attention
	Sequence Generation
	Training
	Padding
	Implementation Details

	Motion Datasets and Processing
	Motion Datasets
	Pose Representation
	From Video to Sample
	Padding Short Videos
	Trimming Long Videos

	Preprocessing
	Data Normalization
	Enhancing Multi-Person Data
	AMASS Dataset

	Data Augmentation

	Evaluation
	Metrics
	Definitions
	Differences

	Evaluation Protocols
	Comparison to Literature
	Differences

	Results on AMASS Dataset
	LSTM Tuning
	Number of Layers
	LSTM and GRU

	GRU Tuning
	Number of Layers
	Dropout
	Dimension of Hidden State
	Pose Representation
	Batch Size
	Loss Function
	Data Normalization
	Summary of RNN Tuning

	Transformer Tuning
	Number of Layers
	Dropout
	Weight Decay
	Dimension of Embedding Space
	Pose Representation
	Learning Rate Warm-Up
	Summary of Transformer Tuning

	Comparison
	Qualitative Results
	Final Summary

	Results on Multi-Person Data
	Transformer Tuning
	Dimension of Embedding Space
	Ablation of Person Attention

	Comparison
	Qualitative Results
	Summary

	Conclusion
	Summary
	Future Work

	Further Results on AMASS Dataset
	GRU
	Weight Decay
	Absolute and Relative Loss
	Weight Initialization
	Learning Rate
	Length of Input
	Output Length Schedule
	Sample Heuristic

	Transformer
	Absolute and Relative Loss
	Number of Attention Heads
	Batch Size
	Learning Rate
	Loss Functions
	Length of Input
	Output Length Schedule
	Data Normalization
	Sample Heuristic
	Temporal Masking
	Scaling Features

	Further Results on Multi-Person Data
	Transformer
	Filtering Threshold

	GRU
	Filtering Threshold
	Dimension of Hidden State

	Bibliography

