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1
Introduction

Recently, we have observed a rise in applications relying on a robust 3D perception
of their environment. For instance, domestic assistant robots and autonomous vehicles
need to understand their environment in order to operate safely in unknown surround-
ings. Considering the environment’s variety, we resort to data-driven learning-based
methods in contrast to explicitly programmed approaches.

Why 3D? The research field of 2D image understanding has shown significant im-
provements over the past years [HZRS16]. However, a direct adaption of successful 2D
approaches does not qualify for 3D perception. The problem lies in the ambiguity of
depth estimation using a single monocular camera. Due to the epipolar geometry, cor-
responding 3D positions of pixels cannot be inferred but are limited to an epipolar line
in 3D space for potential correspondences. Thus, 2D images fall short for obtaining an
exact 3D representation of the scene. Original methods for directly working on 3D data
become necessary. With the availability of 3D sensors such as Kinect, RealSense, and
Velodyne, the research field of 3D perception grows significantly lately. Characteristic
is their exact depth estimation of objects in the scene.

In computer vision, we have seen the trend that significant improvements have been
achieved shortly after releasing challenging large-scale datasets. For example, Ima-
geNet significantly supported the image classification task resulting in well-performing
approaches such as ResNets [HZRS16]. Lately, large-scale 3D data sets for autonomous
driving tasks have been published containing thousands of training examples of seman-
tically labeled data [CBL+19,KUH+19,SKD+19]. Parallelly to the achievements in 2D
perception, we hope that a similar development will take place for 3D environmental
understanding, as well.

3D Data Representations. In contrast to ubiquitously used discrete grids for 2D
image representation, 3D data representations are diverse and highly depending on the
task at hand. In Figure 1.1, we illustrate three commonly encountered representations in
the field of 3D learning. A direct extension of 2D images is a voxelized representation
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Chapter 1. Introduction

(a) Voxelized [HS17] (b) Point Cloud1 (c) Mesh [SC14]

Figure 1.1: 3D Representations. 3D data is represented in various ways. A voxelized rep-
resentation makes straight forward adaptions of 2D CNNs possible while intro-
ducing information loss due to quantization. Point clouds represent 3D data as a
set of points. Although no high-frequency information is lost, new convolutional
operators need to be defined in the continuous domain. Contrastingly to the previ-
ous ones, meshes additionally contain surface information of 3D objects by edges
encoding vertex interconnectivity.

which is illustrated in Figure 1.1a. Here, we place a uniform grid on 3D data points
and create a map of occupied grid cells. A real-valued point cloud is therefore reduced
to a quantized representation where each occupied cell may be seen as a volumetric
pixel (thus: voxelized representation). Although introducing a loss of high-frequency
information due to the quantization artifacts, this data representation allows a straight
forward adaption of 2D discrete convolutions [MS15,GEvdM18,CGS19].

Competingly, numerous works directly operate on continuous point clouds [AML18,
HTY18, LBS+18, QSMG17, QYSG17, SJS+18, WQL19, XFX+18]. Here, the data is
represented as an arbitrarily sized, unordered set of points (see Figure 1.1b). As we do
not voxelize the data, we cannot adapt discrete 2D convolutions. For instance, Wang
et al. [WYHN18] and Thomas et al. [TQD+19] propose convolutional operators di-
rectly consuming point clouds. They define convolutional kernels over the Euclidean
proximity in terms of k-nn or radius graphs. Since these convolutions solely operate
in the Euclidean space and are invariant to any surface structure, we refer to them as
Euclidean convolutions.

In contrast to the previous representations, meshes represent an enriched data struc-
ture. Here, we provide additional surface information encoded by edges interconnecting
vertices (see Figure 1.1c). In contrast to point cloud and voxelized approaches, mesh
approaches define proximity not in terms of Euclidean k-nn or radius neighbors, but on
adjacent mesh neighbors. For instance, Verma et al. [VBV18] directly use the mesh-
spanning graph to apply graph convolutions on the surface mesh. As these convolutions
are independent of any Euclidean proximity and solely operate in graph space, we refer
to them as geodesic convolutions.
1Image source: waldyrious.net/learning-holography/pb-cgh-formulas.xhtml
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Chapter 1. Introduction

(a) Geodesic Neighborhood (b) Euclidean Neighborhood

Figure 1.2: Comparison of Euclidean and geodesic neighborhoods. Our proposed method
DualConvNet combines geodesic and Euclidean convolutions by parallely apply-
ing convolutions in the geodesic and Euclidean domain. We assume that geodesic
convolutions learn useful feature representations for surface shapes since their re-
ceptive field enlarges along the mesh surface. Euclidean convolutions however
enable an information flow between geodesically disconnected parts of the scene.
Thus, this convolution operator enables to learn feature representation for context
information between spatially nearby but geodesically distant objects, such as con-
figurations of objects which usually come in pairs (e.g. chairs with tables). The
color gradient shows the geodesic and Euclidean distances between the green cen-
ter point and its neighbors.

Our contributions. 3D data representations have been studied independently in
their main field of application so far. In this thesis, however, we explore the potential of
combining geodesic and Euclidean convolutions on point clouds and meshes simulta-
neously in the task of 3D semantic scene segmentation. In Figure 1.2, we illustrate our
intuition that geodesic and Euclidean convolutions focus on different aspects of feature
learning. Geodesic convolutions define proximity in terms of mesh neighbors reach-
able within k hops on the mesh. When applying convolutions on this neighborhood,
we explicitly learn features focusing on the surface structure of the scene. For instance,
in Figure 1.2a, the geodesic receptive field of the green center point just comprises ver-
tices of the geodesically close chair surface. It therefore neglects geodesically remote
but spatially close vertices of the table. Hence, we assume that geodesic convolutions
are more likely to learn feature representations for object shapes.

Contrastingly, Euclidean convolutions focus on the Euclidean proximity of vertices
in terms of k-nn or radius neighborhoods in 3D space. They enable an information
flow between geodesically disconnected parts of the scene and therefore, we assume
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Chapter 1. Introduction

that they learn the interaction between objects. For example, in Figure 1.2b, the con-
volution does not generate features only based on vertices of the chair but also based
on the geodesically remote table. We assume that this contextual information helps to
distinguish shape-wise similar classes such as chair and armchair.

Concludingly, we pose the question if a combination of geodesic and Euclidean
convolutions brings a significant benefit for the task of 3D scene segmentation. For
this purpose, we have developed a simple yet effective multi-scale architecture called
DualConvNet which combines Euclidean and geodesic convolutions in a parallel man-
ner over multiple scales. Special provisions have been taken to guarantee the modular-
ity of the architecture such that all effects are measurable in order to answer the research
question in the ablation study experimentally.

Our approach is mesh-centric in that sense that it consumes meshes as a half-edge
data structure as well as defining (un-)pooling operations in terms of mesh simplifi-
cation algorithms. This design decision is necessary to ensure a mesh structure in
deeper network layers such that geodesic convolutions are well-defined. We therefore
extend vertex clustering [RB93] and Quadric Error Metrics (QEM) [GH97] as two
well-established algorithms from the geometry processing domain such that they can
pool and unpool vertex sets from consecutive hierarchy levels. Pooling Trace Maps
constitute this extension which comprises a look-up dictionary approach for obtaining
pooled representatives in constant time. In order to make QEM pooling applicable for
large-scale meshes, we finally present a novel sampling strategy for radius neighbor-
hoods called Random Edge Sampling (RES) which outputs a sample set which guaran-
tees an upper limit of a predefined expected sample size. In the ablation study, we take
a closer look at the properties of RES.

We empirically evaluate our proposed DualConvNet architecture on three publicly
available benchmarks for 3D scene segmentation. We achieve competitive results on the
ScanNet v2 [DCS+17], as well as the Stanford Large-Scale 3D Indoor Spaces Dataset
(S3DIS) [ASZ+16]. Among graph convolutional approaches, we define a new state-
of-the-art on both datasets. Moreover, on the recently published Matterport3D bench-
mark [CDF+17], we can report overall state-of-the-art results. We summarize the main
contributions of this thesis as follows: 1 DualConvNet - our novel family of multi-
scale convolutional architectures - combines Euclidean and geodesic features for 3D se-
mantic scene segmentation. 2 For creating mesh-centric multi-scale architectures, we
extend two well-established mesh simplification algorithms as means of (un-)pooling
operations. 3 Random Edge Sampling (RES) is a novel sampling method for sam-
pling neighborhoods which guarantees an upper limit for the predefined expected size.
Reducing the size of the neighborhood allows us to train networks with substantially
fewer neighborhood sizes. However, we infer on test examples with larger sample sizes
for better neighborhood approximations. 4 We conclude our work with a thorough
ablation study which experimentally proves our claim that Euclidean and geodesic con-
volutions give a consistent benefit, independent of the pooling method and the notion
of the neighborhood used in the architecture.
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2
Related Work

In this chapter, we survey related work that purely operates in 3D space. We neglect
classical approaches which do not rely on learned features but design feature spaces
using hand-crafted features and hybrid methods which also take 2D information such
as high-resolution textures into account [HZY+19]. Pure 3D approaches outperform
classical and hybrid approaches on a variety of popular benchmarks such that we par-
ticularly focus on them in this chapter as they constitute a promising development in
this research field.

We motivate the field of 3D (geometric) deep learning focusing on general prob-
lems different method categories face. We therefore do not explain architectural design
choices in detail since they are independent of global challenges in the field. We high-
light the curse of dimensionality (Chapter 2.1.1) and sparsity (Chapter 2.2.1) which
particularly become apparent for 3D point cloud data. We show how permutation in-
variant networks (Chapter 2.1.2) as well as different variations of discrete and contin-
uous convolutions deal with these problem (see Figure 2.1 for a categorized selection
of recent publications in this field). We look at the basics of signal processing and
the definTition of convolutions in sparse/dense as well as discrete/continuous settings
in order to learn locally restricted features (see Chapter 2.2). Moreover, we focus on
graph neural networks which leverage the connectivity encoded in meshes in which we
are particularly interested in this thesis (see Chapter 2.3).

Current approaches for 2D and 3D understanding rely on multi-scale architectures.
We show operations for creating these architectures for traditional grid-based data struc-
tures and show how this can be lifted to mesh-based data representations in terms of
mesh simplification algorithms (see Chapter 2.4). In a continuous space, there can
be an arbitrary number of data points in a certain area. We therefore need to resort
to approximate sampling methods to restrict the computational burden an algorithm
faces processing these point clouds. Thus, in the last chapter, we present some popu-
lar sampling methods for permutation-invariant networks as well as for convolutional
approaches (see Chapter 2.5).

5



Chapter 2. Related Work 2.1. Learning on Unordered Point Clouds

Convolution Types

Discrete
(Section 2.2.2)

Dense

VoxNet
[MS15]

Sparse

SparseConv
[GEvdM18]

MinkConv
[CGS19]

Continuous
(Section 2.2.3)

Unconstrained

PCCN
[WSM+18]

Constrained

KPConv
[TQD+19]

SplineCNN
[FL19]

Graph
(Section 2.3)

Dynamic

DGCNN
[WSL+19]

Static

DeepGCN
[LMTG19]

Figure 2.1: Hierarchy of convolution types. Recently published methods can be organized
in a hierarchy distinguishing between convolutions in the Discrete/Continuous Eu-
clidean space as well as in the graph space. This hierarchy should serve the reader
as a road map to the related work content of this thesis pointing to dedicated sec-
tions in which the convolution types are presented.

2.1 Learning on Unordered Point Clouds

Approaches operating on 2D images use a discrete 2D grid representation. However,
the seminal works on 3D learning by Qi et al. [QLJ+17,QYSG17] have arisen the ques-
tion if another data structure is more suitable for representing 3D point cloud data than
quantizing it into a 3D grid representation. They encourage a paradigm shift from dis-
crete grid-like representations to representing data points in an unordered set. Although
drastically reducing the amount of memory needed for storing the data (see Chap-
ter 2.1.1), we need to define new permutation-invariant operators (see Chapter 2.1.2)
to learn useful features on sets of points which can deal with their unordered nature.

2.1.1 The Curse of Dimensionality

Traditional approaches for operating on 3D data quantize a sparse point cloud to form
a dense 3D grid where each cell comprises either a feature vector or a null vector for
representing unoccupied cells [MS15]. Their inherent challenge is the vast amount of
blank cells which do not contribute to prediction tasks. Applying usual 3D convolutions
result in a significant computational overhead in regions where little valid information
is present. Previous deep learning methods have been mostly applied on 2D represen-
tations, the effect of unoccupied regions becomes even more critical for 3D data due to
the curse of dimensionality.

The curse of dimensionality is a general term in computer science and mathematics
used to describe similar problems in e.g. machine learning, dynamic programming or
combinatorics [KM17]. The characteristic feature among these areas is the problem
that the complexity of the algorithm increases exponentially with the dimensionality of
the input data.

6



2.1. Learning on Unordered Point Clouds Chapter 2. Related Work

We illustrate this in the following example adapted from Keogh et al. [KM17]: in a
unit length quadratic surface embedded in 3D space, we uniformly place 9 data points.
The surface is now evenly sampled with a minimal distance of 1/3 between data points.
When lifting this surface to a unit-length cubical volume in 3D space, we now can uni-
formly place 27 data points in this volume while still guaranteeing the minimal distance
requirement of 1/3 between data points. However, when dealingwith the same number of
data points (here: 9) the minimal distance between them will increase with the number
of dimensions which means that more space will be unoccupied. In the application field
of 3D learning on sparse point clouds, this means that most computations for discrete
3D convolutions are made on unoccupied areas in space which increases the inference
time of the algorithm as well as introducing a huge memory consumptions. Therefore,
traditional approaches such as VoxNet [MS15] are not able to build deep and complex
architectures for point cloud learning using dense voxelized representations.

2.1.2 Learning Permutation-Invariant Point Representations

The seminal work of PointNet introduced by Qi et al. [QSMG17] first explored the pos-
sibility to directly learn features on point cloud representations rather than generating
hand-crafted features or discretizing the data into dense grid representations. Consid-
ering the curse of dimensionality described in the previous Chapter, PointNet aims at
overcoming this problem by a paradigm shift towards point-based approaches. How-
ever, this approach faces its own challenges. It is not possible to feed an unordered set
of points to a network. Here, the ordering matters and special arrangements have to
be taken to ensure the permutation-invariance of the neural network. Different strate-
gies exist to guarantee this property: 1 The input data is transformed into a canonical
ordering. However, in the general case, it is mathematically not possible to find a bi-
jective mapping from a high-dimensional feature space to an ordered one-dimensional
representation. 2 Another strategy is to leverage recurrent neural networks and train
them with permutated sequences. We need to augment the input data consisting of N
points to generate all N! permutations on them. Thus, the training time will drasti-
cally increase. However, Vinyals et al. [VBK16] show that the order indeed matters
even for recurrent neural networks. 3 The final approach which was used by Qi et
al. [QSMG17], leverages symmetric aggregation functions. Symmetric aggregation
functions take arbitrarily many features into account and always output the same result
independent of the ordering of features. Simple symmetric functions include max(⋅),
min(⋅), mean(⋅), + and ∗. However, applying a symmetric function directly on the
point cloud does not extract useful features. Therefore, PointNet learns a permutation-
invariant function f which symmetrically aggregates the learned features of the point
set lifted into a higher-dimensional space by an MLP function ℎ. They prove that the
function f ({x1,… , xn}) ≈ g(ℎ(x1),… , ℎ(xn)) is theoretically able to approximate any
symmetric function. Here, f ∶ (ℝ) → ℝ is a learned symmetric function consisting
of a MLP ℎ ∶ ℝ → ℝK which maps a feature into a K dimensional feature space. The
simple symmetric aggregation function g ∶ (ℝK) → ℝ maps the high-dimensional
feature representation of the point back to a scalar representation.
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Chapter 2. Related Work 2.2. Learning Local Contexts in Euclidean Space
in

pu
t p

oi
nt

s

point features

ou
tp

ut
 sc

or
es

max
pool

shared shared 

shared 

nx
3

nx
3

nx
64

nx
64 nx1024

1024

n  x 1088

nx
12

8

mlp (64,64) mlp (64,128,1024)input
transform

feature
transform

mlp
(512,256,k)

global feature

mlp (512,256,128)

T-Net

matrix
multiply

3x3
transform

T-Net

matrix
multiply

64x64
transform

shared 

mlp (128,m)

output scores

nx
m

k

Classification Network

Segmentation Network

Figure 2.2: PointNet architecture for classification and semantic segmentation. Each point
of a set containing n points is independently transformed to a 1024 dimensional
feature representation. Using the symmetric max(⋅), we obtain a global feature
representation of the point set. For classification tasks, this representation is MLP-
transformed to predict the final class whereas it is concatenated with local point
features for semantic segmentation tasks. This figure is adopted from [QLJ+17].

