
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Informatik 8 (Computer Vision)
Fakultät für Mathematik, Informatik und Naturwissenschaften

Prof. Dr. Bastian Leibe

Master Thesis

Neighborhood Pooling in Graph Neural
Networks for 3D and 4D Semantic

Segmentation

vorgelegt von

Kushal Sanjay Sharma
Matrikelnummer: 384295

2020-01-31

Erstgutachter: Prof. Dr. Bastian Leibe
Zweitgutachter: Prof. Dr. rer. nat Benjamin Berkels

Eidesstattliche Versicherung

Kushal Sanjay Sharma 384295
Name Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem
Titel

Neighborhood Pooling in Graph Neural Networks for 3D and
4D Semantic Segmentation

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit
zusätzlich auf einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche
und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in gleicher
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Aachen, 2020-01-31
Ort, Datum Unterschrift

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zustständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften
des § 158 Abs. 2 und 3 gelten dementsprechend.

Die vorstehende Belehrung habe ich zur Kentnis genommen:

Aachen, 2020-01-31
Ort, Datum Unterschrift

iii

Abstract

In this thesis I explore how to leverage spatial geometry of point-sets to improve
performance of graph neural networks using nearest neighbor graphs. I demon-
strate how the proposed approach is able to beat previous graph-based approaches
on S3DIS dataset for the task of 3D semantic segmentation. I then generalize
the proposed approach so it can also leverage temporal information in a series of
point-sets such sequential outdoor laser-scans obtained by a LiDAR scanner for
the task of semantic segmentation. This type of segmentation is best classified
as 4D semantic segmentation and I demonstrate how my proposed generalization
to 4D is able to improve performance on 3D baseline models for this task.

iv

Acknowledgements

I would like to thank my supervisor Francis Engelmann for supervision and feed-
back through the thesis and also for offering me a student job that eventually
led to this work. I would like to thank Prof. Bastian Leibe for providing the
opportunity to work on this topic at the chair. I would like to thank Mark Weber
for coding advice. I would like to thank my mom and dad who pushed me to
pursue a Masters degree in the first place. And lastly, thank you Kilkenny for
not hanging on me.

v

Contents

1 Introduction 1
1.1 Contributions . 1
1.2 Overview . 2

2 Background 3
2.1 Fully Connected Neural Networks 3
2.2 Convolutional Neural Networks 4
2.3 Graph Convolutional Neural Networks 5
2.4 Loss functions . 6
2.5 Back-propagation . 7
2.6 Optimizers . 8

3 Related Work 11
3.1 PointNet . 13
3.2 SplatNet/OctNet . 14
3.3 Monte-Carlo Convolutions . 17
3.4 Tangent Convolution and surface based methods 19
3.5 Kernel Point Convolutions . 21
3.6 Sparse Convolutions . 24
3.7 Graph Based Methods . 26

4 Method 33
4.1 3D semantic segmentation . 33

4.1.1 Grid Pooling . 34
4.1.2 Grid Un-pooling . 35
4.1.3 Edge Convolution Layer 35

4.2 4D semantic segmentation . 38
4.2.1 Temporal integration layer 38

4.3 Memory complexity . 39

5 Experiments 41
5.1 3D semantic segmentation . 41
5.2 4D semantic segmentation . 47

5.2.1 Dataset for 4D . 47
5.2.2 Model and Training . 49

vii

Contents Contents

6 Conclusion 55

Bibliography 57

viii

1
Introduction

Deep learning has led to a paradigm shift in the field of computer vision. After the
success of AlexNet [KSH12] in 2012 ILSVRC challenge, deep learning has been
successfully applied to several tasks in 2D computer vision such as image classi-
fication, object detection and semantic segmentation. Increasing computational
power and availability of easy-to-use frameworks such as PyTorch [PGM+19] and
TensorFlow [AAB+15] have further helped accelerate the adoption of deep learn-
ing. 3D computer vision is an important subfield of computer vision where the
aim is to understand 3D data such as LiDAR and Radar scans. Understanding
3D data is particularly important for self-driving cars since a LiDAR scanner is
one of the sensors in most self-driving cars. In this thesis, I focus on the task
of 3D semantic segmentation on indoor and outdoor scenes. Semantic segmen-
tation is the task of assigning meaningful labels to each point in an input point
set. The set of labels used is application dependent. For example, the set of
labels for indoor semantic segmentation will include chair, table, floor, ceiling etc
whereas for self-driving cars this set will include categories such as pedestrians,
small vehicles, cars, road, sidewalk and so on. In the context of autonomous
cars, semantic segmentation is best classified as 4D semantic segmentation since
it involves performing semantic segmentation on a sequence of laser scans and
leveraging temporal information. In this thesis, I propose a generalization of my
approach to 3D semantic segmentation that is also applicable to 4D.

1.1 Contributions

First, I will first give an overview of deep learning in the context of 3D vision
and the challenges posed. Then I will review the current deep learning methods
for 3D semantic segmentation. Then I will propose an approach to 3D semantic
segmentation using graph neural networks which allows us to leverage progress
made in 2D vision and generalize it to 3D. I demonstrate how the proposed
method is competitive with other methods in this direction on both computational

1

Chapter 1. Introduction 1.2. Overview

time and performance on indoor 3D data. Then I propose a further generalization
of my approach applicable to 4D data and present the results on outdoor LiDAR
scans on a newly released dataset.

1.2 Overview

In Chapter 2, I present an quick overview of deep learning with an emphasis on
the problem of applying deep learning to 3D data. To understand these concepts
and challenges is a pre-requisite for understanding the necessity of designing new
algorithms for 3D data and also the methods outlined in this thesis.

In Chapter 3, I review the methods that have been proposed for the challenge
of 3D semantic segmentation. In this chapter, I also present a broad classification
of 3D deep learning methods and specify the direction I will be taking and my
motivation for doing so.

In Chapter 4, I present a detailed explanation of my proposed method. In this
chapter, I show how my method leverages existing work and I generalize it to 3D
and 4D.

In Chapter 5, I present a quantitative and qualitative overview of the results
obtained from my experimentation. I examine the performance of the proposed
method on 3D data first and then move to 4D. Chapter 6 concludes this thesis
and outlines further directions for future work that could further boost inference
speed and performance.

2

2
Background

In this section I will introduce the basics of deep learning. I will go over the
fundamental operations that are used to make deep neural networks as used in
2D vision and explain graph neural networks. One of the first architectures to
be applied successfully in computer vision was LeNet [LBB+98] which used a
convolutional architecture. Convolutional Neural Networks (CNNs) saw heavy
use in the 90s but then fell out of favour with the introduction of support vector
machines. The core method used to train deep neural networks is back propaga-
tion. Interest in deep learning was revived when AlexNet [KSH12] won the 2012
ILSVRC contest with a huge margin. One of the key contributions of their work
was using GPUs for speeding up computation. With increasing computational
power and availability of developer-friendly deep learning framework such as Ten-
sorFlow [AAB+15] and PyTorch [PGM+19], neural networks have now become
one of the key parts of several computer vision algorithms.

2.1 Fully Connected Neural Networks

The simplest type of neural network is a single layer fully connected network
which can mathematically be expressed as follows

zi+1 = g
(
W · zi + b

)
(2.1)

where zi ∈ Rm is the input, zi+1 ∈ Rn is the output, W ∈ Rnxm is the weight,
b ∈ Rn is the bias and g is some non-linearity applied to the input after a doing
a linear transformation. This type of network is called as such because every
component in the output zi+1 depends upon every component of the input zi. The
earliest idea of a fully connected network could be traced to the perceptron [Ros58]
by Rosenblatt. This network has a single layer and used a step-function as the
non-linearity.

f (x) =

{
1, if w · x + b ≥ 0

−1, otherwise
(2.2)

3

Chapter 2. Background 2.2. Convolutional Neural Networks

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Sigmoid
Sigmoid Gradient

(a) Behaviour of the sig-
moid function. No-
tice that the gradi-
ent reaches a maximum
value at 0 and drops to
zero at the ends.

5.0 2.5 0.0 2.5 5.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
ReLU
ReLU Gradient

(b) Behaviour of ReLU
non-linearity. The
gradient is zero for
negative values.

5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

Leaky ReLU
Leaky ReLU Gradient

(c) The leaky ReLU non-
linearity allows for a
constant finite gradient
even at values less than
zero and avoids the
problem of dead neu-
rons.

Modern neural networks are usually several layers deep and employ other non-
linearities most common of which are the ReLU (Equation 2.3) and sigmoid
(Equation 2.4).

ReLU (x) =

{
1, if x ≥ 1

0, otherwise
(2.3)

σ(x) =
1

1 + exp(−x)
(2.4)

The sigmoid function saturates at the ends of its domain as shown in Figure 2.1a
whereas the ReLU is an unbounded non-liearity with non-zero derivative in one
half of its domain (Figure 2.1b). ReLU non-linearity is usually considered better
for convergence because of its non-saturating nature. However, once the value of
ReLU goes below zero, it stops receiving further gradient updates and the neuron
is effectively ”dead”. More non-linearities have been proposed in the literature
such as the Leaky ReLU which prevents the problem of dead neurons (Figure
Figure 2.1c).

2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) utilize a convolution operation followed by
subsequent down-sampling. A discrete convolution is defined as in Equation 2.5.

S (i, j) = (I ? K) (i, j) =
∑
m

∑
n

I (m,n)K (i−m, j − n) (2.5)

4

2.3. Graph Convolutional Neural Networks Chapter 2. Background

where S is the output, K is the convolution kernel and I is the input. However,
most machine learning libraries implement a related operation called correlation
(Equation 2.6).

S (i, j) = (I ? K) (i, j) =
∑
m

∑
n

I (i+m, j + n)K (m,n) (2.6)

Fully connected neural networks as defined in Equation 2.1 do not scale very
well as the dimensionality of the input increases. Consider a single layer fully
connected neural network as in Equation 2.1. This layer will have nxm + n
number of parameters while counting the bias b. Thus if we have a L layered fully
connected network with feature dimensions din, d2, d3.., then the total number
of parameters in the network while not counting the bias parameters will be
d1xd2 + d2xd3... In the case of images the inputs are very high dimensional
and hence directly using fully connected network will lead to a model with very
large number of parameters. Convolutional neural networks solve this problem
by utilizing a convolution operation followed by down-sampling. In this case the
number of parameters is not dependent on the size of the input but of the number
of input and output feature channels. Consider a convolutional neural network
with an RGB image as input and output feature channels f1. In this case the
number of parameters of the network will be 3xf1. Typically f1 << d1 which
reduces the number of parameters that CNNs require. The reason that even with
a reduced set of parameters CNNs are effective is because in images neighborhood
information is usually sufficient to derive good features about points in the input.

2.3 Graph Convolutional Neural Networks

A graph is a tuple G = (V,A,E) where V is the set of vertices, E is the set of
edges and A is the adjacency matrix associates each edge e ∈ E with a weight.
Each node is the graph vi ∈ V can be associated with a feature fi ∈ RD. A
graph convolutional neural network or GCN takes as input a graph G and learns
corresponding features fi for each for each vertex.
A spectral GCN utilizes the spectral decomposition of the normalized graph
Laplacian matrix [WPC+19] L = In − D

1
2 AD

1
2 where D is a diagonal matrix

of node degrees Dii =
∑

j (Ai,j). L is symmetric positive definite so it can be

expressed in spectral form L = UΛUT [WPC+19] where U is a unitary matrix.
A graph signal x ∈ RN is a feature vector over the nodes of the graph G. The
graph Fourier transform of x is defined as x̂ = F (x) = Ux and the inverse
transform is defined by F−1 (x̂) = UT x̂. The graph convolution with a filter
g ∈ RN [WPC+19] is defined as

x ? g = F−1 (F (x)�F (g)) (2.7)

= UT (Ux�Ug) (2.8)

5

Chapter 2. Background 2.4. Loss functions

Let gθ = diag (Ug), where diag () denotes a function that creates a diagonal
matrix, then graph convolution can be simplified as [WPC+19]

x ? gθ = UTgθUx (2.9)

Spectral graph convolutions differ in the choice gθ but follow the same formu-
lation. Spectral graph convolution networks rely on the eigen-decomposition of
the Laplacian matrix meaning the Fourier basis needs to be recomputed for any
changes to the graph. Since eigen-decomposition requires a O (N3), spectral
graph convolutions are unsuitable for computer vision since graphs typically need
to be computed as run time meaning every inference step will require performing
a new eigen-decomposition.
The second approach to graph learning is spatial graph convolution. In its most
general form a spatial graph convolution over a graph G = (V,E) is defined as
follows [WSL+19] -

h (xi) = �j:(i,j)∈Eg (xi, xj) (2.10)

where xi is an input features associated with vertex vi ∈ V , h denotes a feature
transform of xi �j is some aggregation function like maximum or mean and g is
a neural network. The type that I use in my experiments is edge convolutions
where

g (xi, xj) = gec ([xi, xi − xj]) (2.11)

where [·] represents a feature concatenation and gec is a neural network which
acts on this concatenated feature set. Spatial graph convolutions are simpler
than spectral graph convolution networks and do not require an expensive de-
composition that needs to be re-computed with every update to the graph. This
makes spatial graph convolutions more generally applicable and more computa-
tionally efficient. Furthermore, frameworks such as [FL19] and [Fey] make spatial
graph convolution networks easier to implement.

2.4 Loss functions

In a supervised learning setting, the final output of a neural network is a probabil-
ity distribution of predictions. To train these networks the problem is converted
into a minimization problem with a loss function that needs to be minimized.
The most common loss functions are listed below.

Squared Loss

Let ŷ be the output of a model and y be the ground truth. Then the squared loss
defined by

Lmse (y, ŷ)mse =
∑
j

(yj − ŷj)2 (2.12)

6

2.5. Back-propagation Chapter 2. Background

Cross Entropy Loss

For classification problems the most common loss that is used is cross-entropy
loss which is defined by

Lce (y, ŷ) =
∑
j

ŷj ln (yj) (2.13)

The above loss terms are often paired with regularizers such as L2 where a penalty
is placed on the L2 norm of the weights. An example of pairing cross-entropy
loss with the L2 regularizer would be the

L = Lce + λLL2, (2.14)

=
∑
j

ŷj ln (yj) + λ‖w‖2 (2.15)

Another type of penalty on the parameters would be the L1 loss. But since the
L1 is not differentiable at the origin, a modification called the smooth L1 is often
used. The smooth L1 function is defined as

smoothL1 (x) =

{
|x| − 0.5 if |x| ≥ 1

0.5x2, otherwise
(2.16)

One problem with cross-entropy loss is that it does not penalize situations where
the prediction of one point in the input set is different from others in its neigh-
borhood i.e it does not enforce neighborhood consistency. Due to this limitation
for dense prediction problems such as semantic segmentation, a neural network
trained using the cross-entropy loss requires a locality enforcing component such
as conditional random fields.

2.5 Back-propagation

With the help of loss functions, prediction or classification problems in machine
learning can be posed as an optimization problem or more specifically as mini-
mization problem. As long as all operations being used in the model are differ-
entiable, gradient based optimization could be used to minimize the loss. This
made possible by the application of chain rule of differential calculus and the
method is called back-propagation. The use of back-propagation for learning
representations on a neural network was first show in [RHW86]. The chain rule
in differential calculus could be stated as

∂y

∂x
=
∑
j

∂y

∂zj

∂zj
∂x

(2.17)

As long as both
∂zj
∂x

and ∂y
∂zj

exist, the chain rule is applicable. Back-propagation

provides an efficient means of computing derivatives. Consider the following
example from [NW]

y = (x1x2 sinx3 + ex1x2/x3) (2.18)

7

Chapter 2. Background 2.6. Optimizers

�1

�2

�3

�4

�5

�6

�7 �8 �9

∗

���

∗ +

���

/

Figure 2.2: Computational graph of a function of several variables. Example and
figure from [NW].

This computation could be encoded as a graph as shown in Figure 2.2 where the
intermediate variables are given by

x4 = x1 · x2 (2.19)

x5 = sinx3 (2.20)

x6 = ex4 (2.21)

x7 = x4 · x5 (2.22)

x8 = x6 + x7 (2.23)

y = x8/x3 (2.24)

To compute ∂y
∂x6

, we can first compute ∂y
∂x8

and then use the chain rule

∂y

∂x6

=
∂y

∂x8

∂x8

∂x6

(2.25)

=
1

x3

· 1 (2.26)

In the case of x6, there is only one path from x6 to y. If there are multiple
paths from any node in the computational graph to the target variable, then the
derivatives obtained along each path are added. For example in the case of x4 ,

∂y

∂x4

=
∂y

∂x6

∂x6

∂x4

+
∂y

∂x7

∂x7

∂x4

(2.27)

=
1

x3

· x5 +
1

x3

· ex4 (2.28)

Thus back-propagation allows us to re-use intermediate derivative computations.
In automatic differentiation parlance, this is known as adjoint mode and is the
predominant mode used in deep learning software.

2.6 Optimizers

The basic rule for gradient based optimization is

wt+1 = wt − α · ∇wL (2.29)

8

2.6. Optimizers Chapter 2. Background

where L is the loss function that needs to be minimized. α is called the learning
rate and controls the step-size. The different optimizers differ in their method of
estimating ∇wL.

One of the simplest ways of estimating ∇wL is stochastic gradient descent or
SGD [RM51] where the parameter update rule is

wt+1 = wt − α · gt (2.30)

where gt is the gradient at time t, wt is the vector of model weights at current
time step and wt+1 is the updated weight. SGD is sensitive to learning rate α
- too high a learning rate can cause instability during training and too low can
lead to slower convergence. Several alternative optimizers have been proposed
in literature. I give the basic idea behind Adam [KB15] below since this is the
optimizer that I use for all of my experiments. Adam computes an unbiased
estimate of the gradient and the second moment of the gradient using exponential
moving averages. Parameters β1, β2 ∈ [0, 1), control the weights in the window.
The update rules are as follows [KB15]

mt = β1 ·mt−1 + (1− β1) · gt (2.31)

vt = β2 · vt−1 + (1− β2) · g2
t (2.32)

m̂t =
mt

(1− βt1)
(2.33)

v̂t =
vt

1− βt2
(2.34)

wt = wt−1 − α ·
m̂t√
v̂t + ε

(2.35)

where mt is the second moment of the gradient, gt is the present value of the
gradient and w denotes the model parameters. The inital values of mt and vt are
set to 0, so the update rules for vt and mt correspond to doing an unbaised esti-
mate of the first and second moment using weights 1, β1, β

2
1 , . . . and 1, β2, β

2
2 , . . .

respectively with 1 being the weight given to the current estimate and decresing
exponentially afterwards.

9

3
Related Work

In this section, I give an overview of all the current approaches to 3D semantic
segmentation. Point-sets have the following three properties that must be taken
into account by any method that intends to learn meaningful features.

• Unordered [QSMG] - Unlike 2D image data, 3D data typically lacks a reg-
ular structure. A point-set is an uordered collection of points and is not
localized like 2D data. This means that 2D image signal is limited to a fixed
grid whereas point-sets typically consist of points that are more scattered
especially outdoor point-sets.

• Concept of neighborhood [QSMG] - Point clouds are subspaces of R3 with
a distance metric attached. A collection of points forms a meaningful sub-
set and feature representations should reflect this property. For example,
features corresponding to different point-sets should not be too “different”
as measured by some metric and feature-learning methods must take neigh-
borhood information into account. This is one property that is shared by
2D data as well.

• Affine invariance [QSMG] - Feature representations should be invariant to
non-deforming affine transformations (rotation and translation) of the whole
point-set in certain. This may not be the case for shearing deformations.
Although this is not always true for example translating a floor can convert
it into a roof however, for a scene which has both a roof and floor any
feature learning method should be able to learn different representations
for points belonging to the two categories which are invariant to rotation
and translation. Depending upon use-case, this is a property expected of
2D feature learning methods too.

• Sparsity - This is by far the most distinguishing property of point-sets when
compared with 2D data. The 3D volume inside which the point cloud resides
has is not densely packed. This does not mean that point clouds do not have

11

Chapter 3. Related Work 3.1. PointNet

Figure 3.1: PointNet architecture used in [QSMG]. Ablation studies conducted by
the author suggest that the intermediate T-Nets used are important
for achieving a better score on S3DIS and other benchmarks. Figure
taken from [QSMG]

Figure 3.2: PoinetNet++ architecture introduced in [QYSG17]. The difference
here wrt PoinetNet is that pooling is introduced gradually rather than
having a single global layer of pooling as in PointNet. The authors also
define nearest neighbor based interpolation scheme for upsampling
and down-sampling. Figure from [QYSG17].

high local density. It is possible that point clouds have high local density
but the overall volume occupied by the points is very low. This means
that naively imposing a grid on a point cloud and using 3D convolutions
is computationally inefficient since most of the time the method will be
computing on empty voxels.

12

3.1. PointNet Chapter 3. Related Work

3.1 PointNet

PointNet [QSMG] and PointNet++ [QYSG17] represents a milestone in deep
learning for 3D data. The idea behind PointNet was to use a shared MLP as
a feature learner for local representations followed by a global pooling layer to
learn a context vector which is the concatenated with local features to learn a
global representation for each point. The concatentated features are then used for
tasks like 3D semantic segmentation, shape classification etc. PointNet consists
of two key modules: the max pooling layer as a symmetric function to aggre-
gate information from all the points, a local and global information combination
structure, and two joint alignment networks that align both input points and
point features as shown in Figure 3.1. PointNet could be formally written as in
Equation 3.1 [QSMG] .

f ({x1, .., xn}) ≈ g (h (x1) , .., (x2)) (3.1)

where f : 2RN → R, h : RN → RK and g : RKx..RK → R is some symmetric
function. PointNet++ [QYSG17] improved upon this idea by introducing feature
learning at multiple scales. Unlike PointNet which consists of a single global level
of pooling, PointNet++ is composed by a number of down-sampling and up-
sampling layers which the authors refer to as “abstraction levels”(see Figure 3.2).
After each down-sampling layer the down-sampled features are passed through a
feed-forward neural network similar to PointNet. For down-sampling the author
use furthest point sampling algorithm is listed in 1 [WS10].

Algorithm 1 Furthest point sampling

1. Pick arbitrary x ∈ P .
2. S ← {i}
3. while |S| < k
j ← armaxj∈Pd (xj, S)
S ← S ∪ {j}

As presented above Algorithm 1 is a 2-approximate solution to the k-center
problem [WS10] which deals finding a set of centroid points such that the max-
imum of a point to the nearest cluster is minimized. Feature up-sampling in
PointNet++ consists of a inverse distance based interpolation kernel as shown in
Equation 3.2 [QSMG] where features from level l with Nl points are propagated
to level l − 1 with Nl−1 points. This propagation is done until one reaches the
top-most level i.e. reach N1 points.

f (j) (x) =

∑k
i=1wi (x) f

(j)
i

Σk
i=1wi (x)

where wi =
1

d (xi, xj)
j = 1, .., C (3.2)

While PointNet computes a single global feature vector which is then broad-
casted to all points in the point set, PointNet++ computes coarser representations

13

Chapter 3. Related Work 3.2. SplatNet/OctNet

Figure 3.3: SplatNet architecture maps the input point cloud into an nd-lattice.
It then used convolutions over this intermediate lattice to learn lat-
tice level features which are then projected back to the input pionts.
Figure from [SJS+18].

step-by-step utilizing subsequent sampling layers. The input to each sampled
point set is an K-nearest neighbors interpolated feature vector from the point set
in the previous step. Using the farthest point sampler does however introduce
some stochasticity in the feature computation since the output of the sampler
depends upon the first point that is selected.