In Figure 2.2, we show PointNet’s architecture for classification and semantic seg-
mentation. The sequence of shared MLPs transforms each point independently to a
1024 feature representation. Note that this behavior is analog to the ℎ function de-
scribed above. Applying the symmetric g = max(⋅) function on all n features leads to
a permutation-invariant global feature representation of the full point cloud.

The particular limitation of the PointNet architecture is their bottleneck of under-
standing the global context by max-pooling point features. This is the only step in the
network where features of points within the scene are fused which poses a limitations
for learning features considering the locality of points. Moreover, in order to describe a
full scene just within one single feature vector, this vector needs a reasonably large size.
For the original PointNet, the global representation contains 1024 features to which ev-
ery point representation has to be lifted before aggregation. Thus, PointNets are not
applicable for directly operating on large-scale point clouds for semantic scene seg-
mentation. Qi et al. [QLJ+17,QYSG17] overcome this problem by cropping 1m × 1m
blocks out of the point cloud and segment them individually. Thus, PointNets are ap-
plied in a sliding-window fashion which has a negative influence on both the runtime
and capturing the global context.

2.2 Learning Local Contexts in Euclidean Space

Unlike permutation-invariant networks, numerous alternative approaches rely on con-
volutions [GEvdM18,TQD+19,FL19,CGS19,HRV+18,WSM+18,EKL20]. The input
data is interpreted as signals on which a filter kernel is convolved. Convolutions have
proven to work well as local feature extractors in tasks such as 2D/3D understanding
while using significantly fewer parameters than the size of the input (parameter shar-
ing) and being robust to translations in the input domain (translation equivariance).

8



2.2. Learning Local Contexts in Euclidean Space Chapter 2. Related Work

Formal definition. First, we present the general continuous convolution form and
motivate its specific properties:

(

f ∗ g
)

(xi) =

+∞

∫
−∞

f (xj)⊙ g(xi − xj) dxj (2.1)

The continuous feature function f ∶ ℝ3 → ℝF assigns a feature vector to every 3-
dimensional position xj ∈ ℝ3 and the continuous kernel function g ∶ ℝ3 → ℝF maps
a relative position to its kernel weight. Calculating the Hadamard product ⊙ (elemen-
twise multiplication) of the feature vector and the mirrored kernel function centered
around xi results in a moving average weighted by the filter function g. The sliding
window behavior of the kernel leads to interesting technical properties of convolutions.
Among them, translation equivariance as well as parameter sharing are explained in
the next paragraphs.

Translation equivariance. The property of translation equivariance states that ap-
plying a convolution on a signal translated by T (⋅) equals to translating the convolved
signal by T (⋅) [GBC16]. This implies that the convolution with the kernel function
g of an arbitrary feature pattern at a specific location always returns the same output
neglecting the absolute features’ position.

(

T (f ) ∗ g
)

(x) =
(

f ∗ g
)

(T (x)) (2.2)

Note that convolutions are not translation-invariant because after a translation the con-
volved features will be positioned in another location. This leads to the observation that
the extracted features are independent of their absolute position in space. For instance,
this property becomes very handy in the following example. The features for an object
should not depend on their absolute position in the scene but rather be defined over
locally extracted features and their relative position to other objects’ features.

Parameter sharing. A direct consequence of the convolution’s translation equivari-
ance is parameter sharing. The weights of the kernel are reused at different positions
of the input signal, thus drastically reducing the size of the parameter space and decou-
pling it from the size of the input signal. This phenomenon is called parameter sharing
and constitutes a crucial improvement over fully-connected approaches, since it is gen-
erally possible to model a filter kernel with a comparably lower number of parameters
than the size of the input data.

9



Chapter 2. Related Work 2.2. Learning Local Contexts in Euclidean Space

Figure 2.3: Submanifold Dilation Problem. The illustrated submanifold (here: circle) gets
gradually dilated by consecutively applying a dense 3 × 3 convolution. With each
convolution, more features blur into undefined areas and break the feature sparsity.
The figure is adopted from [GEvdM18].

2.2.1 The Curse of Sparsity

In Chapter 2.2, we have motivated convolutions as local feature extractors for contin-
uous signals. However, in practical applications, we do not have associated feature
vectors for all positions in the 3D space. Thus, we deal with a sparse representation of
the scene. Here, the general form of continuous convolutions in Equation 2.1 cannot be
applied anymore since the Hadamard product is undefined on sparse feature vectors.

Thus, multiple works [HRV+18,WSM+18,EKL20] leverage approximate methods.
They interpret existing data points as samples drawn from an underlying distribution.
Then, Monte Carlo integration is used to approximate the convolution with K drawn
samples:

(

f ∗ g
)

(xi) ≈
1
K

K
∑

k=1
f (xk) ⋅ g(xi − xk) (2.3)

We refer to Chapter 2.5.2 for more information about sampling the Euclidean neigh-
borhood space.

Submanifold Dilation Problem. An interesting challenge evolves out of the afore-
mentioned sparsity and dimensionality problem. In our task of semantically segmenting
scenes, our input data comprises point clouds sampled from objects’ surfaces obtained
by 3D sensors. These sampled surfaces constitute 2D submanifolds embedded in 3D
space. Naively applying convolutions over all the sparse space leads to a blurring out
effect of active points (here: points with a valid associated feature vector) to undefined
regions in space. In the general case, this dilation does not necessarily pose a problem
and is rather desirable. 2D images operate in a dense 2D discrete grid space. Here, we
want that features of pixels blur into neighboring regions, thus increasing the receptive
field and enabling a prediction not only based on local decisions.

However, in sparse settings, this behavior is undesirable. With each application of
convolutions, active points blur into undefined regions and thus increasing the number
of data points which have to be considered in the next hidden layer. Thus, the size of
active points rapidly increases throughout the network and becomes computationally
infeasible. This phenomenon is called submanifold dilation problem [GEvdM18] and is

10



2.2. Learning Local Contexts in Euclidean Space Chapter 2. Related Work

illustrated in Figure 2.3. For volumetric approaches, the resolution of the quantization
grid bounds this expansion of data points. However, for continuous convolutions, it is
unbounded and thus not applicable at all.

A simple solution to the submanifold dilation problem is to restrict the space con-
volutions are applied to. Here, convolutions are only allowed to be applied at points
where valid feature vectors are present [GEvdM18,WSM+18,EKL20,TQD+19]. Spe-
cial provisions have to be taken in order to ensure that the receptive field is not only
limited to connected components but can reach throughout all the space. Chapter 2.2.2
deals with specific solutions for this challenge.

Enforcing Kernel Locality. Restricting the kernel to be only locally defined around
a center point leads to a limited number of points considered for the convolution. This
results in some interesting technical properties described in the next paragraph.

First, the computational load is reduced. Instead of considering an unbounded num-
ber of points for the convolution, locally restricted convolution kernels only consider
surrounding regions. Moreover, this explicitly enforces local feature learning. Stack-
ing these convolutions leads to an increased receptive field. Volumetric approaches
control the locality with the size of their discrete kernels analogous to 2D convolu-
tions [GEvdM18]. Contrastingly, continuous convolutions resort to various approaches
of neighborhood searches [HRV+18,TQD+19,WSM+18]. We refer to Chapter 2.2.3 for
more details on neighborhood notions for continuous convolutions.

2.2.2 Discrete Kernels for Sparse Signals

In the previous chapter, we have motivated learnable convolutions in their general form.
In this chapter, we focus on discrete convolutions as one instantiation of them. In order
to make them applicable, we firstly have to quantize the continuous space into regular
cubic volumetric pixels (voxels). This step can be seen as a special kind of pooling
which aggregates point cloud information and enables a more compact data represen-
tation by low-pass filtering the input data. This data representation is similar to dense
2D image representations which are de-facto standard for 2D image understanding. As
explained in Chapter 2.1.1, the curse of dimensionality makes it, however, computa-
tionally infeasible to deal with sparse large-scale scenes in a dense grid-like fashion.
Methods like [MS15] suffer from high-memory consumption and thus, are not able to
build complex enough models to achieve state-of-the-art results.

In this chapter, we focus on sparse discrete convolutions that extend standard convo-
lutions from dense to sparse grids and achieve remarkable results with a low memory
footprint. Active sites constitute the technical contribution that enables convolutions to
be applied in that manner. An active site marks a voxel to contain a valid feature vector.
In order to efficiently apply convolutions on the input data, sparse hash maps are used to
map active sites (voxel positions) to their corresponding feature vectors. As a represen-
tative of this category, we present submanifold sparse convolutions [GEvdM18] which
currently achieve competitive results in various 3D semantic segmentation benchmarks.

11
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Figure 2.4: Submanifold Sparse Convolution (SSC). SSCs are only applied centered around
active sites (green). For the convolution, just active sites are used and inactive
sites (red) are ignored, e.g. set to 0. Thus, the number of active sites stay con-
stant throughout the network and prevent the submanifold dilation problem (see
Figure 2.3). The figure is adopted from [GEvdM18].

(Submanifold) Sparse Convolutions. The idea of Graham et al. [GEvdM18]
consists of two parts: 1 Due to the curse of dimensionality, convolutions are only
applied if at least one active site is in the proximity of the kernel (sparse convolution),
2 With respect to the submanifold dilation problem, convolutions are only applied on
positions centered around active sites (submanifold sparse convolution).

In order to tackle requirement 1 , sparse convolutions are introduced. Sparse convo-
lutions are only applied at those positions in space where the discrete filter kernel covers
at least one active site. Here, we significantly reduce the computational load. Instead
of convolving over the entire space of the scene which mostly consists of inactive sites,
we only consider regions where data is present. If an inactive site is multiplied with
a kernel weight, it is set to 0 on-the-fly. The idea here is analogous to Equation 2.3
introduced in Chapter 2.2 and can be seen as a sampling method of the input data.

However, this approach does not solve the submanifold dilation problem. If the
sparse convolution is centered around an inactive site and active sites are in the prox-
imity of the filter kernel, we introduce a new active site for the next hidden layer (see
Figure 2.3). Since we stack many convolutions in modern neural network architec-
tures, we significantly increase the number of active sites throughout the network. This
eventually results in a vast computational load which makes sparse convolutions not ap-
plicable for deep neural network architectures (compare submanifold dilation problem
in Chapter 2.2.2). Prerequisite 2 deals with this aforementioned problem. Subman-
ifold sparse convolutions differ from sparse convolution in that they are only applied
to already active sites (see Figure 2.4). Applying submanifold sparse convolutions in-
troduce challenges regarding the size of the receptive field. In comparison with sparse
convolutions, submanifold convolutions are only capable of propagating information
within a single connected component. Since the submanifold is not dilated (blurred
out), we cannot exchange any information between disconnected components. As a
practical example, it might be helpful for the network to know that the nearby object is
a desk in order to distinguish between an ordinary chair and a desk chair. Thus, sub-
manifold sparse convolutional networks heavily rely on well-set pooling and strided
convolutional layers in order to bridge between connected components and propagate
information among them.

12
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Active Type C SC SSC

Yes FLOPs 3dmn amn amn
Memory n n n

No, a > 0 FLOPs 3dmn amn 0
Memory n n 0

No, a = 0 FLOPs 3dmn 0 0
Memory n 0 0

Table 2.1: Computational efficiency of convolutional operators. We compare dense convo-
lutions (C), sparse convolutions (SC), and submanifold sparse convolutions (SSC)
in terms of calculation steps and memory consumption. The convolution is applied
in d-dimensional space with a kernel size of f = 3, padding p = 1, m input features
and n output features. The number of actives sites in the proximity of the convolu-
tion is denoted as a. We adopt this comparison from Graham et al. [GEvdM18].

Computational efficiency. In Table 2.1, we compare the computational efficiency
of dense convolutions, sparse convolutions and submanifold sparse convolutions in
terms of number of calculation steps and memory consumption. Using a discrete filter
kernel with side length f = 3, we end up needing 3dmn calculation steps for d di-
mensions, m input features and n output features for dense convolutions since they do
not differentiate between active and inactive sites. The memory consumption always
equals the size of the output feature vector. Since (submanifold) sparse convolutions
operate on the active site space, the number of calculation steps equals amn with the
number of active sites in the proximity of the calculation a ≤ 3d . We already see a
clear performance improvement of (submanifold) sparse convolutions over dense con-
volutions. Moreover, in special cases such as an inactive center site or no active sites
in the convolution’s proximity, the calculation steps and memory consumption fall to 0
which constitutes a significant advantage of sparse convolutions or dense convolutions.

2.2.3 Continuous Kernels for Sparse Signals

In the previous Chapter 2.2.2, we have defined discrete kernels for sparse signals. In
order to be applicable, discrete kernels need a grid-structured representation. This
quantization constitutes a low-pass filtering of the input data. We, thus, deal with a
loss of information which might lead to worse segmentation results. In this chapter,
we present an orthogonal approach to discrete convolutions. Continuous convolutions
for sparse signals can be applied to raw point clouds without the inevitable loss of
high-frequency information. Here, the challenge consists in defining efficient continu-
ous kernels in terms of computation and memory consumption as well as introducing
countermeasures for the curse of dimensionality and the submanifold dilation problem.

13
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u1 a2

b2
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gl(u)

(a) Quadratic B-Splines used
by SplineConv [FL19]

(b) kernel points for aggregating features of neighboring
points as presented in KPConv [TQD+19]

Figure 2.5: SplineConv [FL19] and KPConv [TQD+19] represent two variations of
constrained implicit kernel representations where the learnable parameters
� are used to parameterize kernel functions with desirable properties.

Implicit kernel functions. In Equation 2.3, we have defined an interpretation of
Monte Carlo integration for continuous convolutions for K samples drawn from the
neighborhood distribution. We have left it open how the kernel function g is defined.
That is how the kernel function maps relative positions to their corresponding kernel
weights. In the case of discrete convolutions, g is defined as a simple look-up opera-
tion which maps neighboring voxel positions to their kernel weights stored in a matrix.
However, in the continuous case, we deal with infinitely many neighboring positions
and thus cannot define explicit look-up operations due to the infinite memory consump-
tion. In order ease the memory consumption problem, we resort to implicit kernel func-
tions:

g(p; �) = �(p; �) (2.4)

where the kernel function g maps a relative position p = xi − xk ∈ ℝd to its corre-
sponding kernel weights using a function � ∶ ℝd → ℝd parameterized by learnable
parameters �. In the same manner as the submanifold dilation problem is solved in
submanifold sparse convolutions, continuous convolutions solve the problem, as well.
Instead of applying the convolutional kernel at all location in the space, it is only ap-
plied at points with corresponding feature vector which results in a stable number of
points for subsequent layers.

(Un)constrained kernel functions. The learnable function � from Equation 2.4
has been subject to various works on continuous convolutions recently. As illustrated
in Figure 2.1, methods can be separated in two distinct groups: unconstrained [EKL20,
WSM+18] and constrained [TQD+19,FL19,MBM+17,XFX+18] implicit kernel func-
tions. In the unconstrained case, � is defined as a multi-layer perceptron directly oper-
ating on relative point positions.

In the constrained case, � is defined as a function where some of the parameters
are learnable. Here, the design of these functions can be influenced in order to ensure
specific properties of this convolution, e.g. kernel weights following a Gaussian Mix-
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ture Model [MBM+17] or B-spline function [FL19] (see Figure 2.5a). Generally, it is
possible to build up arbitrarily complex kernel functions with significantly less learn-
able parameters which ease the training process of such convolutions. In Figure 2.5, we
show the constrained kernel definitions of SplineConv [FL19] and KPConv [TQD+19].

2.3 Learning on Graphs

In Chapter 2.1.2 and Chapter 2.2, we have presented permutation-invariant networks
and convolutions on sparse signals. However, in this chapter we focus on an orthog-
onal approach representing 3D data as graph structures. Similar to the work of Fey
et al. [FL19], a graph is defined as  = ( ,  ,), whereas the vertex-feature matrix
 ∈ ℝN×f contains row-wise vertices with f -dimensional feature vectors each. These
vertices are interconnected via an edge-index matrix  ∈ ℕE×2

≤N of E edges where each
row encodes the directed edge relationship between two vertices. Moreover, the edge-
feature matrix  ∈ ℝE×d encodes d-dimensional edge features in a row-wise fashion.