3.2 SplatNet/OctNet

OctNet [RUG17] maps the input 3D point-set onto an octree and then defines
convolution operation using the constructed octree as an intermediate represen-
tation. Each point in the input point-set is mapped to some node of an octree
and feature representations are either down-sampled or up-sampled between the
points mapped to the same octant. Convolution operations require frequent ac-
cess to neighboring points so the authors propose a modified version of an octree
called a grid-octree which allows to serialize an octree as a sequence of 0s and 1s.
This sequence is obtained by doing a level-order traversal of the underlying octree
and adding a 0 to the serialized sequence for a empty octant and 1 for an oc-
tant that is occupied by point(s). For a sufficiently shallow octree this sequence
could be packed into an integer which makes it possible to traverse the octree
using bit-operations(see Figure 3.5). This representation make memory accesses
more efficient than the usual implementations where octree is implemented us-
ing pointers leading to random memory accesses which are significantly slower.
Furthermore such a representation is more suitable for GPGPU (general purpose
GPU) computations.

14

3.2. SplatNet/OctNet Chapter 3. Related Work

Figure 3.4: Illustration of the OctNet method. OctNet like SplatNet also maps
the input point cloud into some intermediate representation. SplatNet
uses a lattice while OctNet maps the input into a OctNet and defines
convolutions over this OctNet. Figure from [RUG17].

Figure 3.5: OctNet authors use a memory efficient representation of an octree
called a grid octree. Since their idea is to pack an octree into a
64 bit integer, the authors only use an octnet of depth 3. Figure
from [RUG17].

If T(i,j,k) [RUG17] denotes the value of a tensor at location I, j, k and O (i, j, k)
is the value in the smallest cell comprising voxel i, j, k, the mapping from grid-
octree O to a tensor T [RUG17] is computed by [RUG17]

oct2ten : Ti,j,k = O [i, j, k]

and the reverse mapping can be computed by [RUG17]

ten2oc : O [i, j, k] = pool voxels
(
Tī,j̄,k̄

)
where poolvoxels is some pooling function. Given these operations it is possible
to map the convolution operation over a 3D tensor to corresponding operations

15

Chapter 3. Related Work 3.2. SplatNet/OctNet

over the octree nodes. For a 3D tensor T convolution with a 3D convolution
kernel W ∈ RLxMxN [RUG17] can be written as [RUG17]

T outi,j,k =
L−1∑
l=0

M−1∑
m=0

N−1∑
n=0

Wl,m,n · T inī,j̄,k̄ (3.3)

with ī = i− l+bL/2c, j̄ = j−m+bM/2c, k̄ = k−n+bN/2c. The corresponding
operation over the grid-octree data structure can then be defined as [RUG17]

Ti,j,k =
L−1∑
l=0

M−1∑
m=0

N−1∑
n=0

Wl,m,n ·Oin
[̄
i, j̄, k̄

]
(3.4)

Similarly pooling and un-pooling can be defined as per Equation 3.5 [RUG17]
and Equation 3.6 [RUG17].

Oout [i, j, k] =

{
Oin [2i, 2j, 2k] if vxd (2i, 2j, 2k) ≤ 3

P else
(3.5)

Oout = Oin [bi/2c, bj/2c, bk/2c] (3.6)

where vxd computes the depth of the indexed voxel in the shallow octree. The
limitation of OctNet is that the authors that the octree constructed on the points
should be a shallow octree so that it can be serialized and fit into some given
number of bits. The authors use an octree that is only 3 layers deep. In contrast
to this method, I demonstrate that it is possible to stack multiple layers of grid-
pooling and achieve better performance on 3D semantic segmentation tasks.

Permutohedral CNNs were proposed in [KJG15] where the authors propose
a convolution operation of a d-dimensional input space that entirely works on a
lattice. Input data is a tuple (fi, vi) of feature locations fi ∈ Rd and corresponding
signal values vi ∈ R. The input is then mapped to a permutohedral lattice. A
convolution then operates on the constructed lattice and the result is mapped back
to the output space. Hence, the entire operation consists of three stages [KJG15]

• splat (the mapping to the lattice space)

• convolution

• slice (the mapping back from the lattice)

The splat and slice operations take the role of an interpolation between the dif-
ferent signal representations. Input samples are first projected into the lattice

16

3.3. Monte-Carlo Convolutions Chapter 3. Related Work

Figure 3.6: The permutohedral CNN pipeline as in [KJG15]. Figure from same
source.

using barycentric interpolation in the splatting operation. For lattice point j, all
input points that belong to a cell adjacent to are summed up as below [KJG15]

lj =
∑
i∈C(j)

bi,jvj (3.7)

where C (j) indicate cells adjacent to lattice point j. The reverse operation is
slicing which maps signals in the lattice back to the input space again using
barycentric interpolation [KJG15].

v′k =
∑
j∈C(k)

bk,jl
′
j (3.8)

where C (k) indicates the lattice points neighboring point k from the input set.
As formulated above permutohedral convolutions can perform lattice sampling at
multiple scales depending upon the scaling factor. This is analogous to dilated
3D convolutions. Using the operations defined above SplatNet [SJS+18], stacks
several bilateral convolution layers together with different scales.The authors also
features computed from a multi-view 2D images using 2D CNN based methods.
In contrast to SplatNet, my method does not rely on any additional computed
features other point-geometry.

3.3 Monte-Carlo Convolutions

Monte-Carlo Convolutions or MctConv starts with the definition of continuous
convolution in 3D space and applies Monte-Carlo approximation on this integral.
In continuous space convolution of a function f with a kernel g is given by

f ? g =

∫
f (y) g (x− y) dy (3.9)

A Monte Carlo estimate for the integral Equation 3.9 is given by [HRV+]

(f ? g) =
1

|N (x)|
∑

j∈N(x)

f (yj) g
(x−yj

r

)
p (yj|x)

(3.10)

17

Chapter 3. Related Work3.4. Tangent Convolution and surface based methods

Figure 3.7: Multi scale feature learning as presented in [HRV+]. The receptive
field content fi−1 and fi−2 along with their corresponding densities
pi−1 and pi−2. Each consists of a Monte Carlo convolution layer for
feature learning followed by a concatenation to obtain point level fea-
tures.Figure from [HRV+].

where N (x) denotes the set of points within a sphere of radius r centered at x
and p (yj|x) is the value of the probability density function (PDF) at point yj
when x is fixed. Since the input data points are non-uniformly distributed,each
point yj will have a different value for p (yj|x). Also, the PDF depends not only
on the sample position yj but also on x. Such convolution operation defined in
equation Equation 3.9 is differentiable as shown below [HRV+]

∂f ? g

∂θ
=

1

|N (x)|
∑

j∈N(x)

f (yj)

p (yj|x)

∂g
(x−yj

r

)
∂θ

(3.11)

where θ is some model parameter. For estimating the probability distribution
p (yj|x), the authors use kernel density estimation [Par62] [Ros56] as shown below

p (yj|x) =
1

|N (x)|σ3

∑
k∈N(x)

{
3∏
d=1

h

(
yj,d − yk,d

σ

)}
(3.12)

where σ determines the smoothing of the resulting sampling density function, h
is the density estimation kernel i.e a non-negative function whose integral equals 1.
In their experiments the authors use a Gaussian Kernel. In contrast to PointNet
and PointNet++, the authors favor using Poisson Disk Sampling [Coo86] and
combine several such sampling layers to achieve multi-resolution feature learning
as shown in Figure 3.7.

18

3.4. Tangent Convolution and surface based methodsChapter 3. Related Work

(a) Tangent convolutions projects
the neighborhood around an
input point cloud onto a tan-
gent plane defined by the sur-
face normal at that point and
does convolution on the pro-
jected points. The idea here is
to simulate sliding a convolu-
tion kernel over the surface de-
fined by the point clouds. More
sophisticated methods use par-
allel transport to simulate ker-
nel shifting but tangent convo-
lution stands out for its sim-
plicity. Figure from [TPKZ18].

(b) Effect of using different inter-
polation kernels for computing
the tangent image. a) pro-
jected points b) nearest neigh-
bors interpolation c) Gaussian
interpolation d) Gaussian mix-
ture interpolation with 3 near-
est neighbors. Figure from
[TPKZ18].

3.4 Tangent Convolution and surface based
methods

Tangent convolution [TPKZ18] starts with defining a continuous tangent convo-
lution at point p ∈ P as follows [TPKZ18]

X (p) =

∫
πp

c (u)S (u) du (3.13)

where c (u) is the convolution kernel, S (u) [TPKZ18] is a tangent image πp is
a tangent plane and u ∈ R2 is a point on πp. This is similar to introducing
a orthogonal camera at point p which observes p along the surface normal np.
The simplest procedure to estimate surface is done my computing the eigen-
decomposition of the covariance matrix over the set of points q : ‖q − p‖ ≤ R,
C =

∑
q rr

T [TPKZ18] where r = q − p and R is some hyper-parameter. The
eigen-vector corresponding to the smallest eigen-value is the surface normal np
[TPKZ18] which also determines the orientation of the tangent plane. The other
two eigen-vectors ni, nj determine the 2D image axis of the tangent image.

19

Chapter 3. Related Work3.4. Tangent Convolution and surface based methods

To estimate S (u), the authors project the neighboring points q, onto the tangent
image, which yields a set of projection points [TPKZ18]

v =
(
rTni, r

Tnj
)

(3.14)

S (v) = Fq (3.15)

where Fq are the features associated with point q. This can be coordinates, colors,
hand-crafted geometry features or learned features using an MLP. However, this
only provides features for fixed set of points in the tangent image. To estimate
the full tangent image requires computing the signal values at the intermediate
points in the tangent image which the authors do using an interpolation kernel
[TPKZ18].

Su =
∑
v

w (u, v)S (v) (3.16)

where u ∈ R2 indicates coordinates of a point in the tangent image S and w is an
interpolation kernel such that

∑
v w = 1. The authors consider two interpolation

kernels - nearest neighbors interpolation [TPKZ18]

w (u, v) =

{
1 if v is u’s NN

0 otherwise
(3.17)

and Gaussian interpolation [TPKZ18]

w (u, v) =
1

A
exp

(
−‖u− v‖

2

σ2

)
(3.18)

where σ determines the smoothness of the Gaussian kernel. Plugging all these
values into Equation Equation 3.13 gives the formula for tangent convolution
[TPKZ18]

X (p) =

∫
πp

c (u)S (u) du (3.19)

=

∫
πp

c (u) ·
∑
v

(w (x, v) · F (q)) du (3.20)

The effects of different interpolation kernels can be seen in Figure 3.8b. For
efficient computation, the authors flatten the tangent image into a 1D grid and
use 1x1 convolution to compute the feature vectors. Due to the fact that this
method requires computing surface normals and it is sensitive to errors in the
surface normal computation step.

Transport based feature learning method are similar to tangent convolution.
They use parallel transport over a manifold to define shifting of kernels over
a manifold and thus aim to achieve translation invariance which is a hallmark

20

3.5. Kernel Point Convolutions Chapter 3. Related Work

Figure 3.9: Translating a 4-direction frame using parallel transport from τx,y from
y to x. A smooth frame field will minimize the orientation difference
between each pair of frames and thus defines corresponding orienta-
tion directions Fi and Fj. Figure from [PLLT18].

Figure 3.10: Illustration of the KPConv method. The authors define a novel
kernel interpolation and achieve state-of-the-art results on S3DIS.
Figure from [TQD+19].

property of 2D convolutions. Parallel frame convolutions [PLLT18] divide the
directions between 0 to 360degrees into a Nfields-directional fields Fi with i =
1, 2, .., Nfields. The feature maps are also duplicated Nfields times with different
directions taken as the x-axis but with shared convolution weights. Between
two neighboring surface points, the orientation match Fi and Fj (Figure 3.9)is
computed by solving an optimization problem. However, this method assumes
the construction of a mesh first and does not directly operate on points.

3.5 Kernel Point Convolutions

Kernel Point Convolutions or KPConv is a point-based method where the authors
define a novel kernel formulation that learns features directly over points without
needing any intermediate representations of the input point-set. Formally the
method can be framed as follows. Let xi ∈ P ⊂ R3 for i = 1, 2, 3, .., Npoints

be the input points of a point set P and the associated features be denoted by

21

Chapter 3. Related Work 3.5. Kernel Point Convolutions

fi ∈ RN×D. The general convolution by a kernel g of the feature set F can be
denoted by [TQD+19]

F ? g (x) =
∑
i∈N (x)

g (x− xi) fi (3.21)

In KPConv, the domain of the function g is limited to the ball Br = {y ∈ R3|‖y‖ ≤ r}
[TQD+19] since the authors consider the radius neighborhood of point x N (x) =
{xj|‖xj − x‖ ≤ r} [TQD+19]. Then K kernel points are selected {x̃k|k < K} ⊂
Br [TQD+19] and a learnable kernel weight Wk ∈ RDin×Dout where Din is the in-
put feature dimension and Dout is output feature dimension. The kernel function
at a point yi ∈ Br is defined as [TQD+19]

g (yi) =
∑
k<K

h (yi; x̃k)Wk (3.22)

where h is the correlation between x̃k and yi [TQD+19]. The authors make use
of a linear correlation

h (yi; x̃k) = max

(
0, 1− ‖yi − x̃k‖

σ

)
(3.23)

where σ is chosen according to input density. Compared to Gaussian correlation,
the authors claim that linear correlation is better for gradient based optimization
[TQD+19]. Limiting the domain of the function g to Br helps the network learn
meaningful feature representations [TQD+19]. The positions of the K kernel
points is decided by solving an optimization problem where the authors aim to
find a configuration of points after assigning to each point an attractive and a
repulsive force as defined in Equation 3.25 and Equation 3.24 [TQD+19]

∀x ∈ R3, Erep
k (x) =

1

‖x− x̃k‖
(3.24)

∀x ∈ R3, Eatt (x) = ‖x‖2 (3.25)

The optimization problem then is given by Equation 3.26 [TQD+19]

Etot =
∑
k<K

(
Eatt (x̃k) +

∑
l 6=k

Erep
k (x̃l)

)
(3.26)

The optimization is carried by gradient descent with random initialization and
using an additional constraint that one of the points is the center of the sphere.
For certain values of K, the points converge to stable regular polyhedron con-
figuration (Figure 3.11. The authors also offer a generalization of this approach
where the kernel point placement is not defined but is rather learned making the
kernel “deformable”. The kernel function g is differentiable with respect to the

22

3.5. Kernel Point Convolutions Chapter 3. Related Work

Figure 3.11: Various stable polyhedral configurations obtained by solving the op-
timization problem Equation 3.26. Figure from [TQD+19].

kernel points x̃k, hence the x̃k can be treated a model parameter and the kernel
points could then be learned. The authors define a generalization of KPConv for
a deformable kernel case where the networks learns shifts ∆x which are learned
per input point in the point set. The deformable KPConv can be formally written
as (from [TQD+19]) -

F ? g =
∑

xi∈N (x)

gdeform (x− xi,∆ (x)) fi (3.27)

gdeform (yi,∆ (x)) =
∑
k<K

h (yi, x̃k + ∆k (x))Wk (3.28)

However, to make this deformable version work requires a regularization term to
be added to the loss otherwise the kernel points end up begin pulled away from
the input points. The regularized loss is as per Equation 3.29 [TQD+19].

Lreg =
∑
x

Lfit (x) + Lrep (x) (3.29)

Lfit =
∑
k<K

min
yi

(
‖yi − (x̃k + ∆k (x))‖2

σ

)
(3.30)

Lrep =
∑
k<K

∑
l 6=k

h (x̃k + ∆k (x) , x̃l + ∆l (x))2 (3.31)

My proposed method differs from this as I only define a k-NN graph and let the
edge level filters learn the most optimum kernel weights without hand-coding the
kernel function. In KPConv, the authors use grid-based pooling to learn multi-
scale feature representations of the input point-set but the kernel function g is

23

Chapter 3. Related Work 3.6. Sparse Convolutions

Figure 3.12: Normal convolutions remove the sparsity of the data due to diffu-
sion. Sparse convolutions aim to preserve this sparsity by doing
convolutions only at active sites meaning points where the voxel has
non-zero activation. Figure taken from [GvdM17]

Figure 3.13: The locations shown in red are ignored in sparse convolutions. Thus
for each convolution layer, the active sites in the output are the same
as that in the input. Figure from [GEvdM18].

fixed. Although the deformable KPConv makes some leeway in the placement of
kernel points, the basic form of the function g is fixed for each layer. Compared to
this, my method learns kernel functions using edge-convolutions over a pyramid
of voxelized representations of the input point-set as edge-level weights which are
learned per-layer.

3.6 Sparse Convolutions

Sparse convolutions [GEvdM18] [GvdM17] are similar to OctNet with respect to
their underlying approach that they take towards feature learning - making 3D
convolutions efficient. However, sparse convolutions tend to take better advan-
tage of the sparsity of 3D point clouds while simultaneously managing to pre-
serve the sparsity of the input point-set. One of the problems that the authors
of sparse convolutions try to tackle is that of “manifold dilation” which could be
explained as follows. Define a d-dimensional convolutional network as a network
that takes as input that is a (d+1)-dimensional tensor: the input tensor contains
d spatio-temporal dimensions (such as length, width, height, time, etc.) and one
additional feature space dimension for instance RGB color channels, surface nor-
mal vectors, etc [GEvdM18]. A sparse input corresponds to a d dimensional grid
of sites that is associated with a feature vector. A site is defined to be ”active”
if the feature corresponding to that site is not in ground state [GvdM17]. The
ground state for a a feature could be, for instance, a value of zero. If the input

24

3.6. Sparse Convolutions Chapter 3. Related Work

Figure 3.14: Implementation of various deep learning architectures using sparse
convolutions. Figure from [GvdM17].

data contains a single active site, then after applying a 3d convolution there will
be 3d active sites. After applying a second convolution of the same size will yield
5d active sites and so on [GvdM17]. This rapid growth in the number of sites
represents a problem since it loses the sparsity of 3D data and limits the depth of
deep-learning architectures that can be implemented due to memory constraints.

The authors define sparse generalizations of three key deep learning compo-
nents - convolutions, strided covolutions, pooling and unpooling. There are two
modifications made to the convolution operation. The authors prune the num-
ber of active sites to include only those for which the central point has non-zero
activation. The ground-state activation of all points is assumed to be zero. This
means that the potential active sites in the output are exactly the ones that
are active in the input. While the first modification makes implementation of
the networks simpler, the second modification helps preserve the sparsity of the
input.

MinkowskiNet [CGS19] operates along the same lines. The key difference be-
tween sparse convolutions and Minkowski engine is how inference is done. Sparse
convolutions uses no neighborhood enforcing penalty to the loss function and uses
vanilla cross-entropy loss but MinkowskiNet authors use a CRF-like layer on 7D
inputs (obtained by doing mean-field approximation over the output probabili-
ties).
The problem with sparse tensor based methods is that it requires re-defining and
re-implementing most common operations in deep learning and thus are not the
easiest approaches to extend. Furthermore, there is a voxelization step that is
necessitated by voxel-hashing which could lead to potential loss of information.

25

Chapter 3. Related Work 3.7. Graph Based Methods

Figure 3.15: Illustration of the GraphSage method. I uses a sampled k-hop neigh-
borhood to compute subgraphs, however this is not suitable for com-
puter vision applications because of increasing subsample size. The
authors use a hops size of 2. Figure from [HYL17].

Figure 3.16: DeepWalk solves the problem of short receptive fields by sampling
walks in a graphs using depth first search as shown here. The walks
are then fed into a word2vec model like Glove which helps to learn
node level features. However, these representations need to be re-
computed once the underlying graph changes making it suitable only
for static graphs. Figure from [PARS].

3.7 Graph Based Methods

Graph based methods rely on creating a graph - either KNN or neighborhood
graph and then using graph convolutions on this graph to learn vertex level
features. This class of methods requires extending the convolution operator on
graphs and also on down-sampling. There are two ways to define convolutions on
graphs - spectral and spatial.

Spectral methods rely on the convolution property

g ? f = F ∗ G (3.32)

Spectral convolutions rely on computing the eigen-decomposition of the graph
Laplacian and then using the eigenvectors for computing convolution in frequency
space and then back-projection. Naively using spectral convolutions is expensive
since eigen-decompositions require quadratic computation. Methods based on
special kind of polynomial kernels such as Chebyshev polynomials remove this

26

3.7. Graph Based Methods Chapter 3. Related Work

Figure 3.17: DiffPool [YYM+] tries to learn a subgraph by learning an assign-
ment matrix. Due to the O (n2) computations involved, this type of
learned pooling is not suitable for 3D data. Figure from [YYM+].

Figure 3.18: gPool was proposed as a part of a GraphUnet architecture. It differs
from DiffPool in that it computes a vector of scores which avoids the
quadratic assignment matrix computation. However, this method
does not places guarantees on the local geometry of the subgraphs
learned and in case the graphs become disconnected, further convo-
lutions will be rendered ineffective. Figure from [GJ].

requirement. The problem with spectral convolutions is that kernels learned on
graph cannot be applied to another since the graph Laplacian changes resulting in
a change of the eigen-basis. Hence most methods use spatial graph convolutions,
the general form [WSL+19] of which can be expressed as

h (xi) = �j:(i,j)∈Eg (xi, xj) (3.33)

Figure 3.19: Graph UNet architecture which uses gPool. Figure from [GJ].

27

Chapter 3. Related Work 3.7. Graph Based Methods

where � is some aggregation operator such as min, max or mean. This type con-
volution is computationally efficient to compute and furthermore kernels learned
on one kind of graph can be generalized to another. The most commonly use
convolution is edge convolution where g = G([xi, xi−xj]) where G is represented
by a neural network. The key however is to define sub-sampling methods. Vari-
ous methods have been tried.