Graphs are ubiquitously used in a variety of different research fields not limited to
the field of computer vision. For further reading, we like to refer to the work of Kipf
et al. [KW17] and Gilmer et al. [GSR+17] who use graph representations to approach
node classification problems on citation graphs or predicting molecular properties in
protein-protein interaction networks.

Meshes represent discrete manifolds embedded in 3D space. In our work,
we particularly deal with meshes which are instantiations of graphs embedded in 3D
space. Using 3D sensors, we obtain a point cloud of N points sampled from objects’
continuous surfaces, e.g. 2D manifolds embedded in 3D space. This continuous sur-
faces are transformed to discrete manifolds by meshing theN sampled points to gener-
ate interconnecting faces  ∈ 3 between vertices [BBL+17]. The edge-index matrix
 is simply induced by the set of faces  resulting in 2 ⋅ 3 directed edges per face.

We particularly benefit from the mesh’s ability to encode surface information by
edges between vertices. We can therefore learn surface-dependent features on the mesh
structure to represent the inherent three-dimensional shape of objects.

2.3.1 Graph Convolutional Neural Networks

The substantial advantage of graph convolutions over Euclidean convolutions (Chap-
ter 2.2) is the less restricted way of modeling relationships between data points. Here,
the edge-index matrix  is capable of interconnecting arbitrary vertices whereas Eu-
clidean convolutions are bounded to local neighborhoods in the Euclidean domain.
Most importantly, Euclidean convolutions even operate on vertices sampled from other
manifolds, e.g. another object in the scene. Thus, they wrongly fuse information which
lead to corrupted surface-dependent features.
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Definition. In the following paragraph, we discuss the general form of graph con-
volutional neural networks which is adapted from Fey et al. [FL19]:

v′i =

update vi with i
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞


(vi,□j∈ (i)

message mj,i
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
�
(

vi, vj , ej,i; �
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
aggregation i

; ) (2.5)

A graph convolutional layer basically consists of three steps: message, aggregation
and update step. Because of this behaviour it is often referred to as a message passing
algorithm where messages are generated, send over the directed edges of the graph,
aggregated at their receiving vertices and fused with the current state of the vertex. It
is considered convolutional since the learnable parameters � and  are shared among
all vertices and edges, respectively. In the next paragraphs, we shed light upon all three
components of graph convolutions.

Message step. In graph convolutional neural networks, the differentiable function
�
(

vi, vj , ei,j; �
)

∈ ℝℎ generates messages (ℎ-dimensional feature vectors) for each
edge (i, j) ∈  of the graph . It takes the vertex feature representations of vi and vj
as well as the edge feature ei,j into account and learns a message feature with trainable
parameters �. Intuitively, these messages are sent along the directed edges to the their
corresponding receiving vertices vi (see Figure 2.6b).

Here, a difference is established between Euclidean convolutions and graph convolu-
tions. In Equation 2.3, the convolutional kernel receives the relative position between
the center point and a neighboring point in the Euclidean domain. Contrastingly, in
Equation 2.5, graph convolutions operate in the graph space where neighboring ver-
tices can be arbitrarily distant. Thus, the receptive field increases in the graph domain
and not in the Euclidean domain. Consequently, by propagating messages, with each
applied graph convolution, the graph is explored in a 1-hop fashion. Moreover, the Eu-
clidean convolution kernel g generates kernel weights according to relative Euclidean
position, whereas the graph convolutional kernel � takes the feature representation of
vertices vi and vj into account. Locality in graph convolutional neural networks is thus
defined in terms of the graph feature space rather than the Euclidean domain.

Aggregation step. From incoming edges, each vertex receives a arbitrary number
of messages mi =

(

mi,j ,… , mi,Mi

)T ∈ ℝMi×ℎ. The sizeMi differs for each vertex i and
is dependent on its number of neighbors. Therefore, aggregating incoming messages
to a fixed-size representation poses a challenge and makes fully-connected or convolu-
tional approaches inapplicable.

We resort to permutation-invariant aggregation functions = □(⋅), since the vary-
ing number and the ordering of messages should not influence the aggregated feature
vector (see Figure 2.6c). Non-learned functions include max(⋅), min(⋅) and mean(⋅) or
even PointNets. The dedicated Chapter 2.1.2 deals with permutation-invariant func-
tions in more detail.
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Figure 2.6: Visualization of a single graph convolution. Agraph convolution consists
of a message (b), aggregation (c) and update (d) step. Messages are past
along the edges (b), at their receiving vertices aggregated in a permutation-
invariant fashion (c) and subsequently the state of the current vertex is up-
dated by fusing the old and new features (d). For illustration purposes, we
show all steps just for vertex v1.

Update step. The final step of a graph convolution consists of updating the feature
representation vi of vertex i. The differentiable function 


(

vi,i; 
)

with learnable
parameters  learns to fuse old vertex features with the aggregated features of the re-
ceiving messages. Figure 2.6d illustrates the step.

Efficiency. In Algorithm 1, we present a parallized version for graph convolutional
neural networks. Each major step (message, aggregation and update) can be performed
in parallel and thus utilizes the GPU efficiently. Specialized libraries such as PyTorch
Geometric [FL19] or Graph Nets [BHB+18] provide implementation for leveraging
graph neural networks for GPUs.
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Algorithm 1: Message Passing in Graph Neural Networks
Input : Initial graph  =

(

 (0),  ,
)

with vertex feature matrix
 (0) ∈ ℝN×f (0) ofN vertices with f features at step k = 0, edge
index matrix  ∈ ℕE×2

≤N of E edges and edge features  ∈ ℝE×d with
d dimensional edge features

Output: vertex feature matrix  (k) ∈ ℝN×f (k) after k steps on the graph 

while k < K do // perform K message passing steps
k ← k + 1;
foreach edge (i, j) in parallel do

mi,j ← �(k)
(

 (k−1)
i , (k−1)

j , i,j; �
)

; // message step

end
foreach vertex i in parallel do

ai ← □j∈ (i)mi,j; // aggregation step

 (k)
i ← 
 (k)

(

 (k−1)
i , ai; 

)

; // update step

end
end

2.3.2 Dynamic Graph CNN

As a representative of graph convolutional neural networks, we present Dynamic Graph
CNNs introduced by Wang et al. [WSL+19]. Its unique appeal lies in the dynamical
recalculation of graphs’ k-nn neighborhoods in various latent feature spaces. In contrast
to Euclidean convolutions, this breaks the Euclidean locality of feature learning and
allows to group and refine semantically similar points in the feature space.

EdgeConvs interpreted as GCN layers. In this paragraph, we show how Edge-
Convs are classified into the graph convolutional framework. In the following, we thus
define the necessary message, aggregation and update function. The message function
� for EdgeConvs are defined as follows:

�
(

vi, vj , ej,i; �
)

= '
(

[vi, vj − vi]; �
)

(2.6)

' denotes an multi-layer perception parameterized by � with an arbitrary number of
hidden feature representations (interlinked with ReLU activation functions). The input
comprises concatenated features of the current vertex i as well as the difference of the
features of neighboring vertices j and the current vertex i. Therefore, the directed edge
is explicitly modelled by the difference of feature vectors which gives the operator its
name EdgeConv. For aggregating messages, DGCNN relies on a simple □ = max(⋅)
permutation-invariant function in order to obtain the most pronounced feature per di-
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Figure 2.7: Dynamically recalculating k-nn graphs in the feature space. DGCNN’s dis-
tinctive feature is its property of dynamically recalculating the k-nn graph in the
learned feature space. The figure illustrates how the k-nn graph of the l keypoint
changes after each application of a dynamic EdgeConv in the current feature space.
Points belonging to semantically similar object parts such as wings, turbines and
fuselags are located close to each other in deeper feature spaces neglecting the
Euclidean distance separating them. The figure is adopted from [WSL+19].

mension. The feature representation of the current vertex i are updated by completely
forgetting the old state and replacing it with the aggregated incoming messagesi:



(

vi,i; 
)

= i (2.7)

In conclusion, we yield the following graph convolutional equation for DGCNN:

v′i = 

(

vi,□j∈ (i) �
(

vi, vj , ej,i; �
))

= max
j∈ (i)

'
(

[vi, vj − vi]; �
) (2.8)

Dynamic vs static. A unique feature of DGCNN is its property of dynamically
recalculating neighborhoods and spanning a graph between a vertex and its k nearest
neighbors in feature space before applying a subsequent EdgeConv. Thus, we deal with
a series of graphs

(

(0),… ,(l),… ,(L)
)

with vertex sets  (l) iteratively mapped into
learned feature spaces (l) and dynamically recalculated edge-index sets (l) in this very
space. This allows to learn non-local features not based on the Euclidean locality of
points but their proximity in feature space. In Figure 2.7, the feature space is grouped
in specific areas where points belonging to certain object parts are located next to each
other while other parts are in distant positions. Since we operate on k-nn graphs, these
groups of vertices will intra-connect with vertices in the same group which results in
building graph clusters in the feature space, while these clusters get refined with each
applied edge convolution.
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Contrastingly, edge convolutions can also be performed in a static fashion where the
graph is not recalculated after applying an edge convolution. Mathematically, we again
produce a series of graphs but here, the vertices in the initial vertex set  (0) are mapped
to latent feature spaces  (l) while the edge-index set  stays constant throughout all the
network. Here, we do not benefit of obtaining graph clusters in latent feature spaces as
we do for the dynamic version. However, this dynamic recomputation of edges comes
with a critical downside. Computationally, calculating k-nn neighbors lies in (n2)
for time and space in the number n of vertices. For arbitrarily large point clouds, this
becomes a severe bottleneck and prevents from building deep dynamic graph CNNs. Li
et al. [LMTG19] show in their work that static but deep graph convolutional networks
outperform their dynamic but shallow counterparts.

2.4 Multi-Scale Hierarchies on Meshes

In this chapter, we motivate the importance of multi-scale hierarchies in general and,
in particular, for geometric deep learning. Recent publications for 2D and 3D image
understanding rely on multi-scale hierarchies [TQD+19,GEvdM18]. A multi-scale hi-
erarchy on meshes consists of a sequence of hierarchy levels of the same initial mesh.
With each level, the initial mesh is further simplified. Thus, each hierarchy level con-
sists of fewer data points as the previous level. The pooling operations constitute a
surjective function mappingN data points from level l−1 toM < N points in level l,
necessarily decreasing the number of data points by aggregating features of data points
pointing to the same representative.

Pooling operations are widely used, mainly because of the following three proper-
ties: 1 Pooling the input signal results in a low-pass filtering which filters out small
fluctuations in the signal. This makes the neural network invariant to small transfor-
mations [GBC16]. 2 (graph) convolutional kernels defined on coarser data repre-
sentations lead to an increased receptive field which can capture more global features.
Therefore, shallower hierarchy levels are responsible for capturing locally restricted
fine-grained features and deeper hierarchy levels catch features particularly useful for
global localization. 3 Moreover, the reduced number of data points comes with a
smaller computational burden for the algorithm. We are thus able to build more com-
plex architectures with fewer data points involved.

Multi-Scale hierarchies in discrete 2D and 3D spaces. Pooling operations
initially gained popularity in the field of 2D image understanding. Here, multi-scale
hierarchies are generated using permutation-invariant pooling functions (e.g. max(⋅),
min(⋅) and mean(⋅)) for aggregating features from nearby pixels. We therefore define a
cubical pooling kernel which is slid over the input data in a convolution-like fashion.
The kernel size f defines the receptive field of the kernel and the striding factor s
defines the step size of the convolution. In Figure 2.8, we illustrate max pooling for
discrete signals in 2D.
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Figure 2.8: MaxPooling for discrete signals. We showmax pooling with kernel size of f = 2
and a stride of s = 2 (non-overlapping). Features in the locality of the kernel are
aggregated in a permutation-invariant fashion (here: max(⋅)) to obtain a represen-
tative of this neighborhood. We thus significantly reduce the spatial size of the
signal resulting in robustness to small transformations as well as increasing the
receptive field of subsequent convolutions.

This idea is easily extensible to 3D as well as sparse signals. Here, the pooling ker-
nel is defined in three dimensions and for sparse signals, active sites analogously to
sparse convolutions are used [GEvdM18] (see Chapter 2.2.2). An inherent problem
of sparse convolutions is solved since pooling operations can merge previously dis-
connected components that could not be bridged with plain submanifold convolutions.
Thus, pooling is a measure to increase the information flow within a point cloud.

Mesh simplification. In this work, we particularly focus on deep learning on graph-
and mesh-based data structures. As outlined in the previous chapters, recently, multi-
scale architectures gain much popularity due to their performance gains [TQD+19,
GEvdM18, CGS19]. Leveraging pooling methods operating directly on discrete and
continuous signals (e.g. images and point clouds) fall short since we would not be able
to use the graph connectivity information in deeper hierarchy levels. We thus resort
to mesh simplification algorithms as the atomic operation for building hierarchy lev-
els on meshes. Analogously to pooling operations, mesh simplification is a natural
choice since it reduces the number of vertices, edges and faces while maintaining some
user-defined quality requirements which bound the introduced geometric distortion of
simplification. Moreover, we have to take care of the topology of the mesh. The ques-
tion arises if we want manifolds to merge and thus, connecting previously disconnected
parts during the simplification process. For example, for medical imaging this is crit-
ical but for rendering purposes or semantic segmentation, this poses benefits since we
gain a better information flow through the graph neural network [GH97].

In the following of this chapter, we present non-iterative and iterative methods rep-
resented by Vertex Clustering [RB93] and Quadric Error Metrics [GH97] as represen-
tatives for both groups. We highlight their benefits and downsides and the area where
they are best applicable.
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Figure 2.9: Vertex Clustering. Using an uniform grid placed on top of the mesh, the new rep-
resentative vertex is defined as the center of gravity of the vertices which fall into
the same cell of size s. Connectivity is preserved by keeping track of aggregated
vertices to their corresponding occupied grid cells. Degenerated artifacts like dan-
gling edges, disconnected vertices and drastic topological alterations might occur.

2.4.1 Vertex Clustering

Vertex Clustering as introduced by Rossignac et al. [RB93] simplifies the mesh in a
non-iterative way without being dependent on the underlying polygonal mesh structure.
Therefore, the output does not have to be a triangular mesh and might contain polygons
of arbitrary degree and even isolated vertices and edges which are not part of faces.

The fundamental idea of this algorithm is to place a uniform grid with cell size s on
top of the mesh and aggregate vertices that fall into the same cell. The new representa-
tive for a cell is defined as the center of gravity of the contained vertices. The algorithm
keeps track of the connectivity of vertices and connects two newly introduced represen-
tatives if at least two vertices in their responsible cells have been connected previously.
Intra-cell connections are simply deleted since the corresponding vertices have been
collapsed together. In Figure 2.9, we present an illustration of a Vertex Clustering step
with cell size s and show some important degenerate artifacts which might occur dur-
ing the process. We highlight that Vertex Clustering is able to make drastic topological
changes to the mesh. In this example, the orange, red and gray triangle have been
disconnected in the original mesh but share a vertex in the simplified mesh. While
allowing better information propagation by connecting disconnected components, this
behavior might result in critically altered surface information and hinders the learning
process. Moreover, Vertex Clustering can generate artifacts known as dangling edges
(see the blue edge in the simplified mesh which is not part of any face). In terms of
graph neural networks, this however does not pose any problems. Certainly, an isolated
vertex does. Here, we perform graph convolutions on vertices which neighborhood sets
consist only of themselves. Useful feature extraction is not possible anymore.

However, Vertex Clustering provides significant benefits. The cell size parameter
s ∈ ℝ>0 introduces a geometric error bound. The distance between a representative
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Figure 2.10: Quadric Error Metrics. The cow model is iteratively simplified to models
using 5, 804, 994, 532, 248 and 64 faces, respectively. The special appeal
of using Quadric Error Metrics is their preservation of distinct features, e.g.
horns and hooves, throughout many simplification steps. The figure is adopted
from [GH97].

and the vertex itself cannot exceed
√

3 ⋅ s. Thus, Vertex Clustering shares the property
of locality pooling with standard 2D/3D pooling approaches on 2D images or 3D point
clouds. We therefore consider Vertex Clustering as a simplification algorithm which
especially takes care of low-pass filtering the vertex density of the mesh.