Super-point graphs computes a partition of the KNN graph using a minimiza-
tion of the Potts energy function using the cut-pursuit algorithm. For each
point xi ∈ P where P is a point-set, the authors compute dg number of ge-
ometric features for characterizing the shape of its local neighborhood. These
features are linearity, planarity and scattering and verticality feature. These fea-
tures were introduced in [DMDV11] and [GL17]. For a point x ∈ P and points
x1, x2, . . . , xk ∈ N (x), the local covariance matrix is defined as [GL17]

µ (x) =
1

k

k∑
i=1

xi (3.34)

C =
k∑
i=1

(xi − µ)(xi − µ)T = RΛRT (3.35)

where Λ is a diagonal matrix of eigen-values and R is rotation matrix. The
eigen-decomposition will exist since C is a symmetric positive definite matrix.
If the three eigen-values are λ1 ≥ λ2 ≥ λ3 without loss of generality and let
σi =

√
λi for i = 1, 2, 3 [GL17], then [DMDV11] describes the following three

features for describing the local geometry of a point

Linearity = a1D =
σ1 − σ2

σ1

(3.36)

Planarity = a2D =
σ2 − σ3

σ1

(3.37)

Scattering = a3D =
σ3

σ1

(3.38)

The linearity describes how elongated a neighborhood is, planarity assesses
how well it is fitted to a plane and a high scattering value denotes a spherical
neighborhood. Since a1D + a2D + a3D = 1, these feature values can also be
interpreted as probabilites [DMDV11] of a point neighborhood being labelled as
1D, 2D or 3D. In [GL17] the authors define a fourth feature verticality which the
authors claim proves crucial for discriminating roads and facades, and between
poles and electric wires, as they share similar dimensionality. The verticality
feature is the sum fo absolute values of the eigen-vectors weighted by the absolute
values of σ1, σ2, σ3

ûi =
3∑
j=1

∣∣σiuji ∣∣V erticality = ûi
(3) (3.39)

28

3.7. Graph Based Methods Chapter 3. Related Work

Figure 3.20: Overall schema of the Super point graph method. Figure from [LS].

where we without loss of generality it is assumed that the z-axis is the vertical
axis. The verticality feature reaches a maximum value of 1 for a linear vertical
neighborhood and a minimum value of 0 for a horizontal neighborhood. In [LS],
the authors use these 4 features along with the normalized z-component of a
point as the features associated with the points. The authors then compute a
coarsened graph over a 10-nn graph Gnn = (P,Enn) of the input point cloud by
minimizing the Potts energy [LS]

argg∈Rdg σi∈P‖gi − fi‖2 + µ
∑

i,j∈Enn

wi,j [gi − gj 6= 0] (3.40)

where [·] denotes the Iversion bracket function Equation 3.41

[P] =

{
1 if P is true

0 otherwise
(3.41)

This minimization problem is intractable due to the functional being non-
convex and non-continuous. The authors utilize L0 cut-pursuit algorithm [LO17]
to compute an approximate solution. Advantage of using the cut-pursuit algo-
rithm is that the number of partitions does not need to be set beforehand and
furthermore the granularity of the partitions can be controlled. The regulariza-
tion parameter µ in Equation 3.40 above controls the trade-off between coarsity
and number of partitions since it introduces a boundary penalty. Smaller val-
ues of µ (0.01) lead to too-many smaller partitions and large values of µ (0.5-1)
lead to coarser partitions. After computing this decomposition of the original
graph into ”super-points” i.e clusters of vertices given by the partition algorithm,
the authors recompute a subgraph among these vertex partitions. The final seg-
mentation is carried on the partition level using a GRU based message passing
network Equation 3.42 [LS]. The complete pipeline is shown in Figure 3.20.

ht+1
i =

(
1− uti

)
� qti + uti � hti (3.42)

qt+1
i = tanh

(
xt1,i + rti � ht1,i

)
(3.43)

uti = σ
(
xt2,i + ht2,i

)
,rti = σ

(
xt3,i + ht3,i

)
(3.44)

29

Chapter 3. Related Work 3.7. Graph Based Methods

where � denotes element-wise product, σ (·) [DMDV11] denotes the sigmoid acti-
vation function. Note that the receptive field is determined by both the memory
of the GRU network as well as the number of time-steps for which message pass-
ing is carried out. This method however is sensitive the quality of partitions that
are found out using the cut-pursuit algorithm.
In the graph learning literature various other methods of graph coarsening have
been proposed. GraphSage [HYL17] uses a sampled k-hop neighborhood as show
in Figure 3.15 for graph coarsening along with edge conditioned convolutions for
feature-learning. The authors use a log-divergence between the learned represen-
tations as the loss function [HYL17]

J = − log (σfu · fv)−Q · Evn∼Pnv log (σ (−zu · zv)) (3.45)

where v is a vertex that appears in a sampled neighborhood of u. The method
involves looking at the k-hop neighborhood of the input graph and sampling a cer-
tain number of points for pooling. The number of samples is a hyper-parameter
and must be set. However, this method does not allow the network to have
a very high receptive field since the number of points in the sample grows as
O(s1 ·s2 ·s3 ·s4 . . . ·sk) where s1 is the number of points sampled in the first hop,
s2 in the second hop and so on until sk. In the original paper, the authors use
a hop size of 2 which is not a sufficiently high receptive field for computer vision
applications.

DeepWalk [PARS] solves this problem by sampling paths on an input graph
using depth-first search, then uses a language model learning method such as
Glove [PSM] for learning vertex level features. The objective here is model the
probability of observing a vertex v after having visited other vertices on a path
[PARS]

P (v|v1, v2, ..vn−1)

By sampling paths using depth-first search, it is possible to reach very high recep-
tive fields. However, these representations are no longer valid once the underlying
graph changes i.e. the method only works for graphs which are static. Further-
more, the method is not order-invariant meaning that if the label for a graph
vertex changes, the learned representations are no longer valid. Due to these
limitations, DeepWalk is only applicable to static graphs but not for graphs that
are constructed at runtime. Methods such as DiffPool [YYM+] try to learn the
pooling instead of defining it. DiffPool attempts to learn an assignment matrix
which is similar χ-conv discussed above. In the same manner as χ-conv DiffPool
requires computing a cluster assignment matrix which quadratic time and space.
Improvement over DiffPool is gPool [GJ] which learns a scoring function and then
relies on top-k pooling to compute the graph vertices for the next subsample. The
problem with DiffPool is that it does not place any guarantees on the properties
of the coarsened graph. For example, it is possible that gPool computes a discon-
nected sub-graph. In such a scenario neighborhood information is lost and the

30

3.7. Graph Based Methods Chapter 3. Related Work

quality of the learned representations will be adversely affected.

Dynamic graph methods on the other do not rely on subgraph computation.
These approaches typically use graph convolutions to learn vertex level repre-
sentations and then apply some type of sub-sampling (eg. grid pooling) and
then re-compute a graph from the sub-sampled representation. Examples include
DGCNN [WSL+19] which computes KNN graphs in the feature space instead
of the point space. Another method is [EKL] which samples alternate points in
the adjacency matrix of the KNN graph. My approach goes in the direction of
dynamic graphs. However, I rely on grid pooling for down-sampling but preserve
the relationship between points and voxels which is used for later upsampling.
Similar to DGCNN, I also re-compute graphs after each level of grid-pooling how-
ever, these graphs are computed only in the point-space unlike in DGCNN where
re-computation of graphs is done in the feature space. In my experiments, we
can see that this simplistic approach is better. Another major difference is the
number of neighbors used for computing the k-NN graphs. DGCNN uses a graph
computed using 20-40 nearest neighbors. Contrary to this, my method uses 5-10
nearest neighbors and is able to achieve competitive scores on S3DIS dataset.

31

4
Method

In this section, I first present my method for learning point-level features on 3D
data and later on generalize this method to learn features on 4D data. Here a 3D
data refers to a set of points P ⊂ R3, and 4D data refers an ordered sequence of
such point-sets Pt1 , Pt2 , Pt3 , . . . such that t1 ≤ t2 ≤ t3 ≤ . . .

4.1 3D semantic segmentation

Consider a point set P ⊂ RNx3 with points pi ∈ P for i = 1, 2, 3..N . I denote
by G = (V,E) the k-nearest neighbor graph over point-set P i.e. (i, j) ∈ E if

x�1 �1

x�2 �2

x�3 �3

Point Features

Figure 4.1: Illustration of grid-pooling for a 2D shape. Here M1 ≥ M2 ≥ M3
are the number of points in the corresponding point-sets and C1 ≤
C2 ≤ C3 denote number of feature channels. Arrows indicate which
features are pooled to obtain which feature.

33

Chapter 4. Method 4.1. 3D semantic segmentation

pj is one of the k-nearest neighbors of pi. A point-set P can be coarsened using

consecutive voxelization steps with increasing voxel sizes. Let P (l) ⊂ RN(l)x3l be
the result of voxelizing P with voxels of size r(l) with l ∈ {1, 2, . . . , lmax} where
lmax is the total number of voxelization steps [SK17]. The case l = 0 is handled
differently. Let P (0) refer to the input point-set P , and X(0) refer to the features
associated with P (0). For each P (l), let G(l) =

(
V (l), E(l)

)
be corresponding KNN

graph, X(l) ∈ RN(l)xd(l)
denote associated point-level features and for each point

p
(l)
i ∈ P (l), let x

(l)
i ∈ X(l) be the associated feature-vector. P (l1) is said to be at a

coarser resolution than P (l2) if l1 > l2 and P (l2) is said to be at a finer resolution
than P (l1). Let X

(l)
D denote the point-level features associated with P (l) obtained

by down-sampling X(l−1) and let X
(l)
U denote point-level features obtained from

up-sampling from X(l+1). The special case X
(0)
D denotes the output of the first

edge-convolution layer and Z
(0)
D refers to the input point-level features.

4.1.1 Grid Pooling

Let X
(l)
D ∈ RN(l)xd(l)

denote the feature matrix associated with point-set P (l) ob-
tained by going from finer resolution to coarser resolution i.e. down-sampling. Let
Z

(l+1)
D ⊂ RN(l)xd(l)

denote the result of pooling X
(l)
D . To compute Z

(l+1)
D from X

(l)
D ,

I use grid-pooling by which is formally defined as follows. Let p
(l)
i1
, p

(l)
i1
, p

(l)
i1
, . . . , p

(l)
im

be points in P (l) and let p
(l+1)
j ∈ P (l+1) be obtained by Equation 4.1.

p
(l+1)
j =

1

m

m∑
α=1

p
(l)
iα

(4.1)

Then grid-pooled feature z
(l+1)
D,j is given by Equation 4.2.

z
(l+1)
D,j = �m

α=1x
(l)
D,iα

(4.2)

Here � denotes some aggregation function such as minimum, maximum or mean
called the pooling function and the aggregated matrix of pooled features Z

(l+1)
D ={

z
(l+1)
D,j

}
. The corresponding point-level features x

(l+1)
D,j is obtained by doing an

edge-convolution using the KNN graph G(l+1) using Z
(l+1)
D as vertex-level input

features and is formally given by Equation 4.3.

x
(l+1)
D,j = f

(l+1)
down

(
x

(l+1)
D,j ,�(i,j)∈E(l+1)g

(l+1)
down

([
z

(l)
D,i, z

(l)
D,i − z

(l)
D,j

]))
(4.3)

where [·] denotes concatenation, g
(l+1)
down is modeled by a neural network and f

(l+1)
down

is some transformation which is explained later.

34

4.1. 3D semantic segmentation Chapter 4. Method

x�3 �3

x(+)�2 �2 �3

x(+ +)�1 �1 �2 �3

Point	Features

Figure 4.2: Illustation of grid-unpooling. The arrows indicate the direction of
feature broad-casting. This information is stored as tuples in T

(l)
inv for

each level l.

4.1.2 Grid Un-pooling

Grid pooling can be inverted by storing the relationship between z
(l+1)
D,j and

x
(l+1)
D,iα

for α = 1, 2, . . . ,m in the form of index tuples T
(l+1)
inv = {(j, iα)} for

α = 1, 2, . . . ,m. Un-pooling is done using feature broad-casting. Let x
(l)
U,iα

be

the un-pooled feature corresponding to p(l) ∈ P (l). Using the stored relationship
Tinv, the un-pooled feature is given by Equation 4.4.

x
(l)
U,iα

= x
(l+1)
j (4.4)

Let X
(l)
U,iα
∈ RN(l)xd(l+1)

be the matrix of un-pooled feature vectors. Then X(l)

is given by concatenating the pooled and un-pooled feature matrices as shown
in Equation 4.5 with individual point-features x

(l)
iα

given by Equation 4.6. Here
again [·] denotes feature concatenation.