Challenging for Vertex Clustering is its dependency of the placement and orienta-
tion of the surrounding grid which results in drastic changes to the output mesh [GH97].
Moreover, the properties of the simplified mesh are challenging to control. Provided
by the cell size parameter s only, we can not control the number of vertices or faces in
the resulting mesh nor the maximal allowed geometric error introduced by the simpli-
fication. Despite its flaws, Vertex Clustering has gained much popularity, not only due
to its simplicity and low runtime.

2.4.2 Quadric Error Metrics

In this chapter, we present Quadric Error Metrics in order to approximate the geometric
distortion introduced by contracting pairs of vertices [GH97]. The goal is to iteratively
simplify the mesh by contracting the pair of vertices which adds the smallest geometric
distortion to the simplifiedmodel (see Figure 2.10). In each iteration, we choose the pair
contraction placed on a heap which introduces the minimal geometric error. Quadric
matrices Q ∈ ℝ4×4 heuristically approximate this error in a compact and memory-
efficient way. Moreover, it preserves primary and distinct features of the original model
throughout all simplified variants.

Contraction of vertex pairs. The distinguishing feature of Quadric Error Metrics
is its iterative simplification. The iterative process is achieved by an atomic operator
(contraction of vertex pairs) which generates a locally simplified mesh. We thus obtain
a sequence of simplified meshes (M0,… ,MN ) for N performed atomic vertex pair
contractions. If the quality requirements are fulfilled for a particular mesh Mn (e.g.
number of faces / vertices, maximal geometric error), we extract the meshMn from the
sequence and use it a level in our multi-scale hierarchy.

The question arises which vertex pairs (v,w) should be subject to a potential con-
traction. In the simplest case, we only consider pairs of vertices that are adjacent in
the mesh. We thus ensure that every contraction cannot join previously disconnected
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components of the mesh. However, this procedure comes with its flaws. Firstly, the
simplification process might be to restricted. For instance, a surface (e.g. floor, ceiling)
consisting of multiple disconnected parts cannot be merged and we simply end up with
deleting parts of the surface due to the constraint of minimizing the number of vertices
within the mesh. A better approach constitutes the merging of previously disconnected
parts (e.g. introduced by scanning artifacts) to form a connected representation of the
entire surface which can then be approximated by a small number of vertices. This
behavior is especially desirable when defining a graph neural network over the mesh.
Here, we particularly interested in allowing an information flow through previously
disconnected parts of the mesh. Disconnected components hinder this propagation of
information and might lead to worse segmentation performances.

Therefore, Garland et al. [GH97] introduce a threshold twhere pairs of non-adjacent
vertices (v,w) are treated as valid pairs if their Euclidean distance does not exceed the
threshold t: ||v − w||2 < t. The parameter t is subject to hyperparameter tuning. For
t = 0, we only consider vertices connected by edges and for t → ∞, we consider
all n2 pairs of vertices neglecting the distance between them which might result in a
significant drop in runtime.

Exact geometric error in terms of distance to original planes. Performing the
contraction (v,w)→ r of the pair of vertices (v,w) to a new representative r introduces
geometric distortion. Δ(r) is defined as the squared distance from r to its assigned
planes p which have been assigned to v or w previously, and constitutes a metric in
which we measure the costs which are introduced by performing this contraction:

Δ(r) =
∑

p∈ planes(r)

(

pT r
)2 =

∑

p∈ planes(r)
rT

(

ppT
)

r = rT
(

∑

p∈ planes(r)
Kp

)

r = rTQrr

(2.9)
Here, the vector p constitutes the normalized normal of the corresponding planes of
vertex r. Therefore, the scalar product pT r results in the signed distance from the vertex
r to plane p.
The fundamental error quadric Kp used in the formula d(x,p) = xTKpx returns the

squared distance of an arbitrary point x in space to plane p:

Kp = ppT =
⎛

⎜

⎜

⎜

⎝

a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2

⎞

⎟

⎟

⎟

⎠

(2.10)

In the initial mesh, we assign a plane p to a vertex v if v is a corner of the face embed-
ded in the plane p. Thus, the geometric error for an initial vertex v is simply Δ(v) = 0.
When the algorithm contracts the pair (v,w) to the representative r, the union of planes
of v and w (e.g. planes(r) = planes(v) ∪ planes(w) ) will be associated with the repre-
sentative r in the shape of a list of fundamental error quadrics Kp.
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contraction pair
(v,w)→ r

exact and explicit union
Qr =

∑

p∈ (planes(v) ∪ planes(w))Kp

heuristical summation
Q̄r = Qv +Qw

Find r̂ such that:
Δ(r̂) = r̂T Qr r̂ → min.

Insert [(v,w), r̂]
in heap keyed by Δ(r̂)
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Figure 2.11: Updating the heap for a contraction pair. During the initialization phase of the
algorithm and when a contraction is performed, we maintain a heap data structure
where we store potential contractions keyed by their corresponding contraction
costs ascendingly. Instead of explicitly calculating the exact union of original
planes associated with a vertex, we resort to an implicit method where we allow
overlaps in the aggregation of original planes.

Minimizing Δ(r) yields the exact position of r. As we see in Equation 2.11, the
fundamental error quadric Kp is a symmetrical 4 × 4 matrix. The summation of an
arbitrary number of fundamental error quadrics thus leads to a symmetrical matrix, as
well. Therefore, Equation 2.9 poses a quadratic problem which minimum can be found
solving a linear equation system:

⎛
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⎜
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⎝
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⎟
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⎠

(2.11)

In the case that the matrix is not invertible, Garland et al. [GH97] search for the mini-
mum along the edge (v,w). If this fails, they take the minimal cost of the endpoints v
and w or their midpoint.
After performing a contraction (v,w) → r, the fundamental error quadrics Kp of v

andw are transferred to r and contraction costs and new representatives for all affected
contractions are recalculated. In the exact setting, we therefore have to explicitly re-
calculate the error quadric Qr based on the updated list of fundamental error quadrics.
Although exact, this method needs a lot of computations and memory to maintain the
heap of valid contraction pairs and to store the list of fundamental error quadric Kp of
the original planes. Thus, this method is computationally unfavorable.

Approximating the geometric error. In contrast to the exact method, Garland et
al. [GH97] resort to an approximate method which significantly improves the compu-
tational time but still guarantees an upper bound for overapproximating the geometric
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Algorithm 2: Incremental Decimation with Quadric Error Metrics [GH97].
Input : Initial mesh  = ( , ) with vertex set  ⊆ ℝ3 in 3D space, and

edge-index set  ⊆ 2. Let t ≥ 0 be the threshold for selecting pairs.
Output: simplified mesh  =

(

 (k),(k)
)

after k steps

Initialize the cost Δ(v) = 0 for each vertex v;
Calculate error quadric Qv for each vertex v ∈  ;
foreach pair of vertices (v,w) ∈ 2 do

if (v,w) ∈  or ||v −w||2 < t then
add (v,w) to the set of valid pairs;

end
foreach pair of vertices (v,w) ∈ valid pairs do

if optimal placement then
/* see Equation 2.9 */
Find r which minimizes Δ(r) = rT

(

Qv +Qw
)

r
else

r← argmin (Δ(v),Δ(w));
end
Insert [(v,w), r] on the heap keyed by the contraction cost Δ(r);

end
while convergence criterion not met and heap is not empty do

/* criterion may be a maximal geometric error or a
specified number of vertices or faces */

pop top pair (v,w) with replacement vertex r;
perform contraction to r and delete [(v,w), r] from heap;
exchange v and w entries in heap with r and recalculate r′ and Δ(r′);

end

error. Quadric error matrices Q (cf. Equation 2.9) constitute a compact and well local-
ized way of keeping track of contraction costs. Rewriting this formula, we end up with
a quadratic formulation of Δ(r) = rTQrr which allows capturing the error shape with
the matrix Qr. In contrast to explicitly calculating Qr for a representative (v,w) → r
based on the union of associated original planes p in the shape of the sum of funda-
mental error quadrics Kp, we implicitly calculate the sum of the error quadrics Qv and
Qw to obtain an estimate Q̄r = Qv +Qw. Q̄r shows the same mathematical properties
as the exact version since the sum of two symmetrical matrices produces a symmetrical
matrix again, as well. Thus, the optimal placement of r is calculated in the same way
as in the exact method. A conceptual illustration is depicted in Figure 2.11.

However, this update regime leads to a source of approximation errors. Instead of ex-
plicitly taking the union of the planes of v andw, we allow an overlap in the aggregation
of planes by simply adding them up. In the case of previously disjoint vertices, the sum
of quadric matrices equals the explicitly calculated sum of fundamental error quadrics
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Kp over the set of planes p. However, if vertices have been connected previously, we
count the corresponding planes multiple times. Since we deal with triangular meshes,
an error quadric is added twice as much, tops. Although overapproximating the intro-
duced error, the update rule becomes greatly simplified since it only has to maintain a
single 4 × 4 symmetric matrix (10 floating point numbers) instead of an arbitrary large
list of fundamental error quadrics Kp of associated original planes p.

Implementation details. We are interested in performing the contractions ordered
by the introduced geometric error ascendingly. We, therefore, use a heap data structure
keyed by the contraction costΔ(r). We store the contraction pair (v,w) and the new rep-
resentative r̂. When we perform a contraction (v,w)→ r̂, we need to find the elements
in the heap containing the vertices v and w and update their entries by recalculating
the optimal replacement vertex r′ with corresponding contraction costs. Furthermore,
we delete newly introduced duplicates. In Algorithm 2, we show a pseudo-code imple-
mentation of incremental decimation with Quadric Error Metrics.

2.5 Sampling Methods

Unlike discrete spaces, we cannot define an upper limit of points within a certain vol-
ume. An explicit representation of an unbounded neighborhood or point cloud is com-
putationally not feasible since we deal with hardware restrictions in terms of memory.
Thus, we need to resort to approximate methods. For this purpose, we draw samples
from the point cloud or neighborhood distribution to approximate the point cloud or
neighborhood with only a fraction of data points. In an efficient manner, sampling
methods select a set of representative points from the full-sized neighborhood or point
cloud set regarding some user-defined quality measurements (e.g. number of sampled
points K or the upper limit of the sample density distribution).
In the following two chapters, we survey sampling methods for sampling the Eu-

clidean space point clouds are embedded into as well as sampling neighborhoods which
are particularly interesting for convolutional approaches.

2.5.1 Sampling Continuous Point Clouds

Unlike quantized point clouds (e.g. for enabling discrete submanifold sparse convolu-
tion in Chapter 2.2.2), we cannot provide an upper bound for points in the scene. Since
we deal with restricted hardware, especially in terms of memory, we need to limit the
number of points in the scene. Therefore, sampling becomes inevitable. In the fol-
lowing, we chronologically present prominent sampling methods for continuous point
clouds showing their benefits, weaknesses and their computational complexity.
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Uniform sampling. Thomas et al. [TQD+19] and Simonovsky et al. [SK17] use
uniform sampling (also called: VoxelGrid sampling) which can be seen as a special
case of Vertex Clustering (see Chapter 2.4.1). It discretizes the continuous space by
placing a cubical grid over the point cloud and replaces all points which fall into the
same cell with a representative point calculated as the center of gravity. While being
computationally cheap as its complexity lies in (n), this sampling method is invariant
to the underlying distribution of the point cloud. Thus, samples in regions characterized
by a low density are over-represented in the method’s output. Moreover, this sampling
method does not provide any randomization to the algorithm. In each iteration, the
same samples are drawn which might lead to overfitting.

Random sampling. PointNet [QLJ+17] leverages random sampling which selects
K points from the point cloud randomly. Although being computationally cheap and
eliminating uniform sampling’s downside of being invariant to the point distribution,
this method under-represents areas in the scene which have substantially less points.
Especially when considering LiDAR point clouds, this downside becomes apparent.
Objects placed nearby to a LiDAR sensor have significantly more samples than distant
objects. However, the fixed sample size of K samples is particularly useful to harness
the parallelization capabilities of today’s GPUs.

Farthest point sampling (FPS). Qi et al. [QYSG17] address the downsides of
random sampling while still guaranteeing a fixed sample size K . Farthest Point Sam-
pling (FPS) iteratively adds points to the set of sampled points if their distance to the
rest of the set is maximal. Compared with random sampling, they claim that this results
in better coverage of the scene since also points of less populated regions are likely to
be drawn. However, this comes with a computational overhead of (n2) since in each
run of FPS, all distances between points have to be recalculated.

Inverse density sampling (IDS). Groh et al. [GWL18] propose a method which
adapts FPS such that it still provides good coverage of the scene while being signifi-
cantly faster. They approximate the density at a specific point x in space as follows:

�̃(x) =
∑

x′∈ (x)

||x − x′||2 (2.12)

The neighborhood  (x) can be obtained using a k-nn or radius search. Samples are
then drawn proportional to the unnormalized density distribution �̃. IDS benefits from
the fact that the density estimates of points only have to be calculated once. For later
training epochs, new samples can be easily drawn from the estimated density distribu-
tion. Thus, sampling becomes a (n) problem in the number n of points in the point
cloud. Moreover, they claim that this approach is useful for convolutional approaches
since they have already calculated point neighborhoods in a preprocessing step.
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c)a) b) Poisson diskInput Farthest point

Figure 2.12: Bounding the density by Poisson disk sampling. By defining a maximal num-
ber of non-overlapping Poisson disks per unit sphere, we introduce an upper
bound of disks placed in a certain region. We therefore limit the bias of a sample
being drawn from a high-density region as well as limiting the maximal number
of neighbors by the Kepler conjecture [HAB+17]. Contrastingly, we see that FPS
is not capable of restricting the maximal number of points being drawn from a
high-density region. This figure is adopted from [HRV+18].

Poisson disk sampling (PDS). Similar to IDS, Poisson disk sampling [HRV+18]
aims to draw samples according to the point cloud distribution while emphasizing
sparser over dense regions. However, it has its special appeal of guaranteeing an upper
bound of points per unit sphere, thus being particularly well-suited for convolutional
approaches (see Figure 2.12). The idea of PDS is to replace each drawn point sample by
a sphere with a certain radius rp (called: Poisson disk) which is not allowed to overlap
with other spheres. Using the Kepler conjecture [HAB+17], this introduces an upper
bound n of Poisson disks which might occur in a sphere with radius r ≥ rp:

n <
�
(

r + rp
2

)3

3
√

2rp3
(2.13)

However, this does not result in a fixed number K of drawn samples. PDS is therefore
not able to leverage the acceleration methods used by the GPU to reserve memory of
constant sizes in advance.

2.5.2 Sampling Continuous Neighborhoods

Convolutional approaches learn locally restricted features dependent on their neighbor-
hood. Wang et al. [WSL+19] and Engelmann et al. [EKL20] leverage k-nn graphs to
approximate the neighborhood for convolutions. k-nn graphs consist of the k nearest
neighbors to a specific center point given an arbitrary distance measure. k-nn graphs
are beneficial since they always return the same number of neighboring points and adapt
to regions with diverse densities naturally.
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Figure 2.13: k-nn approaches under varying sampling densities. The receptive field of a
k = 2-nn neighborhoods is significantly smaller in dense sampling settings and
sparser in low density settings. Thus, k-nn approaches are particularly vulnerable
to sampling approaches which do not preserve the overall density distribution of
the point cloud in contrast to approaches relying on radius neighborhood. This
figure is adopted from [HRV+18].

However, Hermosilla et al. [HRV+18] and Thomas et al. [TQD+19] argue that
k-nn graph approaches suffer from non-uniform densities in the point cloud (see Fig-
ure 2.13). Thus, they propose to use radius graphs to define the notion of neighbor-
hoods for points. However, very densely populated regions can lead to arbitrarily large
neighborhoods, which introduces a computational burden for convolutional methods.
Sampling the neighborhood space becomes inevitable.

Approaches likeMCCN [HRV+18] andKPConv [TQD+19] control the density of the
point cloud by sampling it via uniform or Poisson disk sampling which both guarantee
an upper bound of samples within a unit sphere. However, this falls short since the
challenge is not the number of samples drawn from the distribution; it is the size of the
neighborhood which is prohibitive for convolutions. Therefore, the concurrent work of
Lei et al. [LAM19] randomly samples the neighborhood to obtain at most K samples
for approximating the neighborhood set while leaving the actual point cloud unchanged.