X(l) =
[
X

(l)
D , X

(l)
U

]
(4.5)

x
(l)
iα

=
[
x

(l)
D,iα

, x
(l)
U,iα

]
(4.6)

4.1.3 Edge Convolution Layer

The form of the function f
(l+1)
down still needs to be explained. I use two forms of this

function as given by Equation 4.7 and Equation 4.8.

f
(l+1)
down (x, z) = z (4.7)

35

Chapter 4. Method 4.1. 3D semantic segmentation

Input

EdgeConv

EdgeConv

Grid-Pool

Grid-Un-Pool

+

+

EdgeConv

EdgeConv

Grid-Un-Pool

Figure 4.3: Illustration of a two-layer Res-U-Net type architecture with skip con-
nections, grid-pooling and un-pooling.

f
(l+1)
down (x, z) = x+ z (4.8)

Using Equation 4.7, x
(l+1)
D,j is given by Equation 4.9 and using Equation 4.8, x

(l+1)
D,j

is given by Equation 4.10. Here Equation 4.10 corresponds to doing convolutions
with skip connections as in ResNet [HZRS15] type models. I refer to this type
of model as Res-U-Net since this corresponds to an U-Net model with residual
connections at each edge convolution layer.

x
(l+1)
D,j = �(i,j)∈E(l+1)g

(l+1)
down

([
z

(l)
D,i, z

(l)
D,i − z

(l)
D,j

])
(4.9)

x
(l+1)
D,j = x

(l+1)
D,j + �(i,j)∈E(l+1)g

(l+1)
down

([
z

(l)
D,i, z

(l)
D,i − z

(l)
D,j

])
(4.10)

36

4.1. 3D semantic segmentation Chapter 4. Method

Input

EdgeConv

Grid-Pool

Grid-Un-Pool

EdgeConv

Grid-Un-Pool

Figure 4.4: Illustration of a two-layer U-Net type architecture with grid-pooling
and un-pooling.

Comparison to other methods

Compared to PointNet and PointNet++, my method diverges in how un-pooling
is done. PointNet only has a single global layer of pooling followed by broadcast-
ing all features to the input point cloud. The proposed method on the other hand
has multiple layers of pooling followed by multiple layers of up-sampling using
grid un-pooling. Compared to PointNet++, my up-sampling method is differ-
ent since I forego the need for having an interpolation kernel for up-sampling
Furthermore, both PointNet and PointNet++ utilize furthest point sampling for
down-sampling which necessitates the need for doing a nearest neighbor based
interpolation strategy whereas I use grid-pooling and just invert the pooling op-
eration for up-sampling. In comparison to SplatNet and OctNet the proposed
method learns features directly in the point space bypassing need for an interme-
diate representation. In comparison to KPConv, the learned kernels are not fixed
because the method uses learned edge-convolution based filters. In comparison
to sparse tensor based methods, for the proposed method features are learned per
point not per voxel and thus there is no risk of losing details. However, sparse

37

Chapter 4. Method 4.2. 4D semantic segmentation

3D Network

3D Network

Shared

� (0,�)

� (0,�−1)

� (0,�)

� (0,�−1)

���������

�
(0,�)
���

Nearest-
Neighbor

Match

Figure 4.5: Ilustration of temporal integration method.

tensor based methods rely on convolution kernels defined on voxel in a high di-
mensional space and voxelization is inherently parallelizable making sparse tensor
methods such as SparseConv and MinkowskiNet computationally faster.

4.2 4D semantic segmentation

4.2.1 Temporal integration layer

To generalize the 3D approach to 4D we start with a sequence of point sets
P (t1), P (t2), . . . , P (tk) ⊂ R3 such that t1 ≤ t2 ≤ . . . ≤ tk. Similar to Section 4.1,
for l in {1, 2, . . . , lmax} where lmax is the number of voxelization steps let P (l,t) rep-
resent the point-set P (t) voxelized with voxel size r(l,t), G(l,t) represent the KNN
graph computed over P (l,t) and X(l,t) be point-level features associated with P (l,t).
Let P (0,t) denote the input point-set (this corresponds to the case l = 0) with
X(0,t) being the features associated with P (0,t).

Denote by G(t) =
(
V (t), E(t)

)
, the nearest neighbor graph that is computed

between P (0,t−1) and P (0,t) i.e. (j, i) ∈ E(t) if p
(0,t−1)
i ∈ P (0,t−1) is the nearest

neighbor of p
(0,t)
j ∈ P (0,t) among all points in P (0,t−1). Let x

(0,t)
j be an associated

feature of point p
(0,t)
j . Then the temporal feature x

(0,t)
temporal,j associated with p

(0,t)
j

is given by Equation 4.11.

x
(0,t)
temporal,j = x

(0,t−1)
i (4.11)

The aggregated point-level feature x
(0,t)
agg,j ∈ X

(0,t)
agg is then given by Equation 4.12

where gtransfer is modeled by neural network.

x
(0,t)
agg,j = gtransfer

([
x

(0,t)
j , x

(0,t)
temporal,j

])
(4.12)

38

4.3. Memory complexity Chapter 4. Method

4.3 Memory complexity

In this section, I go over the memory complexity of my proposed method. Let
N =

∣∣P (0,t)
∣∣ = N (0,t) and k be the number nearest neighbors. I store graphs

using their edge representations hence a nearest neighbor graph with k nearest-
neighbors requires O(Nk) storage. Assuming that each subsequent voxelization
step down-samples the input point-set so that it retains only some fraction βl of
the input point-set P (0). The memory complexity of given by

O
(
N (0)k + β1N

(0)k + . . .+ βlmaxN
(0)k
)

= O
(
kN (0) (1 + β1 + β2 + . . .+ βlmax)

)
(4.13)

It is possible to put a closed-form upper-bound on the summation in the inner-
brackets. Assume that voxel-sizes are doubled in every subsequent voxelization
step which means that each step retains at most 7

8
of the points. Thus,

βi+1 ≤
7

8
βi ≤ . . . ≤

(
7

8

)i
β1 (4.14)

Using Equation 4.14, we can bound the sum above as

1 + β1 + β2 + β3 + . . .+ βlmax (4.15)

≤ 1 + β1 +
7

8
β1 +

(
7

8

)2

β1 + . . .+

(
7

8

)lmax−1

β1 (4.16)

= 1 + β1

(
1 +

7

8
+

(
7

8

)2

+ . . .+

(
7

8

)lmax−1
)

(4.17)

≤ 1 + β1

(
1 +

7

8
+

(
7

8

)2

+ . . .

)
(4.18)

≤ 1 + 8β1 (4.19)

The final bounds the memory complexity to be O
(
N (0)k (1 + 8β1)

)
which is the

same complexity as O
(
N (0)k

)
since β1 < 1. Note that we cannot have a tighter

bound on β1 since it is determined by r(0) i.e. voxel-size in the first voxelization
step.

39

5
Experiments

In this chapter, I will discuss my experiments for 3D and 4D semantic segmenta-
tion, provide a qualitative and quantitative analysis of the results and compare
with other existing methods in the respective areas.

5.1 3D semantic segmentation

For 3D semantic segmentation I use S3DIS dataset [ASZS]. This dataset consists
of point-set representations of indoor environments. Corresponding to each point
in a sample there is a label and there are a total of 13 semantic classes.

Data Preprocessing

All point-sets in the original S3DIS dataset are voxelized using a voxel size of 3cm.
The label for each point in the voxelized point-set is computed using voting i.e for
each point in the voxelized point-set, the assigned label is the most-frequent label
in its corresponding voxel. Each voxelized point-set is again split into multiple
smaller point-sets using Algorithm 2 using a threshold value Nmax of 50000. The
split point-sets are then used for training. Splitting using Algorithm 2 has the
advantage that points are roughly uniformly distributed in each bin. A popu-
lar form of splitting is to split each point-set using cuboidal bounding volumes of
certain dimensions [QSMG] [QYSG17]. Using such an approach has the disadvan-
tage that it is possible to encounter pathological cases with low number of points
inside the bounding volume. PointNet [QSMG] and PointNet++ [QYSG17] solve
this problem by artificially increasing the number of points inside a bounding vol-
ume using sampling with replacement. Using Algorithm 2 avoids this problem in
the case of indoor point clouds. Furthermore, Algorithm 2 is equivalent to using
bounding volumes with infinite size along two axes and dynamically finding a size
along one particular axis such that the variance in the number of points inside
the bounding volumes is minimized.

41

Chapter 5. Experiments 5.1. 3D semantic segmentation

Algorithm 2 Point Cloud Splitting Algorithm

1: Inputs: Point-set P , axis index ax ∈ {1, 2, 3}, threshold value Nmax

2: Output: A sequence S consisting of k splits P1, P2 . . . Pk such that |Pi| ≤
Nmax ∀i = 1, 2, 3 . . . k

3: k ← 1
4: S ← {P} . {} indicates an empty list.

5: Cax ←
{
x

(ax)
j : xj ∈ P

}
. x

(ax)
j is the coordinate of point xj along the axis

numbered ax.
6: xmin = min (Cax), xmax = max (Cax)
7: while not |Pi| ≤ Nmax∀Pi ∈ S do
8: k ← k + 1
9: S ← {}

10: m← 1
11: while m ≤ k do
12: yl = xmin + (m− 1) · xmax−xmin

k

13: yu = xmin +m · xmax−xmin
k

14: Pm =
{
xj ∈ P : yl ≤ x

(ax)
j ≤ yu

}
15: S.insert(Pm)
16: end while
17: end while

Model architecture

I use a modified variant of a U-Net type encoder-decoder architecture as shown
in Figure 5.1. Unlike the vanilla U-Net architecture, I remove the decoder arm
of the U-Net and use grid un-pooling as described in Section 4.1.2. This helps
reduce the number of parameters and computation required. By connecting each
edge convolution layer directly to the bottleneck layer it also helps alleviate the
problem of vanishing gradients. I use 4 levels of voxelization with each level
consisting of an edge convolution layer followed by a subsequent pooling layer.
Pooling is done with voxel sizes of 5cm, 10cm, 20cm, 40cm. Finally, the features
at each level of voxelization are grid un-pooled to their corresponding points at
the first level. The number of feature channels is doubled every two levels and
capped at 256.

Training

The model is trained using the Adam optimizer [KB15] with a fixed learning
rate of 0.001, batch size of 1 and training is cut-off after 300 epochs. The loss
function used is average cross-entropy loss over all points in a point-set as in
Equation 5.1 where |P | is the number of points in the point-set, C =

{
c1, c2, ..c|C|

}
is the indexed set of class labels with |C| = 13, y

(j)
i is 1 if point xi belongs to

42

5.1. 3D semantic segmentation Chapter 5. Experiments

EdgeConv(64)

GridPool

GridPool

Input

EdgeConv(128)

EdgeConv(128)

GridPool

Grid	Un-Pool

EdgeConv(256)

x3�
(0,�)

x832�
(0,�)

GridPool

EdgeConv(256)

Grid	Un-Pool

Grid	Un-Pool

Grid	Un-Pool

832x13

832x13

832x13

Shared

x13�
(0,�)

Figure 5.1: Schematic of model architecture used for training on S3DIS.

class cj ∈ C and 0 otherwise and ŷi
(j) is probability assigned by the model of

point xi belonging to class cj. Training is done on a single Nvidia GPU with
12GB of GPU memory. Random rotations around the gravity axis is used for
augmentation. Before being fed to the model, each split point-set is translated
to the origin. Another method of augmentation is adding a random displacement
to each point in the input point-set [QSMG] [QYSG17]. I do not use this since
translating the point-set to the origin will remove the effect of adding a random
displacement. I report the evaluation scores for models trained using number of
nearest neighbors k (number of neighbors used for computing nearest neighbor
graphs) from 5 to 10 for hyper-parameter tuning.