In this work, we propose Random Edge Sampling (RES) which is similar in spirit to
the work of Lei et al. [LAM19] but its distinctive feature is the probabilistic interpre-
tation of reducing the expected size of the neighborhood set (see Chapter 3.3).
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3
DualConvNet

The purpose of this thesis is to prove that a combination of geodesic and Euclidean
convolutions improves the feature representation per vertex. With this in mind, we in-
troduce a novel family of deep hierarchical network architectures called DualConvNet.
Its goal is to leverage a simple but well-established architecture for semantic segmen-
tation in order to ensure modularity and measurability of all components. Thus, we
are able to base our claims about geodesic and Euclidean convolutions on a variety of
experiments with each component observed individually (see Chapter 5). The idea of
the architecture is to combine geodesic and Euclidean convolutions in dual convolution
modules such that the network explores the 3D surface mesh and the Euclidean domain
simultaneously in each step of the algorithm.

When applying geodesic convolutions on the mesh, we explicitly learn features fo-
cusing on the surface structure of the scene. Its distinctive feature is that it neglects
geodesically remote but spatially close vertices. Hence, we assume that geodesic con-
volutions are more likely to learn feature representations for object shapes. Contrast-
ingly, Euclidean convolutions focus on the Euclidean proximity of vertices in terms of
k-nn or radius neighborhoods in 3D space. They enable an information flow between
geodesically disconnected parts of the scene and therefore, we assume that they learn
the interaction between objects.

Modern architectures leverage multi-scale hierarchies in order to learn feature repre-
sentations at different resolutions from fine-grained, highly localized features to coarse
but semantically enriched features of larger patches. Geodesic convolutions however
rely on a preserved mesh structure at each hierarchy level in the network. Thus, we de-
scribe the necessary mesh-centric pooling operations, such as our extensions to Vertex
Clustering and Quadric Error Metrics by introducing pooling trace maps. Pooling trace
maps allow to convert high-resolution to low-resolution meshes and vice versa while
guaranteeing user-defined quality requirements of the mesh structure (see Chapter 2.4).

Since Quadric Error Metrics does not define an upper bound of the vertex density in
the continuous Euclidean domain, we cannot guarantee a maximal number of neighbors
that we have to consider for applying Euclidean convolution on radius graphs. Thus, it
is inevitable to resort to sampling methods to approximate the radius neighborhood for
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DC DC + ... DC DC + ...

Mesh Level 1

DC DC + ... DC DC + ...

Mesh Level 2

DC DC + ...

Mesh Level 3

Pooling

Pooling

Unpooling

Unpooling

Figure 3.1: Architecture of DualConvNets. DualConvNets follow the symmetrical encoder-
decoder architecture of U-Nets [RFB15]. Several dual convolutions (DC) compris-
ing Euclidean and geodesic convolutions are stacked to enlarge the receptive field
in both the spatial domain as well as on the 3Dmesh surface structure. They are by-
passed by skip connections for better convergence in each graph level. (Un)pooling
operations with pooling trace maps generated by mesh simplification algorithms
are leveraged to convert the mesh to different resolutions for feature learning at
various scales.

enabling convolutions. We therefore introduce Random Edge Sampling (RES). RES is
a probabilistic sampling method that reduces the potentially unlimited neighborhood to
an expected sampling size. Thus, allowing us the vary the size during training as well
as test, and produce predictions based on a better approximation of the neighborhood.

3.1 Network Architecture

In Figure 3.1, we present our multi-scale DualConvNet architecture which adopts the
U-Net architecture [RFB15] as its fundamental building block. We follow the same
symmetrical encoder-decoder architecture with additional skip-connections intercon-
nected them in the same hierarchy level. At each hierarchy level, we perform several
dual convolutions (see Figure 3.2) in a consecutive manner. Dual convolutions com-
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Figure 3.2: Dual Convolution Module. Geodesic and Euclidean convolutions are applied in
a parallel manner. Thus, we enlarge the receptive field in the spatial domain as
well as on the surface mesh structure simultaneously. Input features of size N ×
fl−1 ofN vertices with fl−1 features are independently processed by geodesic and
Euclidean convolutions which output the halved output feature size in order to be
comparable with SingleConvNet architectures.

prise geodesic and Euclidean convolutions applied in parallel. Thus, we can learn fea-
tures in both the Euclidean domain as well as on the 3D surface mesh by enlarging the
receptive field in both domains simultaneously. The resulting features of both convo-
lutions are concatenated and serve as input for the following dual convolution. In order
to enable a better convergence, we by-pass each dual convolution module with skip-
connections to allow an unhindered gradient flow as proposed by He et al. [HZRS16].
We learn features at various scales in order to capture fine-grained, highly localized de-
tails at high-resolution hierarchy levels and coarse but semantically enriched features
for large patches in low-resolution representations of the same mesh. We thus define
the necessary (un-)pooling operations relying on pooling trace maps generated from
mesh simplification algorithms.

We use aU-Net like architecture due to itsmodularisation capabilities. In the ablation
study, we individually measure the impact of all architectural components. Here, we
vary the mesh simplification algorithm for generating low-resolution mesh representa-
tionx, as well as the number of hierarchy levels used by the architecture. Moreover, we
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vary the number of dual convolutions and even disable them altogether to measure the
effect of each convolution independently and in parallel. Hence, we make reasonable
claims about the combination of geodesic and Euclidean convolutions.

The DualConvNet family makes comparison between geodesic and Euclidean con-
volutions simple. We will refer to an instantiation of our network that only operates in
a single space as a SingleConvNet, whereas our full model operating simultaneously in
both spaces is referred to as a DualConvNet. Note that SingleConvNet are a subset of
the family of DualConvNets since they equal DualConvNets if we set the number of
filters of the second convolution type to 0 everywhere.

3.2 Euclidean and Geodesic Graph Convolutions

Dual convolutions comprise Euclidean and geodesic convolutions. As we have pre-
sented in Chapter 2.2, there exists a vast variety of convolutions for the 3D and graph
space including convolutions applied on discrete and continuous as well as sparse and
dense settings. Whereas the decision to use graph convolutional neural networks for
learning geodesic features on the 3D surface mesh lies at hand, the decision which
convolution type to use for Euclidean convolutions is more involved. We use graph
convolutions for both domains in order to limit the number of hyperparameters to our
algorithm and to ease the comparison of the results. In this work, we focus on the neigh-
borhood definitions which differentiate geodesic convolutions fromEuclidean ones (see
Figure 1.2): Geodesic graph convolutions use 1-hop neighborhoods, i.e., all vertices
which are connected to the center vertex by exactly one edge. Therefore, this defines
a locally defined surface patch of the mesh. In parallel, Euclidean graph convolutions
rely on the Euclidean neighborhood of a vertex i which is defined over the Euclidean
distance between pairs of vertices. In this work, we use Euclidean neighborhoods lim-
ited in their size by using k-nn or radius graphs. We thus ensure Euclidean locality
which is an essential property of convolutions (see Chapter 2.2.1). We compare both
approaches in Chapter 5.

Convolution operator. Weperform graph convolutions on the graphGl = (V l, El)
induced by the underlying mesh Ml of hierarchy level l. Note that El = El

g ∪ E
l
e

is the (not necessarily disjunctive) union of the geodesic edge set El
g , induced by the

faces of Ml, and the Euclidean edge set El
e , obtained from the k-nn or radius graph

neighborhood of each vertex i ∈ V l. We implement convolutional layers over vertex
features vi associated with vertex i similar to EdgeConvs [WSL+19]. Specifically, the
output features v′i ∈ ℝE of vertex i with input feature vi ∈ ℝF are computed as

v′i =
1

|i|

∑

j∈i

'([vi, vj − vi]; �) (3.1)

wherei is the geodesic/Euclidean neighborhood of the vertex i, |i| its cardinality, '
is implemented as an MLP with trainable parameters � and [ ⋅ , ⋅ ] is the concatenation.
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Contrarily to the original implementation of EdgeConvs [WSL+19] (Chapter 2.3.2),
we adapted the definition slightly: instead of max(⋅) aggregating features per vertex,
we calculate the mean of the receiving messages '([vi, vj − vi]; �) from neighboring
nodes j. In contrast to DGCNN [WSL+19], we do not restrict ourselves to k-nn neigh-
borhoods but allow radius neighborhoods. Here, we cannot guarantee a pre-defined
neighborhood size which leads to a high variance of features v′i when taking max fea-
tures of neighborhoods with varying cardinalities. Hence, we resort to averaging over
all receiving features which smooths incoming features. Thus, our convolution is robust
against a varying size of the neighborhood.

Note that the number of kernel parameters � is independent of the kernel size in-
duced by the neighborhood i. This is in contrast to 2D CNNs, where the number of
parameters increases quadratically with the kernel size.

In contrast to DGCNN [WSL+19], we do not recalculate the neighborhoods in the
learned feature space but we reuse the 3D positions of vertices for the Euclidean and
geodesic domain. Skipping this dynamic recalculation of neighbors allows us to create
deeper graph convolutional networks, which turned out to bemore effective [LMTG19].

Translation equivariant convolutions. On the very first convolution in the net-
work, we define a translation equivariant version of the dual convolution module which
does not rely on absolute positions. Providing absolute positions to our algorithm leads
to learning that specific objects tend to appear at specific positions in the scene. For
instance, if the training set contains many chairs at a specific position, this prior distri-
bution biases the network to predict chair features in that region during test time, even
if no chairs occur in this area. Therefore, we apply'(⋅) to vj−vi and do not concatenate
the initial features containing absolute positions (cf. Equation 3.1).

3.3 Random Edge Sampling (RES)

Hermosilla et al. [HRV+18] argue that radius neighborhoods increase the robustness
to non-uniformly sampled point clouds in contrast to k-nn ones. Since the simplifi-
cation with Quadric Error Metrics does not guarantee uniformly sampled meshes in
the Euclidean domain, we rely on radius neighborhoods. However, radius neighbor-
hoods may lead to an arbitrarily large number of neighbors. Convolving over these
unbounded neighborhoods, leads to a considerably large computational load which we
wish to reduce. We thus resort to sampling methods to approximate the neighborhood.

As a technical contribution, we define a novel sampling method on graph neighbor-
hoods, called Random Edge Sampling (RES). Motivated by Srivastava et al. [SHK+14],
we randomly sample edges from the Euclidean edge set El

e on all hierarchy levels l.
By doing so, we introduce more variety in the training data and thus increase the gen-
eralization of our approach, while simultaneously reducing the computational load.

To implement RES, we define a functionD ∶i → [0, 1]which maps the neighbor-
hoodi = {v1,… , v

|Ni|
} of a given vertex vi to its corresponding sampling probability.

35



Chapter 3. DualConvNet 3.4. Pooling using Mesh Simplification

0 T 2T 3T 4T

0.3̄
0.5

1.0

neighborhood size |i|

sa
m
pl
in
g
pr
ob

.

Figure 3.3: Sampling probabilities for Random Edge Sampling (RES). We only sample
neighborhoods with a size greater than T in order not to further reduce already
small sets. Edges in neighborhoods exceeding the threshold T are sampled by a
probability computed by D(i), resulting in E[|i|] ≤ T .

Each edge established between vi and v ∈ i is subsequently sampled with the same
probability D(i). D is defined as follows:

D(i) =

{

1 if |i| ≤ T
T ⋅ |i|

−1 if |i| > T
(3.2)

We introduce a threshold T such that small neighborhoods are not furtherly decimated.
However, edges in sets exceeding the threshold T undergo sampling. After applying
RES, the expected size of the neighborhood is bounded by E[|i|] ≤ T .

E[|i|] =
∑

j∈i

D(i) ⋅ 1 = D(i) ⋅
∑

j∈i

1

= D(i) ⋅ |i|
(3.2)
≤ T ⋅ |i|

−1 ⋅ |i| ≤ T

(3.3)

We visualize the functionD(i) in Figure 3.3. Varying the threshold T equals to vary-
ing the expected number of edges we draw from the neighborhood set. We experience
that decreasing the threshold during training leads to a good approximation of the neigh-
borhood while saving computational resources. During inference time, we increase the
sample size using larger neighborhood sample sizes for obtaining final predictions. We
conducted ablation studies for RES in Chapter 5.

3.4 Pooling using Mesh Simplification

In this work, we investigate the potential of combining geodesic and Euclidean convo-
lutions. It has been shown to be beneficial to learn feature representations on multiple
scales in a scene [GEvdM18,TQD+19,RFB15] because finer representations allow to
learn highly localized features whereas coarser representations capture the context bet-
ter. However, in contrast to Euclidean convolutions, it is not sufficient for multi-scale
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Figure 3.4: Mesh Simplification as (un-)pooling operators. We need to preserve the sur-
face information on all multi-resolution hierarchy levels in order to apply geodesic
convolutions. We therefore use mesh simplification algorithms such as vertex clus-
tering and quadric error metrics as (un-)pooling operators. We implement them as
simple look-up dictionaries which we call pooling trace maps (shown in red). They
store vertex connectivities between original vertices and their corresponding repre-
sentatives throughout the mesh hierarchy. We perform pooling with permutation-
invariant aggregation functions and unpooling by simply copying features of the
representative vertex to its corresponding vertices of the previous level.

geodesic feature extractors to downsample the point cloud without preserving edge in-
formation of the mesh. We take special provisions to preserve the essential surface
information in subsequent hierarchy levels for applying geodesic convolutions. Thus,
we define pooling operators which generate and interconnect these hierarchy levels for
learning feature representations on multiple mesh scales. These operators should fulfill
the following two requirements: 1 Pooling operations should reduce the number of
vertices while retaining the overall surface information of the original mesh. 2 Pool-
ing operations are bijective functions from partitions of the vertex set l of level l to
representative single vertices of the vertex set l+1 of the next hierarchy level.
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Pooling trace maps for connecting hierarchy levels. We leveragemesh simpli-
fication algorithms for generating hierarchies of meshes (0,… ,l,… ,) con-
nected by pooling trace maps ( 0,… ,  l,… ,  −1) (see Figure 3.4). We consecu-
tively perform mesh simplification steps (e.g. Vertex Clustering or Quadric Error Met-
rics) on the initial mesh 0 which represents the mesh at its finest resolution and its
successors until we obtain  which is the coarsest representation of the same mesh
after the final mesh simplification step. We extend mesh simplification algorithms such
that they generate not only new mesh representatives but also provide look-up pooling
maps which interconnect vertices of predecessing levels to their new representative
vertices in consecutive hierarchy levels. Therefore, a pooling trace map  l maps a par-
tition of vertices {vl−1i } ⊂ l−1 bijectively to a single representative vertex vl ∈ ℝ3 in
the next graph level l, which is again connected with vertices within the same graph
level via the edge setEl

g obtained by the mesh simplification algorithm. Since the pool-
ing trace map maps partitions of vertices to single representative vertices, we conclude
that |l−1

| ≤ |l
|. Thus, we fulfill requirement 1 . Moreover, considering this bijec-

tion, we can trace initial vertices with their corresponding representatives throughout
the complete multi-scale hierarchy. We therefore establish a one-to-one relationship
of vertex features of each graph level with their corresponding initial vertices. No-
tably, there exist no intermediate vertices in the hierarchy which are not part of any
traces and all traces are complete, e.g. they reach the final hierarchy level. Similar
to Pan et al. [HSYX18], we apply a permutation invariant aggregation function (e.g.,
sum(⋅), max(⋅) or mean(⋅)) on the features of {vli } to obtain pooled features for vl+1.
Unpooling is performed by merely copying features of representative vertices to their
corresponding vertices of the predecessing hierarchy level.

Mesh simplification as (un-)pooling. We have presented Vertex Clustering (VC)
(Chapter 2.4.1) and Quadric Error Metrics (QEM) (Chapter 2.4.2) as two mesh simpli-
fication algorithms from the geometry processing domain. These algorithms reduce
the number of vertices, preserve the overall surface information and introduce minimal
geometric error. We extend them with pooling trace maps to obtain (un-)pooling in our
architecture through simple look-up operations.

Wemodify the Vertex Clustering approach as follows: vertices that fall into the same
grid cell of length s are contracted to a new representative vertex vl+1 of the next hi-
erarchy level. We store the mapping between the representative vertex vl+1 and its
corresponding vertices {vli } of the previous level in the pooling trace map.