L = − 1

|P |
∑
xi∈P

∑
j∈C

y
(j)
i lg ŷi

(j) (5.1)

43

Chapter 5. Experiments 5.1. 3D semantic segmentation

Testing

Each point-set in the validation set is voxelized using a voxel-size of 3cm and
split into smaller point-sets using Algorithm 2. Inference is done on each of
the smaller split point-set. The labels for un-voxelized input test point-set is
computed using Algorithm 3 taking the computed labels on the split point-sets
as input. I compute the evaluation scores for each model trained using different
values of hyper-parameter k and then I select the best model on the basis of mIoU
score. For this model, I then report 6-fold cross-validation score and individual
scores obtained by testing on Areas 1 to 6 and provide a comparison with other
methods.

Algorithm 3 Assembling different split point-sets to compute labels for full test
point-set

Inputs : A test point-set P test, a sequence of non-overlapping point-sets
P split

1 , P split
2 , . . . , P split

m with associated labels Lsplit1 , Lsplit2 , .., Lsplitm , voxel-size h.
Output: A computed label set Ltest for each of the points in the input point-set
P test.
P concat ← concatenate(P split

1 , P split
2 , . . . , P split

m)
Dref ← Φ . Φ is used to indicate an empty dictionary.
for pconcati ∈ P concat with lconcati ∈ Lconcat do

hx, hy, hz ← bpconati .x/hc, bpconati .y/hc, bpconati .z/hc
Dref [hx, hy, hz]← lconcati . Put lconcati in the dictionary at key (hx, hy, hz)

end for
Ltest ← {} . {} indicates an empty list.
for all ptesti ∈ P test do

hxtest, hytest, hztest ← bptesti .x/hc, bptesti .y/hc, bptesti .z/hc
ltesti ← D [hxtest, hytest, hztest]
Ltest.append(ltesti)

end for

Results

The scores for different values of k are listed in Table 5.3. The model trained
with k = 10 has the best mIoU on Area-5. A comparison of the best-model with
other methods is presented in Table 5.1.

On S3DIS the best performing model uses a U-Net architecture and achieves a
60.12mIoU on Area-5 and 65.3mIoU with 6-fold cross validation. A comparison
with other methods is presented in Table 5.1. A qualitative analysis is presented
in section 5.1. A detailed results table with IoU scores over all areas for the best
model is presented in Table 5.2.

We can see from Table 5.1, that the proposed method achieves a better per-
formance on S3DIS than super-point graphs [DMDV11]. Results presented are

44

5.1. 3D semantic segmentation Chapter 5. Experiments

OA mAcc mIoU ceiling floor wall beam col. win. door chair table book. sofa board clutter
PointNet 49.88 41.09 88.8 97.33 69.8 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22

SPG 86.38 66.5 58.04 89.35 96.87 78.12 0 42.81 48.93 61.58 84.66 75.41 69.84 52.6 2.1 52.22
KPConv - - 67.1 92.8 97.3 82.4 0 23.9 58 69 91 81.5 75.3 75.4 66.7 58.9

Tangent Convolution 82.5 62.2 52.8 90.5 97.7 74 0 20.7 39 31.3 69.4 77.5 38.5 57.3 48.8 39.8
Unet (mine) 86.54 70 60.12 92.68 98.43 77.86 1.22 16.25 40.81 62.46 79.95 82.92 49.1 64 60.61 55.3

Table 5.1: Results for best model on S3DIS on Area-5. I report overall accuracy
(OA), mean accuracy (mAcc), mean intersection-over-union (mIoU).
My method manages obtain a better mIoU than super-point graphs
(SPG) [DMDV11] which relies on graph partitioning for coarsening
input graphs. TanConv indicates the tangent convolution method
[TPKZ18]

.

Area ceiling floor wall beam column window door table chair sofa bookcase board clutter mIoU
1 96.77 96.87 76.97 74.24 39.47 60.57 67.7 81.16 74.33 57.02 72.92 50.92 74.41 71.03
2 90.33 95.68 78.56 43.93 20.41 30.24 43.13 66.05 72.66 40.53 56.24 21.9 50.49 54.63
3 96.72 98.51 82.05 84.09 2.54 69.33 65.47 88.03 81.23 73.76 80.47 59.45 70.94 73.28
4 90.17 97.9 77.75 14.64 23.68 8.24 58.02 74.23 65.83 46.2 67.93 63.11 53.63 57.03
5 92.68 98.43 77.86 1.22 16.25 40.81 62.46 79.95 82.92 49.1 64 60.61 55.3 60.12
6 96.64 97.9 83.17 88.8 49.21 62.13 67.29 88.81 79.32 56.97 76.36 63.21 74.8 75.74

Table 5.2: Area-wise mIoU scores of the best-performing UNet model. My
method is able to achieve a 6-fold mIoU score of 65.3

without using conditional random-fields (CRFs) and using only cross-entropy loss.
With my method I am able to obtain competitive performance without using any
neighborhood enforcing loss or post processing. The complete results for all areas
is presented in Table 5.2. My model is able to obtain a 6-fold cross-validation
mIoU of 65.3.

Qualitative Analysis of 3D segmentation network

Here I present a qualitative analysis for the predictions obtained by the 3D seg-
mentation on S3DIS . These examples were selected by ranking the test samples
using sample mIoU scores and selecting the top three and bottom three to analyze
where the model performs well and identify possible areas of improvement. First
I will go over the bottom-3 samples followed by the top-3. All visualizations were
generated by a modified version of the PyViz3d package [Eng].

k ceiling floor wall beam col. win. door chair table book. sofa board clutter mIoU
5 85.69 98.39 76.04 0.24 19.73 38.98 53.39 78.56 73.41 46.22 64.31 41.79 42.18 55.3
6 86.98 98.34 76.81 0.39 14.62 40.89 55.91 76.54 77.15 40.27 60.53 44.71 44.99 55.24
7 87.94 98.35 76.5 0.07 15.07 43.54 53.86 77.74 78.31 43.38 60.08 44.12 46.78 55.83
8 89.8 98.02 76.95 0.42 17.03 44.76 52.9 79.1 77.89 40.97 66.93 46.66 52.14 57.2
9 89.53 98.22 76.02 0.16 18.68 42.91 57.56 79.01 76.66 34.5 63.01 46.56 50.3 56.39
10 92.68 98.43 77.86 1.22 16.25 40.81 62.46 79.95 82.92 49.1 64 60.61 55.3 60.12

Table 5.3: IoU of all categories for different values of k.

45

Chapter 5. Experiments 5.1. 3D semantic segmentation

Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

Figure 5.2: In this figure we see that the ceiling and floor has been segmented
correctly. The large brown part is clutter and the model fails to iden-
tify it correctly. Possible reason for this is the inconsistent geometry
of what constitutes clutter in the ground truth. However, one thing
to note here is that the predictions are largely homogeneous across
a large region even though the model uses no methods for enforcing
neighborhood consistency.

Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

Figure 5.3: This is an example where the model outputs very bad predictions. We
see that the scene is quite crowded with objects belonging to several
semantic categories being present. This can be improved by using
a slower voxel progression i.e. start with very small voxels in grid
pooling but at the expense of more computational and memory costs.

46

5.2. 4D semantic segmentation Chapter 5. Experiments

Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

Figure 5.4: This example is similar to Figure 5.2 where in the background clutter
is mis-identified. Another major source of error is the door that is
mis-identified as wall.

Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

Figure 5.5: This is a relatively crowded scene with objects from multiple cate-
gories present. In this case the model is able to output good results.
It is also able to identify clutter of irregular geometry correctly. What
is missed are the rectangular shaped clutter objects in the background.

5.2 4D semantic segmentation

5.2.1 Dataset for 4D

The dataset used for 4D segmentation tests is a subsample generated from Se-
manticKITTI [BGM+19] dataset. SemanticKITTI has 19-classes which I reduce
to 17 by re-mapping related classes into a common category. The re-mapping is
done as per Table 5.4. The final set of labels has the following categories - car,
bicycle, motorcycle, truck, other-vehicle (not truck and car), person, bicyclist,

47

Chapter 5. Experiments 5.2. 4D semantic segmentation

Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

Figure 5.6: In this example, the model performs very well. It is also able to output
correct semantic labels for objects which have thin geometry such as
the door in the background.

Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

Figure 5.7: This scene also has objects belonging to multiple semantic categories.
However, in this example, the method is able to assign correct la-
bels for most points. Points belonging to objects with thin geometry
such as the column are also correctly identified along with irregular
geometry such as clutter.

Original semantic class Re-mapped to
Bus Other-vehicle

On-Rails Other-vehicle
Lane marking Road

Moving-car Car
Moving-bicyclist Bicyclist

Vegetation Non-drivable area
Trunk Non-drivable area
Terrain Non-drivable area

Table 5.4: Related classes of objects from SemanticKITTI dataset are mapped to
a common class.

48

5.2. 4D semantic segmentation Chapter 5. Experiments

road, sidewalk, building, fence, pole, traffic-sign, non-drivable area. Non-drivable
area is introduced as a new class which refers to area where driving is not possible
and the mapping from SemanticKITTI is defined in Table 5.4. The training data
consists of the first 2000 laser scans from sequence 1 of SemanticKITTI dataset
and test set consists of first 200 scans from sequence 7 of SemanticKITTI. The
selection is done by computing label distribution in both sequences and using two
sequences that have non-zero number of samples in each semantic class.

Pre-processing

Each point-set in the 4D dataset is split into two parts - front and back of the car.
This helps to split the point-sets into two roughly equal splits consisting of around
60000 points. The splitting is done by converting each point in the input-point
set from Cartesian to radial coordinates and then splitting using Algorithm 2 on
the yaw axis. An advantage of this splitting method instead of using bounding
volumes is that it avoids the problem of having unbalanced splits due to radial
distribution of LiDAR point-sets. The point-sets are not voxelized and both
training and inference is done at the full resolution.

5.2.2 Model and Training

Training is done on a single Nvidia GPU with 12GB memory using the Adam
optimizer with fixed learning rate of 0.001 for 100 epochs. The baseline models
consist of two variations of the proposed 3D model - one with residual U-Net
connections and one without. Another model with temporal integration is then
trained for each of the 3D baseline models. Pooling is done for 4 layers with
voxel-sizes of 10cm, 20cm, 40cm and 80cm.. The number of feature channels
is doubled every two layers from 32 in the first layer to 128. In the temporal
integration layers consists of an multi-layer perceptron with output channel size
of 288. The final classification is obtained using a bottle-neck layer that computes
output logits using point-level features.

Results

We can see from Table 5.5 that for both 3D baselines, using temporal integration
improves the model performance. The boost in performance can be seen especially
in categories “Non-Drivable Area” and in the category “Building”.

Qualitative Analysis of 4D segmentation network

In this section I will present a qualitative analysis of the results obtained from
temporal integration over the 3D baseline network. All visualizations were gen-
erated by a modified version of the PyViz3d package [Eng].

49

Chapter 5. Experiments 5.2. 4D semantic segmentation

EdgeConv(32)

EdgeConv(32)

EdgeConv(32)

GridPool

GridPool

Input

EdgeConv(64)

EdgeConv(64)

EdgeConv(64)

EdgeConv(64)

EdgeConv(64)

EdgeConv(64)

GridPool

EdgeConv(128)

EdgeConv(128)

Grid	Un-Pool

Grid	Un-Pool

x3�
(0,�) x288�

(0,�)

Grid	Un-Pool

Figure 5.8: Illustration of Res-U-Net model used for 4D semantic segmentation.
Dotted arrows indicate skip connections.