Alternatively, we consider Quadric Error Metrics. In contrast to VC, this approach
incrementally contracts vertex pairs (v,w) to a new representative r according to an ap-
proximate error of the geometric distortion this contraction introduces. We keep track
of performed contractions. When the algorithm reaches a specific quality property (e.g.
number of vertices or faces, introduced geometric error), we create a snapshot of the
current mesh which we insert into the mesh hierarchy. Since intermediate representa-
tives rmight be subject to contractions, we condense the list of performed contractions
to a list only considering initial vertices to final representatives of the current snapshot.
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Since there is a 1-to-1 relationship between contraction pairs and their corresponding
representatives, this task essentially represents a graph search linearly in the number of
initial vertices. As VC aims for uniform vertex density and QEM for minimal geometric
distortion, we compare both orthogonal approaches in our ablation study in Chapter 5.
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4
Experiments

In this chapter, we put the focus on experimentally evaluating our proposed architecture.
After discussing the standard evaluation metrics, we present qualitative and quantita-
tive results on three well-established 3D scene datasets. Among graph convolutional
approaches, we report new state-of-the-art results on all datasets. We provide detailed
descriptions on the training and testing pipeline, including data preprocessing, data
augmentation as well as network architectures used to obtain the final scores.

4.1 Datasets

To prove the validity of our proposed method, we evaluate it on three well-established
3D scene datasets. We follow the standard evaluation protocol of each benchmark in
order to provide comparable results. Moreover, we conduct an ablation study to analyse
the influence of each component individually.

Stanford Large-Scale 3D Indoor Spaces (S3DIS) [ASZ+16]. S3DIS con-
tains 3D point clouds from 6 large-scale indoor areas obtained by high-resolution scans
fromMatterport cameras, consisting of 271 rooms from 3 different university buildings.
Among others, room types include offices, lecture halls, lavatories, hallways as well as
open spaces. The RGB point cloud is annotated with 13 semantic classes in a per-point
fashion. Our algorithm depends on meshes as its input data structure. However, S3DIS
only includes 3D meshes which are not semantically annotated. As the resolution of
these meshes is low compared to the point cloud resolution, we oversample all faces
and interpolate the color and ground truth information from the semantically annotated
ground truth points. To obtain comparable results on the official benchmark, our final
predictions are backpropagated to the original point cloud. More information about the
S3DIS preprocessing is given in Setion 4.3. We follow the same evaluation protocol as
proposed by Armeni et al. [ASZ+16] in order to be comparable with other approaches.
In the first setting, we train on all areas except Area 5, which we keep for testing. In
the second setting, we provide k-fold cross-validation results over all areas.
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ScanNet v2 Benchmark [DCS+17]. Unlike S3DIS, the ScanNet v2 benchmark
provides 3D meshed point clouds containing normal, RGB color information as well
as semantic labels on a per-vertex basis. Similarly to S3DIS, ScanNet comprises scans
obtained with high-resolutionMatterport cameras from a wide variety of indoor rooms.
They used 20 valid semantic classes in contrast to S3DIS’s 13 classes. ScanNet estab-
lished a publicly available online benchmark including hidden test labels1.

We perform all our experiments using the official training, validation, and test split
of 1201, 312, and 100 scans, respectively. We perform the ablation study in Chapter 5
on the ScanNet validation set in order to show the effect of all components.

Matterport3D [CDF+17]. The most recent dataset we consider is Matterport3D
which contains meshed reconstructions of 90 reconstructions of building-scale RGBD
scans. In contrast to ScanNet’s room-wise paradigm, Matterport3D scans are captured
in a building-wise manner which allows reconstructing whole buildings. For the sake of
comparison, we stick to the same evaluation protocol as introduced in 3DMV [DN18],
and TextureNet [HZY+19] and report mean recall scores on 21 classes of the publicly
available test set.

4.2 Evaluation Metrics

In order to quantitatively evaluate the performance of a model, we define quality met-
rics. Here, we give scores measuring how well the algorithm predicts each class indi-
vidually. We thus define two distributions: The ground truth class distribution Ŷ (x, c)
and the predicted class distribution Y (x, c) which both yield 1 if the data point x be-
longs to (/ is classified as) class c. In order to make quantitative statements about an
algorithm, we compare both distributions. Evaluation metrics are the means to per-
form this comparison which is presented in the following paragraphs. The notation is
adopted from Zhao et al. [ZGWmC19].

Atomic evaluation metrics. In order to quantitatively reason about how well an
algorithm performs a semantic segmentation task, we define atomic evaluation metrics.
Each of them focuses on an orthogonal aspect of evaluating the quality of a prediction
individually. Combining these atomic metrics to more elaborate ones leads to conclu-
sive quality metrics paying attention to various aspects.

The number of true positives (TP) constitutes how many data points of the ground
truth class c were correctly classified:

TP(Y , Ŷ , c) =
∑

x
Y (x, c) ⋅ Ŷ (x, c) (4.1)

1The public leaderboard is available under:
http://kaldir.vc.in.tum.de/scannet_benchmark/
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The number of true negatives (TN) comprises how many data points not belonging to
the ground truth class c were correctly rejected by the predictor:

TN(Y , Ŷ , c) =
∑

x
(1 − Y (x, c)) ⋅

(

1 − Ŷ (x, c)
)

(4.2)

The number of false positives (FP) represents how many data points not belonging to
the ground truth class c were wrongly classified by the predictor:

FP(Y , Ŷ , c) =
∑

x
Y (x, c) ⋅

(

1 − Ŷ (x, c)
)

(4.3)

The final metric is the number of false negatives (FN) which represents how many data
points of the ground truth class c were wrongly rejected by the predictor:

FN(Y , Ŷ , c) =
∑

x
(1 − Y (x, c)) ⋅ Ŷ (x, c) (4.4)

As the previously presented quality metrics constitute absolute numbers of correctly
and wrongly classified data points, we cannot compare performances across various
datasets. We thus define condensed metrics defined in a range of [0, 1] for enabling
comparison on a relative scale. One metric we are interested in is precision (Prec)
which measures the ratio between true positives and the overall number of class instan-
tiations. Precision returns a probability estimate of how exact our predictor is:

Prec(Y , Ŷ , c) = TP(Y , Ŷ , c)
TP(Y , Ŷ , c) + FP(Y , Ŷ , c)

(4.5)

Besides precision, there is the metric of recall (Rec) which is defined as the fraction of
true positives to the overall positive samples. This estimates how complete a prediction
is:

Rec(Y , Ŷ , c) = TP(Y , Ŷ , c)
TP(Y , Ŷ , c) + FN(Y , Ŷ , c)

(4.6)

The compromise between precision and recall. The precision rate contains
information about how exact a prediction is. A high precision rate therefore states that
positive predictions are likely to be classified correctly. Contrastingly, the recall rate
measures how complete a prediction is. Hence, a high recall rate means that instantia-
tions of a specific class are likely to be detected in the dataset.

We illustrate both metrics in the following examples considering an autonomously
driving vehicle: High recall rates are particularly useful for safety-related driving func-
tions. It is of utmost importance that our algorithm does not miss out on pedestrians
crossing the street in order to avoid fatal accidents. If, by mistake, the algorithm detects
a pedestrian even if there is none, it might influence the requirement of a comfortable
drive but does not harm any safety-critical requirements. However, an exact prediction
is crucial for the detection of right-of-way signs. Thus, we need a high precision rate.
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This example illustrates that both precision and recall are important metrics to eval-
uate the performance of a predictor. However, we favor a scalar value to create an
ordered ranking of algorithms performing on the same task. We thus condense both
metrics into a single one. The F� measure weights precision and recall according to a
weighting factor � such that recall has � times more weight than precision:

F�(Y , Ŷ , c) = (1 + �2)
Prec(Y , Ŷ , c) ⋅ Rec(Y , Ŷ , c)

(

�2 ⋅ Prec(Y , Ŷ , c)
)

+ Rec(Y , Ŷ , c)
(4.7)

In the case of � = 1, the F1 score is the harmonic mean between precision and recall.
Positively correlated to F� is the metric of intersection over union (IoU) which is

prominent in the field of computer vision and is used in the evaluation protocols across
all tested datasets of this thesis.

IoU(Y , Ŷ , c) = TP(Y , Ŷ , c)
TP(Y , Ŷ , c) + FP(Y , Ŷ , c) + FN(Y , Ŷ , c)

(4.8)

In order to ease comparison even more, the IoU scores for each class c are further
averaged to yield the mean IoU score (mIoU):

mIoU(Y , Ŷ ) =
∑

c
IoU(Y , Ŷ , c) (4.9)

4.3 Implementation and Training Details

In this chapter, we will give detailed information on which models we derive from
our proposed family of DualConvNets. Moreover, we discuss the training and testing
pipeline, including precomputation and augmentation steps. Our models are imple-
mented in PyTorch (Geometric) [FL19, PGC+17] and trained on a Tesla V100 16GB
for at least 100 epochs (∼ 8 days). We refer to Chapter 5 for detailed ablation stud-
ies on the architectural components and focus on comparison to current state-of-the-art
methods in this chapter.

Precomputing the graph hierarchy. Using Vertex Clustering and Quadric Error
Metrics as pooling operations, we precompute the hierarchy levels l and the corre-
sponding pooling trace maps  l. The cell sizes of VC are set to 4 cm3, 8 cm3, 16 cm3,
and 32 cm3, respectively, for each hierarchy level. However, we perform minor adap-
tions to QEM. We observe that directly applying QEM on the mesh leads to a high
vertex density in noisy areas. These areas are mostly unlabeled for the task of semantic
segmentation. Therefore, we first apply VC on the initial mesh with a cell size of 4 cm3,
before applying QEM, where we keep 30% of all vertices in each mesh level.
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Figure 4.1: Preprocessing Pipeline for S3DIS. Our approach requires meshes as input for
which the S3DIS data set does not provide an RGB + Label format. Therefore, we
establish a preprocessing pipeline in order to leverage low-resolution meshes given
by the dataset. Here, we perform midpoint subdivision to artificially enhance the
resolution of the mesh, before interpolating RGB colors as well as labels from the
ground truth point cloud onto the mesh.

Special provisions for S3DIS. The S3DIS dataset provides high-resolution point
cloud data including RGB color information and semantic labels. Moreover, it con-
tains mesh data with significantly lower resolution than the meshes from ScanNet or
Matterport3D. In order to use the semantic labels of the official point clouds sampled
from these meshes, we artificially enhance the resolution of the low-resolution mesh
by splitting edges precisely in the middle if the edge length does not fall under 2 cm
under this process. Thus, we create new mesh triangles by connecting the old vertices
with their adjacent vertices in the midst of the edges (known as midpoint subdivision
illustrated in Figure 4.1). Thus, we obtain 4 smaller triangles from the original triangle.
By finding the nearest neighbor in the ground truth point cloud for each vertex in the
enhanced mesh, we subsequently interpolate the ground truth information, including
RGB color information and semantic labels onto this newly created mesh. Note that in
contrast to the original point cloud, we thus leverage normal information of the mesh.

Network architectures. In our U-Net like architecture, we extract features at each
hierarchy level by three dual convolutions, including ReLU activation functions as well
as batch normalization (see Figure 3.1). Even if we deal with small batch sizes, e.g. 4,
we achieve better results using traditional batch normalization [IS15] thanwith incorpo-
rating the recently proposed group normalization [WH18] which has been particularly
designed for such cases.

We observe that altering the ratio between Euclidean and geodesic filters in the dual
convolution modules with respect to the simplification degree of a mesh level leads to
improved segmentation results. In shallow hierarchy levels, the mesh surface is only
slightly simplified. Thus, we can leverage high-frequency signals of the object surfaces
by learning more geodesic filters than Euclidean ones. As the resolution of the mesh
is further decimated, localizing objects becomes more important. Here, we need more
Euclidean than geodesic features. Therefore, we use 75% geodesic filters in the first
two hierarchy levels and 25% geodesic filters in the last two levels. A detailed ablation
study is given in Chapter 5.2.
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In Table 7.4, we show the detailed network architecture for the ScanNet and Matter-
port3D benchmark. We do not use the same network definition for the S3DIS dataset.
Since the original resolution of the S3DIS meshes is low, we do not benefit from in-
creasing the number of geodesic filters in the early levels. Thus, we set the ratio of
geodesic convolutions in each level to 50%. In Table 7.3, we provide the adapted net-
work structure.

Neighborhood notion. We experiment with different notions for neighborhoods.
When considering the k-nn approach, we use k = 15 nearest neighbors for training and
testing. Contrastingly, for radius neighborhood we use radius sizes of 12.5cm, 25cm,
50cm and 100cm for each mesh level as the vertex density decreases gradually. We
conduct our experiments with random edge sampling with threshold T = 15 while
training and T = 25while testing, as we observe that a lower threshold for training still
leads to good approximations of the neighborhood. Since we use a random sampling
method for neighborhoods, the predictions vary in each run. We therefore run each
evaluation 10 times and provide mean and standard deviations in our ablation study. A
detailed ablation study about random edge sampling is provided in Chapter 5.1.

Rejecting training examples. It is a common practice among recent approaches
to discard training samples of low quality. Methods only differ in the quality crite-
ria [QYSG17,QLJ+17]. We reject training examples which have more than 80% unla-
beled vertices, which effectively corresponds to 0.8% of the 18, 530 cropped training
samples of the ScanNet v2 train set. Moreover, if a crop of a scene has less than 50
semantically labeled points, we also reject it because its expressive power is restricted.
Analogously, Qi et al. [QSMG17] reject training examples if the number of points in
a crop falls below a certain threshold and [QYSG17] rejects blocks which number of
unlabeled points exceeds a threshold of 70%. Note that we do not apply this method on
the validation or test set.

Optimizing the model. We train the network end-to-end by minimizing the cross-
entropy loss using the Adam optimizer [KB15] with an initial learning rate of 10−3 and
step-wise exponential learning rate decay of 0.5 after every 40 epochs with a batch size
of 4. We use a weighted version of the cross-entropy loss function in order to cope
with class imbalance problems, e.g. floor, walls and ceiling classes tend to outnumber
smaller classes such as bathtubs and shower curtains constantly across all datasets:

L(ŷ, y) = − 1
N

N
∑

i=1

C
∑

c=1
wc ⋅ ŷi,c ⋅ log yi,c (4.10)

Here, ŷ represents the one-hot encoded ground truth vector which is set to 1 if the class
c is assigned to vertex i. yi,c is the prediction vector constrained by

∑

c yi,c = 1 to resem-
ble a probability distribution. The weight vectorw ∈ ℝC

≥0 assigns a weight to each class
c such that less frequent classes contribute more to the loss than frequent ones. For the
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ScanNet dataset, we stick to the class weights proposed by TextureNet [HZY+19]. For
Matterport3D and S3DIS, we calculate the negative logarithm of the class frequency
fc of the train set to put more emphasis on underrepresented classes.

wc = − log fc (4.11)

Data Augmentation. In order to prevent overfitting of our model, we perform data
augmentation on the input meshes. In order to train more complex models, we crop
3m×3mblocks with a stride of 1.5m from the ground plane. For ensuring valid meshes,
we delete edges pointing to vertices not contained in the current crop. Moreover, using
the pooling trace map, vertices might be pooled to representatives not present in the
current block. In this case, we redirect the trace to the nearest neighbor in the following
mesh level in order to guarantee a bijective pooling function.

We further process these crops by normalizing positions to the range of [−1, 1]3 and
by mapping the RGB color value from range [0, 255]3 to [0, 1]3. Crops are then trans-
formed by a random linear transformation comprising a dedicated rotation component
and a random linear transformation, slightly altering the identity matrix to obtain ran-
dom instantiations of rotation, shearing and scaling. We draw random variables from a
Gaussian distribution centered around 0 with � mean as well as the rotation parameter
� drawn from the uniform distribution of [0, 2�] in order to create arbitrary rotations
around the z-axis.

a,… , i ∼ [0, �]
� ∼ unif[0, 2�]

(4.12)
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⋅v (4.13)

Although training on crops, we highlight that our method is translation-equivariant
since it does not consider absolute vertex positions (see Chapter 3.2). We are therefore
able to perform inference on full scans.

4.4 Results

In this chapter, we provide quantitative and qualitative results on three well-established
3D semantic scene segmentation datasets.

Performance grouped by methods’ convolution type. Since most competing
approaches evaluate on ScanNet as well as S3DIS Area 5, we provide a condensed
overview about the research field in Table 4.1. Here, we show the performance of
our approach compared to recent competing approaches grouped by the approaches’
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Method mIoU Convolution TypeScanNet S3DIS
DeepGCN [LMTG19] - 52.5

Graph Convolutions
SPGraph [LS18] - 58.0

SPH3D-GCN* [LAM19] 61.0 59.5
HPEIN [JZL+19] 61.8 61.9

DualConvNet (Ours) 65.3 63.8
PointNet [QSMG17] - 41.1 Permutation

Invariant
Networks

PointNet++ [QYSG17] 33.9 -
FCPN [DJJ+18] 44.7 -
3DMV [DN18] 48.3 -

2D-3DJPBNet [CLLH19] 63.4 -
MVPNet [JGS19] 64.1 62.4

TangentConv [TPKZ18] 43.8 52.6
Surface ConvolutionsSurfaceConvPF* [HSYX18] 44.2 -

TextureNet [HZY+19] 56.6 -
PointCNN [LBS+18] 45.8 57.3

Point Convolutions
ParamConv [WSM+18] - 58.3

MCCN [HRV+18] 63.3 -
PointConv [WQL19] 66.6 -
KPConv [TQD+19] 68.4 67.1

SparseConvNet [GEvdM18] 72.5 - Voxelized
Sparse ConvolutionsMinkowskiNet [CGS19] 73.4 65.3

Table 4.1: Comparison to state-of-the-art. Semantic segmentation mIoU scores on the off-
ical ScanNet benchmark [DCS+17] and S3DIS Area-5 [ASZ+16]. We clearly out-
perform other graph convolutional approaches on all benchmarks. * indicates con-
current work. Full network definitions are given in the appendix.

inherent convolution type. We can report state-of-the-art results for graph convolutional
approaches by a significant margin of 3.5% mIoU for the ScanNet benchmark, as well
as 1.9% mIoU for S3DIS Area 5. Only 4 approaches report better results on ScanNet.
These algorithms propose orthogonal improvements by leveraging point convolutions
or voxelized sparse convolutions that could be combined with our DualConvNets (see
Chapter 6 for an outlook on future work). Moreover, SparseConvNet [GEvdM18] and
MinkowskiNet [CGS19] use Voxelized Sparse Convolutions, which currently perform
best on ScanNet, but which are inherently limited for other tasks in that they cannot
make use of detailed surface information. Figure 4.2 shows qualitative results on the
ScanNet validation set.

Matterport3D. We evaluate our algorithm on the Matterport3D dataset [CDF+17]
and report overall state-of-the-art results on that benchmark in Table 4.2. We follow
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MethodmRec wall floor cab bed chair sofa table doorwind shf pic cntr desk curt ceil fridg show toil sink bath other

PointNet++ [QYSG17] 43.8 80.1 81.3 34.1 71.8 59.7 63.5 58.1 49.6 28.7 1.1 34.3 10.1 0.0 68.8 79.3 0.0 29.0 70.4 29.4 62.1 8.5
SplatNet [SJS+18] 26.7 90.8 95.7 30.3 19.9 77.6 36.9 19.8 33.6 15.8 15.7 0.0 0.0 0.0 12.3 75.7 0.0 0.0 10.6 4.1 20.3 1.7

TangentConv [TPKZ18] 46.8 56.0 87.7 41.5 73.6 60.7 69.3 38.1 55.0 30.7 33.9 50.6 38.5 19.7 48.0 45.1 22.6 35.9 50.7 49.3 56.4 16.6
3DMV [DN18] 56.1 79.6 95.5 59.7 82.3 70.5 73.3 48.5 64.3 55.7 8.3 55.4 34.8 2.4 80.1 94.8 4.7 54.0 71.1 47.5 76.7 19.9

TextureNet [HZY+19] 63.0 63.6 91.3 47.6 82.4 66.5 64.5 45.5 69.4 60.9 30.5 77.0 42.3 44.3 75.2 92.3 49.1 66.0 80.1 60.6 86.4 27.5
DualConvNet (Ours) 65.6 77.8 93.5 65.2 88.9 69.4 84.7 44.8 81.5 62.9 41.0 72.8 39.6 47.8 58.7 89.2 66.8 41.0 85.5 49.4 87.4 30.0

Table 4.2:Mean recall scores on Matterport3D Test [CDF+17]. We outperform
other approaches in 11 out of 21 classes. In Table 7.4, we provide the net-
work definition used for this experiment. Note that we provide mean recall
scores which competing methods sometimes call mean class accuracy.

MethodmIoUmRec ceil. floor wall beam col. wind. door chair table book. sofa board clut.

Pointnet [QSMG17] 41.1 49.0 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
SegCloud [TCA+17] 48.9 57.4 90.1 96.1 69.9 0.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6

Eff 3D Conv [ZLU18] 51.8 68.3 79.8 93.9 69.0 0.2 28.3 38.5 48.3 71.1 73.6 48.7 59.2 29.3 33.1
RSNet [HWN18] 51.9 59.4 93.3 98.4 79.2 0.0 15.8 45.4 50.1 65.5 67.9 22.5 52.5 41.0 43.6

TangentConv [TPKZ18] 52.6 62.2 90.5 97.7 74.0 0.0 20.7 39.0 31.3 69.4 77.5 38.5 57.3 48.8 39.8
PointCNN [LBS+18] 57.3 63.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 80.6 74.4 66.7 31.7 62.1 56.7

RNN Fusion [YLH+18] 57.3 63.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
ParamConv [WSM+18] 58.3 67.1 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2
MinkowskiNet [CGS19] 65.4 71.7 91.8 98.7 86.2 0.0 34.1 48.9 62.4 89.8 81.6 74.9 47.2 74.4 58.6

KPConv [TQD+19] 67.1 72.8 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
SPGraph [LS18] 58.0 66.5 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2

SPH3D-GCN* [LAM19] 59.5 65.9 93.3 97.1 81.1 0.0 33.2 45.8 43.8 79.7 86.9 33.2 71.5 54.1 53.7
HPEIN [JZL+19] 61.9 68.3 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4

DualConvNet (Ours) 63.8 71.2 91.4 95.8 78.6 0.0 21.7 61.3 54.8 88.1 78.1 72.1 67.0 66.4 54.2

Table 4.3: Semantic segmentation results on S3DIS Area 5. We provide mIoU and
mean recall scores. Among all approaches, we perform third best only out-
performed by KPConv [TQD+19] and MinkowskiNet [CGS19]. Among
graph convolutional approaches, we clearly report state-of-the-art with a gap
of 1.9% to HPEIN [JZL+19]. The network used for this experiment is given
in Table 7.3. Note that we provide mean recall scores which some other
competing approaches call mean class accuracy.

the same evaluation protocol as 3DMV [DN18] and TextureNet [HWN18] by only re-
porting the class-wise recall in contrast to the usually used IoU score. Figure 4.3 shows
qualitative results on the Matterport3D test set.

Stanford Large-Scale 3D Indoor Spaces. We furthermore provide class-wise
semantic segmentation scores on S3DIS Area 5 (Table 4.3) as well as S3DIS k-fold
(Table 4.4). Figure 4.4 shows qualitative results on S3DIS Area 5.
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Chapter 4. Experiments 4.4. Results

MethodmIoUmRec ceil. floor wall beam col. wind. door chair table book. sofa board clut.

Pointnet [QSMG17] 47.6 66.2 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
RSNet [HWN18] 56.5 66.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 60.1 59.7 50.2 16.4 44.9 52.0

PointCNN [LBS+18] 65.4 75.6 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
KPConv [TQD+19] 70.6 79.1 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

SPGraph [LS18] 62.1 73.0 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
HPEIN [JZL+19] 67.8 76.3 - - - - - - - - - - - - -

SPH3D-GCN* [LAM19] 68.9 77.9 93.3 96.2 81.9 58.6 55.9 55.9 71.7 72.1 82.4 48.5 64.5 54.8 60.4
DualConvNet (Ours) 69.4 80.8 93.6 96.5 81.0 44.5 44.6 71.7 73.8 74.7 71.0 63.5 62.5 62.6 62.3

Table 4.4: Semantic segmentation results on S3DIS k-fold. We provide mIoU and
mean recall scores. Among all approaches, we perform second best only out-
performed by KPConv [TQD+19]. Among graph convolutional approaches,
we report state-of-the-art with a gap of 0.5% to the concurrent work SPH3D-
GCN [LAM19]. The network definition is given in Table 7.3. Note that
we provide mean recall scores which some other competing approaches call
mean class accuracy.
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4.4. Results Chapter 4. Experiments

Input Mesh Ground Truth Prediction Error

l unlabeled l wall l floor l cabinet l bed l chair l sofa l table l door l window l

bookshelf l picture l counter l desk l curtain l fridge l shower curtain l toilet l sink
l bathtub l otherfurn

Figure 4.2: Results on ScanNet v2 validation [DCS+17]. Our method correctly pre-
dicts challenging classes such as l image and l shower curtain, while
maintaining clear boundaries even in noisy areas (see l window in Row
4 and l picture in Row 6). In the last row, our method correctly predicts
l arm chair even though the ground truth is falsely labeled as l sofa. Ad-
ditionally, our algorithm segments l picture on the l wall more reliably
than the ground truth (see the last two rows). There are some reasonable
mistakes like the l table in Row 5 partly labeled as l desk.
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Input Mesh Ground Truth Prediction Error

l unlabeled l wall l floor l cabinet l bed l chair l sofa l table l door l window
l bookshelf l picture l counter l desk l curtain l fridge l shower curtain l toilet l sink

l bathtub l otherfurn l ceiling
Figure 4.3: Results on Matterport3D [CDF+17]. Our method correctly predicts even

l unlabeled regions such as extending the l wall in Row 2, predicting the
chimney as l other furniture and the whirlpool as l bathtub. However,
reasonable errors occur, such as confusing l windows extending down to
the floor as l doors and confusing l countertops, l tables and l desks.
In the third row, our algorithm correctly predicts l sofa even though the
ground truth is falsely labeled as l chair.
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4.4. Results Chapter 4. Experiments

Input Point Cloud Ground Truth Prediction Error

l ceiling l floor l wall l beam l column l window l door l chair l table l bookshelf
l sofa l board l clutter

Figure 4.4: Results on Stanford Large-Scale 3D Indoor Spaces Area 5 [ASZ+16].
Our method correctly predicts challenging classes such as l board, while
maintaining clear boundaries for most of the classes. In the second row,
our method confuses the similar classes l column and l wall. In Row 4
and Row 5, our method produces unclear boundaries for diverse l clutter
regions and tends to predict more specific classes such as predicting the
books as l bookshelf in Row 5 or predicting the backside of the bookshelf
as l wall in Row 4. Moreover, our algorithm returns reasonable errors. For
instance, partition walls between tables are classified as l wall and not as
l bookshelf in Row 3.
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5
Ablation Study

We conduct a thorough ablation study in order to support our claims that 1 random
edge sampling for effectively sampling the neighborhood space, 2 the combination
of geodesic and Euclidean feature extraction, and 3 mesh simplification algorithms
as a means of pooling operations, independently contribute to overall improved per-
formance. We conclude with discussing architectural design choices, including the
number of graph levels and the choice of the activation functions as well as providing
runtime measurements of our best performing model on ScanNet v2.

5.1 Expected Sampling Size

In Chapter 3.3, we have introduced Random Edge Sampling (RES) for randomly sam-
pling subsets of the neighborhood while guaranteeing an upper limit of the expected
size of the sampled neighborhood. Therefore, we can vary this limit during train and in-
ference time. In Figure 5.1, we show the relationship between training a network with a
relatively small expected sample size and performing inference with other sample sizes.
We experience that a small sample size, e.g. T = 15, during training is still sufficient to
learn useful features of the neighborhood. During inference, we obtain better approx-
imations of the neighborhood with larger thresholds, e.g. T = 35, and report signifi-
cantly better segmentation performances. Therefore, we conclude that RES is a simple
yet effective neighborhood sampling algorithm that allows to train more complex mod-
els with smaller expected neighborhood sizes while leveraging larger neighborhoods to
gain better performances during inference.

All ablation studies which consider DualConvNets using radius neighborhoods lever-
age random edge sampling. We train the networks with an upper limit of the expected
size of the sampled neighborhood of T = 15 and evaluate these networks with T = 25
as performances gained by RES has shown to saturate after this threshold. Since we
deal with a probabilistic sampling method, we evaluate all networks with 10 runs in
order to provide the standard deviation for taking fluctuations into account.
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Chapter 5. Ablation Study 5.2. Geodesic and Euclidean Convolutions

10 15 25 35

62.0

62.7

63.8

threshold T during test
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U

Figure 5.1: Varying the thresholdT during test. We notice that a smaller number of neighbor
samples during training is sufficient to learn useful features (T = 15). During
inference, we change the upper limit of the sampled neighborhood. We gain 1.1%
mIoU by increasing the threshold to T = 35. (Experiments conducted on S3DIS
Area 5 with 10 runs for each threshold. Light blue area shows standard deviation.)

5.2 Geodesic and Euclidean Convolutions

In this chapter, we discuss the main contribution of this thesis. We show that the com-
bination of geodesic and Euclidean convolutions brings consistent performance gains
over operating only in a single space. These improvements are moreover independent
of the architecture or pooling operation used.

SingleConvNets vs. DualConvNets. In Chapter 3.1, we have presented dual
convolutions which perform graph convolutions in both the Euclidean and geodesic
domain in parallel. We refer to an instantiation of our network that only operates in
either the geodesic or Euclidean space as a SingleConvNet, whereas our full model op-
erating simultaneously in both spaces is referred to as a DualConvNet. Technically,
SingleConvNets do not use dual convolution modules but directly perform graph con-
volutions on the designated Euclidean or geodesic neighborhood. Analogously, Dual-
ConvNets use dual convolution modules (see Chapter 3.2). Note that SingleConvNets
are a subset of the family of DualConvNets since they equal DualConvNet networks if
the number of either the Euclidean or geodesic filters is set to 0 everywhere. For each
graph convolution in the SingleConvNet architecture, we set the hidden feature size to
128 and the output size to 64. To enable a fair comparison, we halve the hidden and
output feature size of DualConvNet architectures, such that the total number of feature
channels is equal between the two versions. Note that this results in more than 15%
less parameters for DualConvNet architectures (see Table 7.1 and Table 7.2 for precise
network definitions in the appendix).
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5.2. Geodesic and Euclidean Convolutions Chapter 5. Ablation Study

pooling architecture neighborhood mIoU stdev impr

VC SingleConvNet geodesic 57.1 +2.4
VC SingleConvNet knn 57.4 +2.1
VC DualConvNet knn + geodesic 59.5

QEM SingleConvNet geodesic 56.8 +4.2
QEM SingleConvNet knn 57.3 +3.9
QEM DualConvNet knn + geodesic 61.2

VC SingleConvNet geodesic 57.1 +5.9
VC SingleConvNet radius 62.0 ±0.15 +0.7
VC DualConvNet radius + geodesic 62.7 ±0.16

QEM SingleConvNet geodesic 56.8 +10.4
QEM SingleConvNet radius 63.9 ±0.14 +3.3
QEM DualConvNet radius + geodesic 67.2 ±0.17

Table 5.1: Effect of combining geodesic and Euclidean Convolutions. Combining geodesic
and Euclidean convolutions in ourDualConvNet brings performance improvements,
especially compared to solely geodesic convolutions in a SingleConvNet.

architecture neighborhood mIoU stdev impr

DualConvNet geodesic + geodesic 56.4 +10.8
DualConvNet radius + radius 62.7 ±0.26 +4.5
DualConvNet radius + geodesic 67.2 ±0.17

SingleConvNet radius 63.9 ±0.14 −1.2
DualConvNet radius + radius 62.7 ±0.26

SingleConvNet geodesic 56.8 −0.4
DualConvNet geodesic + geodesic 56.4

Table 5.2: Influence of the DualConvNet architecture. We see clear improvements when
using geodesic and Euclidean neighborhoods in parallel, in contrast to only using the
same neighborhood information for both convolution types of the dual convolution
module. QEM is used as the pooling method.

In Table 5.1, we compare models using only geodesic convolutions, only Euclidean
convolutions, and both combined in dual convolution modules, while keeping the pool-
ing method fixed. We experience the trend that SingleConvNet architectures using
geodesic convolutions fall behind their Euclidean counterparts, whereas the effect for
radius neighborhoods is stronger than for k-nn ones.
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geodesic/Euclidean ratio
level 1-2 level 3-4 mIoU stdev impr

75% 75% 66.1 ±0.11 +2.2
25% 75% 66.1 ±0.10 +2.2
25% 25% 66.8 ±0.16 +1.5
50% 50% 67.5 ±0.15 +0.8
75% 25% 68.3 ±0.14

Table 5.3: Ratio between geodesic and Euclidean filters per graph level. Geodesic convo-
lutions are particularly useful in early hierarchy levels, when the mesh has not yet
undergo much simplification and high frequency signals on the mesh are still pre-
served. In later hierarchy levels, we apply Euclidean convolutions which take the
Euclidean proximity into account and are therefore particularly beneficial for local-
izing objects within the scene. (Level 1-2 use 64 and level 3-4 use 96 filters in total.
See Table 7.4 in the appendix for the full network definition.)