Car Bicycle Moto. Truck OV Person Bicyc M.cyc Road Parking Sidewalk OG Building Fence Pole Traf. NDA mIoU
U-Net 3D 42.92 0.03 0 0 0 0 0 0 62.48 0 54.69 0 20.61 13.5 0.06 0 34.59 13.46

Res-U-Net 3D 54.6 0 0 0 0 0 0 0 84.8 0 75.8 0 72.3 19.72 18.74 0 62.3 23.2
U-Net 4D 57.56 0 0.04 0 0 0.01 0 0 83.95 0 75.01 0 66.48 16.5 18.64 6.9 52.83 22.23

Res-U-Net 4D 59.52 0.07 0.16 0 0 0 0 0 90.12 0 82.09 0 80.34 19.81 24.02 12.79 70.21 25.83

Table 5.5: mIoU for each 3D baseline model with and without temporal integra-
tion. Suffix 3D means model without temporal integration and suffix
4D means a model with temporal integration. Abbreviation moto.
refers to motorcycle, OV to other-vehicle, Bicyc. to bicycle, M.cyc.
to motorcyclist, OG to other-ground, Traf. to traffic, NDA to non-
drivable-area.

50

5.2. 4D semantic segmentation Chapter 5. Experiments

EdgeConv(32)

GridPool

GridPool

Input

EdgeConv(64)

EdgeConv(64)

GridPool

Grid	Un-Pool

Grid	Un-Pool

EdgeConv(128)

x3�
(0,�)

Grid	Un-Pool

Grid	Un-Pool

x288�
(0,�)

Figure 5.9: Illustration of U-Net based model used for 4D semantic segmentation.

Nearest	-neighbor	matching

x576�
(0,�)

576x288

x288�
(�)

x576�
(0,�)

x576�
(0,�−1)

Figure 5.10: Schematic of final bottleneck layer that generates time-aggregated
features.

51

Chapter 5. Experiments 5.2. 4D semantic segmentation

Car Bicycle Motorcycle Truck Other-vehicle Person Bicyclist Motorcyclist Road Parking Sidewalk Other-

ground Building Fence Pole Traffic-sign Non-drivable-area

Figure 5.11: In this example, we can see that while the 3D models have trouble
distinguishing between road and sidewalk, with temporal integration
the errors are removed. The improvement can be starkly seen in the
Res-U-Net -4D model where the errors in distinguishing between
road and sidewalk are smoothed out. In the original scan, at this
point the car is turning to the right, meaning that the area that
is seen to the right of the car is unknown and features need to be
learned using information from previous time steps. We can also see
that the quality of the results obtained using temporal integration
is dependent upon the strength of the backbone network where the
quality of results obtained by applying temporal integration on Res-
U-Net model is the best out of the four.

52

5.2. 4D semantic segmentation Chapter 5. Experiments

Car Bicycle Motorcycle Truck Other-vehicle Person Bicyclist Motorcyclist Road Parking Sidewalk Other-

ground Building Fence Pole Traffic-sign Non-drivable-area

Figure 5.12: In this example, we can see that the 3D U-Net model makes a mistake
in segmenting a car some distance away. This error is removed in
the 4D U-Net model. The 3D Res-U-Net model does not make this
mistake so the result obtained after temporal integration is the same
as with the 3D model.

Car Bicycle Motorcycle Truck Other-vehicle Person Bicyclist Motorcyclist Road Parking Sidewalk Other-

ground Building Fence Pole Traffic-sign Non-drivable-area

Figure 5.13: In this example we can see that the 4D U-Net model corrects a
mistake made by the 3D model. The 3D model wrongly segments a
building on the right as non-drivable area. This error is removed in
the 4D model.

53

Chapter 5. Experiments 5.2. 4D semantic segmentation

Car Bicycle Motorcycle Truck Other-vehicle Person Bicyclist Motorcyclist Road Parking Sidewalk Other-

ground Building Fence Pole Traffic-sign Non-drivable-area

Figure 5.14: We see for both the U-Net model and the Res-U-Net model the
corresponding 4D model corrects an error made in segmenting a car
at some distance from the origin.

54

6
Conclusion

In this thesis, I used graph neural networks (GNNs) to build models that can
tackle the problem of 3D and 4D segmentation. The key idea here was to use
grid pooling to first increase the receptive field of graph neural networks. The
current literature on graph neural networks tackles this in different ways but these
methods are not suitable for direct applications in 3D. Because 3D data has an
inherent ”resolution” meaning that the same scene can be rendered at various lev-
els of granularity, it is possible to use grid pooling to enhance the receptive field
of graph neural networks. I propose a modification to grid-pooling that allows
for feature transfer “upwards” meaning from lower resolution to higher resolu-
tion using a U-Net type architecture. The proposed network is able to achieve
state-of-the-art result on Stanford 3D dataset beating all existing graph based
methods. I then generalized this 3D network to 4D data using nearest neighbor
matching across time-steps. Nearest neighbor matching in this case only works
because the existing receptive field of the underlying 3D network is enhanced
using grid pooling. This means that matching captures a large context from the
previous time-step as well. With this generalization I demonstrate the temporal
integration method improves performance of the underlying 3D networks.

There are several possible areas of improvement. Apart from the approach
tested in the thesis, another possibility of doing temporal integration is to trans-
fer information from previous time steps to the current time step such that fea-
tures from previous time-steps are stored at a coarser resolution to preserve GPU
memory. Another possible area is identify what are other good graph representa-
tions that could show improvements either on computation time or performance.
Nearest neighbor graphs or radius graphs are not very fast to compute using the
existing ball tree or k-d tree methods because of inherent sequential nature of
tree construction.

55

Bibliography

[AAB+15] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Ve-
gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[ASZS] Iro Armeni, Alexander Sax, Amir R. Zamir, and Silvio Savarese.
Joint 2d-3d-semantic data for indoor scene understanding.

[BGM+19] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proc. of the IEEE/CVF
International Conf. on Computer Vision (ICCV), 2019.

[CGS19] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-
temporal convnets: Minkowski convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3075–3084, 2019.

[Coo86] Robert L. Cook. Robert l. cook. In ACM Trans. Graph., 1986.

[DMDV11] Jerome Demantke, Clement Mallet, Nicolas David, and Bruno Vallet.
Dimensionality based scale selection in 3d lidar point clouds. In
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences,, 2011.

57

Bibliography Bibliography

[EKL] Francis Engelmann, Theodora Kontogianni, and Bastian Leibe. Di-
lated point convolutions: On the receptive field of point convolutions.
In arxiv:1907.12046v1.

[Eng] Francis Engelmann. Pyviz3d. https://github.com/

francisengelmann/pyviz3d.

[Fey] Matthias Fey. Torchscatter. https://github.com/rusty1s/

pytorch_scatter.

[FL19] Matthias Fey and Jan E. Lenssen. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Representation
Learning on Graphs and Manifolds, 2019.

[GEvdM18] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten.
3d semantic segmentation with submanifold sparse convolutional
networks. 2018.

[GJ] Hongyang Gao and Shuiwang Ji. Graph u-net.

[GL17] S. Guinard and L. Landrieu. Weakly supervised segmentation-aided
classification of urban scenes from 3d lidar point clouds. In ISPRS,
2017.

[GvdM17] Benjamin Graham and Laurens van der Maaten. Submanifold sparse
convolutional networks. 2017.

[HLW17] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected convo-
lutional networks. In CVPR, 2017.

[HRV+] P. Hermosilla, T. Ritschel, P-P Vazquez, A. Vinacua, and T. Ropin-
ski. Monte carlo convolution for learning on non-uniformly sampled
point clouds. volume 37.

[HYL17] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive rep-
resentation learning on large graphs. In NIPS, 2017.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

[KB15] Diederik P. Kingma and Jimmy Lei Ba. Adam : A method for
stochastic optimization. In ICLR, 2015.

[KJG15] Martin Kiefel, Varun Jampani, and Peter V. Gehler. Permutohedral
lattice cnns. In ICLR, 2015.

58

https://github.com/francisengelmann/pyviz3d
https://github.com/francisengelmann/pyviz3d
https://github.com/rusty1s/pytorch_scatter
https://github.com/rusty1s/pytorch_scatter

Bibliography Bibliography

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in Neural Information Processing Systems 25, 2012.

[LBB+98] Y. LeCun, L. Bottou, Y. Bengio, , and P. Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the
IEEE, 1998.

[LO] Loic Landrieu and Guillaume Obozinski. Cut pursuit: fast algo-
rithms to learn piecewise constant functions on general weighted
graphs. In SIAM.

[LO17] Loic Landrieu and Guillaume Obozinski. Cut pursuit: Fast algo-
rithms to learn piecewise constant functions on general weighted
graphs. In SIAM Journal on Imaging Sciences, 2017.

[LS] Loic Landrieu and Martin Simonovsky. Large-scale point cloud se-
mantic segmentation with superpoint graphs. In CVPR2018.

[NW] Jorge Nocedal and Stephen J Wright. In Numerical Optimization.

[Par62] Emanuel Parzen. On estimation of a probability density function
and mode. In Ann. Math. Statist. 33, 1962.

[PARS] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In KDD 2014.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32.
2019.

[PLLT18] Hao Pan, Shilin Liu, Yang Liu, and Xin Tong. Convolutional neural
networks on 3d surfaces using parallel frames. In arXiv:1808.04952,
2018.

[PSM] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.
Glove: Global vectors for word representation. In Stanford Website.

[QSMG] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Point-
net: Deep learning on point sets for 3d classification and segmenta-
tion. In Conference on Computer Vision and Pattern Recognition.

59

Bibliography Bibliography

[QYSG17] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space.
2017.

[RFB] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedicalimage segmentation. In
arXiv:1505.04597.

[RHW86] David E. Rumelhart, Geoffery Hinton, and Ronald Williams. Learn-
ing representations by back-propagating errors. In Nature Vol 323,
1986.

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation
method. In The Annals of Mathematical Statistics, Vol. 22,, 1951.

[Ros56] Murray Rosenblatt. Remarks on some nonparametric estimates of a
density function. In Ann. Math. Statist. 27, 1956.

[Ros58] Frank Rosenblatt. The perceptron: A probabilistic model for infor-
mation storage and organization in the brain. In Psycological Review,
1958.

[RUG17] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet:
Learning deep 3d representations at high resolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017.

[SJS+18] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evange-
los Kalogerakis, Ming-Hsuan Yang, and Jan Kautz. SPLATNet:
Sparse lattice networks for point cloud processing. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2530–2539, 2018.

[SK17] Martin Simonovsky and Nikos Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on graphs. In
CVPR, 2017.

[TPKZ18] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi
Zhou. Tangent convolutions for dense prediction in 3D. 2018.

[TQD+19] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz
Marcotegui, François Goulette, and Leonidas J. Guibas. Kpconv:
Flexible and deformable convolution for point clouds. 2019.

[WPC+19] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. A comprehensive survey on graph neural
networks. In arxiv:1901.00596, 2019.

60

Bibliography Bibliography

[WS10] David P. Williamson and David B. Shmoys. The Design of Approx-
imation Algorithms. Cambridge University Press, 2010.

[WSL+19] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M.
Bronstein, and Justin M. Solomon. Dynamic graph cnn for learning
on point clouds. 2019.

[YYM+] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L.
Hamilton, and Jure Leskovec. Hierarchical graph representation
learning with differentiable pooling. In arxiv:1806.08804v4.

61

	Introduction
	Contributions
	Overview

	Background
	Fully Connected Neural Networks
	Convolutional Neural Networks
	Graph Convolutional Neural Networks
	Loss functions
	Back-propagation
	Optimizers

	Related Work
	PointNet
	SplatNet/OctNet
	Monte-Carlo Convolutions
	Tangent Convolution and surface based methods
	Kernel Point Convolutions
	Sparse Convolutions
	Graph Based Methods

	Method
	3D semantic segmentation
	Grid Pooling
	Grid Un-pooling
	Edge Convolution Layer

	4D semantic segmentation
	Temporal integration layer

	Memory complexity

	Experiments
	3D semantic segmentation
	4D semantic segmentation
	Dataset for 4D
	Model and Training

	Conclusion
	Bibliography