However, the combination of geodesic and k-nn / radius neighborhood in a DualCon-
vNet architecture outperforms both of the SingleConvNet architectures. To additionally
prove that these performance gains do not just originate from the change to a DualCon-
vNet architecture, we conducted further experiments in Table 5.2. We see that intro-
ducing our DualConvNet architecture leads to worse results in direct comparison with
the SingleConvNet architecture when using the same notion of neighborhood for both
convolution typess simultaneously. Our assumption is further emphasized by the fact
that DualConvNets have a smaller capacity since they comprise 15% parameters than
their SingleConvNet counterparts. We thus conclude that the improvements brought
by the combination of neighborhoods is based on the design decision of combining
geodesic and Euclidean neighborhoods and is not just due to architectural artifacts.

Ratio between Euclidean and geodesic filters. In Chapter 3.2, we have pre-
sented our intuition about geodesic and Euclidean convolutions. We assume that geo-
desic graph convolutions operating directly on surfaces use high-frequency mesh sig-
nals for learning features of object-specific shapes. Contrastingly, Euclidean convolu-
tions do not leverage the mesh structure but work on Euclidean neighborhoods defined
over the proximity in the Euclidean space. We suppose that this leads to good rep-
resentations for localizing objects within the scene, e.g. their positioning relative to
other objects. Therefore, we claim that geodesic convolutions are particularly useful
in shallow network levels since here, the mesh structure is not yet greatly simplified.
Euclidean convolutions, however, benefit from simplified mesh structures because the
receptive field is enlarged which is particularly helpful for localizing objects.

In order to systematically evaluate our intuition, we conduct experiments where we
vary the ratio of geodesic and Euclidean filters per mesh level (see Table 5.3). We see
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5.3. Comparison of Pooling Methods Chapter 5. Ablation Study

pooling architecture neighborhood mIoU stdev impr

VC SingleConvNet knn 57.4 +4.6
VC SingleConvNet radius 62.0 ±0.15

VC DualConvNet knn + geodesic 59.5 +3.2
VC DualConvNet radius + geodesic 62.7 ±0.16

QEM SingleConvNet knn 57.3 +6.6
QEM SingleConvNet radius 63.9 ±0.14

QEM DualConvNet knn + geodesic 61.2 +6.0
QEM DualConvNet radius + geodesic 67.2 ±0.17

Table 5.4: Comparison of Euclidean neighborhood notions. With a significant margin, net-
works operating on radius neighborhoods outperform their counterparts with k-nn
graph neighborhoods in all tested settings. As k-nn approaches are vulnerable to
non uniform vertex density distributions [HRV+18], they cannot leverage the po-
tential of QEM pooling approaches and clearly lack behind radius neighborhoods.

that the combination with most geodesic filters in the first two mesh levels and the most
Euclidean filters in the last two levels leads to an overall best performance, whereas the
exact opposite in ratios leads to worst scores. We see this as a clear indicator that our
assumptions about the properties about Euclidean and geodesic convolutions hold.

Neighborhood notion. As we discussed in Chapter 2.2, Euclidean convolutions
rely on a notion of locality in order to learn features restricted by Euclidean proxim-
ity. Popular neighborhood definitions include k-nn and radius graph neighborhoods.
While a fixed neighborhood size characterizes k-nn graphs, radius graphs comprise a
constant volume in which neighboring points are considered as neighbors. Hermosilla
et al. [HRV+18] therefore argue that this increases robustness to a varying density dis-
tribution in contrast to k-nn approaches. In Table 5.4, we compare the previously men-
tioned neighborhood notions for the Euclidean domain. We experience that networks
operating with radius neighborhoods outperform their k-nn counterparts with a sig-
nificant margin in all experiments we have conducted. Especially when performing
pooling with Quadric Error Metrics, this result becomes apparent.

5.3 Comparison of Pooling Methods

Our multi-scale hierarchy relies on pooling operators to construct levels of different
resolutions. Following a mesh-centric approach, we rely on the previously introduced
mesh simplification approaches to implement pooling (see Chapter 3.4). In Table 5.5,
we evaluate the influence of different pooling methods in our architecture. We use our
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pooling architecture neighborhood mIoU stdev impr

VC SingleConvNet knn 57.4 −0.1
QEM SingleConvNet knn 57.3

VC SingleConvNet geodesic 57.1 −0.3
QEM SingleConvNet geodesic 56.8

VC SingleConvNet radius 62.0 ±0.15 +1.9
FPS SingleConvNet radius 62.6 +1.3
QEM SingleConvNet radius 63.9 ±0.14

VC DualConvNet knn + geodesic 59.5 +1.7
QEM DualConvNet knn + geodesic 61.2

VC DualConvNet radius + geodesic 62.7 ±0.16 +4.5
QEM DualConvNet radius + geodesic 67.2 ±0.17

Table 5.5: Comparison of pooling methods. We compare Vertex Clustering (VC), Farthest
Point Sampling (FPS) and Quadric Error Metrics (QEM) as pooling methods for
the input mesh/pointcloud. Quadric Error Metrics outperform all other pooling op-
erators even when only considering Euclidean convolutions. We furthermore see
that especially the interplay between radius neighborhoods and QEM is beneficial.

extensions of Vertex Clustering (VC) and Quadric Error Metrics (QEM) (see Chap-
ter 3.4) as mesh-centric pooling methods whereas we additionally compare against
point cloud based approaches such as Farthest Point Sampling (FPS) [QYSG17] and
uniform sampling [TQD+19]. Note that Vertex Clustering equals uniform sampling in
the setting of only considering Euclidean neighborhoods since here, we only rely on
vertex positions and neglect the mesh interconnectivity. For comparing mesh-based
pooling operators against their point cloud counterparts, we only consider SingleCon-
vNets since pooling operators such as FPS do not preserve the underlying mesh struc-
ture. Remeshing point clouds after applying FPS is beyond the scope of this thesis.

We conclude that QEM pooling significantly performs better than Vertex Clustering
in the DualConvNet architecture, whereas effects are stronger when considering radius
neighborhoods for Euclidean convolutions. We trace this back to the fact that QEM
does not guarantee a uniform density distribution of vertices while k-nn approaches
are vulnerable to varying density distribution as the receptive field might be limited in
complex areas of the mesh. Therefore, we argue that particularly the interplay between
radius neighborhoods and Quadric Error Metrics is beneficial.

Moreover, we see that QEM outperforms all other pooling methods even when using
only Euclidean convolutions with a significant margin of 1.3% to FPS and 1.9% to
uniform sampling. We therefore conclude that pooling operators borrowed from the
domain of geometry processing have a special appeal. Although not considering the
preserved mesh structure, they still outperform point cloud pooling approaches.
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#hierarchy levels mIoU stdev impr

2 54.5 ±0.13 +12.7
3 63.9 ±0.15 +3.3
4 67.2 ±0.17

Table 5.6: Influence ofmesh levels. The number of mesh hierarchy levels has a significant im-
pact of the performance of DualConvNets. With a decreasing effect, more mesh lev-
els consistently leads to better results. (We use QEM pooling and radius + geodesic
neighborhoods in the DualConvNet architecture for this experiments.)

activation function mIoU stdev impr

Leaky ReLU 65.8 ±0.11 +1.4
ReLU 67.2 ±0.17

Table 5.7: Comparison of activation functions. As Leaky ReLU gains popularity in the field,
we compare it against standard ReLU activation functions. We see that default
ReLU units outperform LeakyReLU activation functions by a margin of 1.4%. (Ex-
periments were conducted with QEM pooling and radius + geodesic neighborhoods
in our DualConvNet architecture.)

5.4 Architectural Design Choices

In the previous chapter, we have evaluated architecture agnostic components of our
method. In this chapter, however, we give more details about our architectural design
choices: We show the impact of the number of graph levels for the DualConvNet ar-
chitecture as well as comparing different activation functions in our architecture.

Number of mesh levels. Multi-scale hierarchies have gained popularity in the field
since they make feature extraction at various resolutions possible [TQD+19,GEvdM18,
HRV+18]. At high resolutions, the receptive field of each convolution is restricted
but high-frequency signals are used to obtain feature representations. Contrastingly,
at lower resolutions, learned features are no longer highly localized but contain more
contextual information since their receptive fields are enlarged. In Chapter 3.4, we have
extended mesh simplification algorithms in order to build multi-scale architectures on
meshes. In Table 5.6, we experimentally evaluate the impact of the number of mesh
levels. We see a clear trend that an increased number of hierarchy levels leads to better
segmentation results.

Activation functions. Recent publications for 3D semantic scene segmentation
such as the work from Thomas et al. [TQD+19] rely on LeakyReLU [XWCL15] ac-
tivation functions for avoiding standard ReLU’s stuck at zero problems. In Table 5.7,
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Figure 5.2: Runtime with respect to the number of vertices. We observe a piece-wise linear
relationship between runtime of forward passes for full rooms of the ScanNet v2
validation set and the number of vertices in the input mesh. (We use our best
performing model on ScanNet given in Table 7.4.)

we compare standard ReLU with LeakyReLU activation functions. We conclude that
DualConvNets work better with standard ReLU activation functions by a margin of
1.4%mIoU.

5.5 Runtime

Since our method is translation-equivariant (see Chapter 4.3), we can evaluate on full
rooms which helps to understand the global context of a scene better. Since we do not
rely on merging crops as a postprocessing step, full room evaluation comes with an
easier pipeline and an improved runtime.

In Figure 5.2, we provide forward pass times for our best performing ScanNet bench-
mark model concerning the number of vertices in the input mesh. We see a linear re-
lationship between the number of input vertices and the runtime which is always well
under 0.7 seconds for all scans (excluding the preprocessing time). Overall, the mean
runtime for the ScanNet validation set is 211ms with an average input size of 39161
vertices. We perform this experiment on a Tesla V100 16GB.
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6
Discussion

In this thesis, we have motivated a mesh-centric view on 3D semantic segmentation of
indoor scenes where we learn feature representations based on both the mesh surface as
well as the relative positioning of vertices in the Euclidean domain. In order to prove
that combining geodesic and Euclidean features leads to better segmentation perfor-
mances, we have proposed a novel architecture family which we called DualConvNets.
Here, we have proposed dual convolution modules which simultaneously perform con-
volutions in both the geodesic space along the mesh in order to learn features focusing
on the surface structure as well as in the Euclidean space which enables us to learn the
interaction between disconnected objects.

In order to leverage the potential of multi-scale architecture, we need to preserve sur-
face structures of subsequent mesh levels. We extend mesh simplification algorithms
such as Vertex Clustering and Quadric Error Metrics to gradually simplify the mesh
while maintaining approximate surface representations for geodesic convolutions. We
efficiently interlink mesh levels by using pooling trace maps which represent simple
look-up dictionaries to obtain representative vertices in consecutive mesh levels.

As a technical contribution, we have proposed Random Edge Sampling which ran-
domly samples Euclidean neighborhood sets while guaranteeing an upper limit for the
expected size of the sampled set. We thus can conduct experiments with varying thresh-
olds in train and inference time and can reduce the computational load of the algorithm.

We hope that our work encourages fellow researchers to consider convolutions in
both the geodesic and Euclidean domain as we can show that this results in a consistent
performance gain independent of the architecture used.

6.1 Open Challenges and Future Work

In this chapter, we give some impulses for further thoughts about open challenges of
DualConvNets. Additionally, we point out what future research directions might in-
clude which extend our work.
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Chapter 6. Discussion 6.1. Open Challenges and Future Work

Overlap of geodesic and Euclidean edge set. For each vertex in the mesh, we
consider two neighborhood sets, namely the Euclidean set which consists of vertices
in the Euclidean proximity of the vertex and the geodesic set which comprises 1-hop
neighbors defined by the inherent surface mesh structure. However, these two sets are
correlated. For a given vertex, vertices in the geodesic neighborhood set tend to be
in the Euclidean proximity, as well. Therefore, it is likely that these vertices appear
in both the geodesic and Euclidean neighborhood set. This overlap poses a computa-
tional burden in terms of memory consumption since there exists a significant overlap
between both sets. Computations are then not only performed on vertices which are
characteristic for defining the specific Euclidean or geodesic set. Thus, future work
may focus on the question of how to better separate both sets, finding the characteristic,
disjunctive subset for both the Euclidean and geodesic set in order to slim down the
training process without losing information.

Extending submanifold sparse convolutions. Variants of submanifold sparse
convolutions such as SparseConvNet [GEvdM18] and MinkowskiNet [CGS19] have
recently defined new state-of-the-art performance on various semantic segmentation
tasks for 3D indoor scenes. However, instead of leveraging surface information de-
fined by the mesh structure, these approaches operate on point clouds only thus leaving
room for improvement. In our work, we showed that the combination of geodesic and
Euclidean convolutions in dual convolution modules brings performance gains. In the
following, we thus present two orthogonal ideas for future work of how to combine
sparse convolutions with geodesic convolutions in a mesh-centric setting. At the center
of our attention, we focus on the mapping of continuous vertices for geodesic convo-
lutions with their corresponding voxels for discrete Euclidean convolutions in a dual
convolution module in order to transfer features between both convolution types.

1 Pooling-based one-to-onemapping. Sparse convolutional approaches discretize
the Euclidean domain in a grid-like fashion. However, original vertices are embedded
in the continuous space. In order to apply dual convolutions, we establish a bijective
(1-to-1) mapping between voxels in the discretized domain with their corresponding
continuous vertices for concatenating unique vertex representations between both do-
mains. Using vertex clustering, we can guarantee bijectivity between continuous ver-
tices and their corresponding voxels since each voxel is associated with its continuous
center of gravity based on the vertices falling into it. Contrarily, Quadric Error Metrics
does not guarantee the bijectivity of the voxel-vertex mapping. For instance, during the
simplification process, new continuous representatives are generated which might be
placed in already occupied voxels and thus breaking bijectivity. Since vertex clustering
has shown to be inferior to QEM pooling, we need to adapt the latter one to preserve
bijectivity. We first apply vertex clustering on the input mesh. Thus, generating an
initial bijective voxel-vertex mapping. Instead of finding the continuous representative
r which minimizes the contraction cost Δ(r) (Equation 2.9), we consider only the end-
points of the potential contraction and choose the one with minimal cost. Here, we
know to which voxel it belongs to and we hence maintain the bijectivity of the voxel-
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vertex mapping. We call this approach pooling-based since the mesh simplification
algorithm generates new continuous representatives while discrete voxels are subse-
quently maintained accordingly.

2 Aggregation-basedmany-to-onemapping. Alternatively, we can perform pool-
ing independently in the discrete and continuous space. Here, inconsistencies might oc-
cur, such as many-to-one mappings when multiple vertices fall into the same voxel. We
resolve these issues by aggregating the variable number of vertices in the same voxel
in a permutation-invariant manner to receive a defined feature size for concatenating
them with Euclidean features from the sparse convolutions.

Geodesic convolutions for refining instance segmentations. Geodesic convo-
lutions enlarge their receptive field only along the object’s surface which leads to highly
object-dependent features. Fusing features of nearby but geodesically disconnected ob-
jects is thus not possible. This characteristic behavior of geodesic convolutions justify
their special appeal for instance segmentation since separating objects from each other
is drastically simplified. Therefore, we suspect that investigating geodesic convolutions
for 3D instance segmentation is a promising research directions.
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7
Appendix

The appendix provides detailed architecture descriptions for the ablation study (Ta-
ble 7.1 and Table 7.2) as well as the adapted networks for the official benchmarks
on Stanford Large-Scale 3D Indoor Spaces (Table 7.3), Matterport3D (Table 7.4) and
ScanNet v2 Benchmark (Table 7.4).
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#level level type module type filters

1 encoder edge+BN+ReLU (9, 128, 64)
1 encoder edge+BN+ReLU (128, 128, 64)
1 encoder edge+BN+ReLU (128, 128, 64)

2 encoder edge+BN+ReLU (128, 128, 64)
2 encoder edge+BN+ReLU (128, 128, 64)
2 encoder edge+BN+ReLU (128, 128, 64)

3 encoder edge+BN+ReLU (128, 128, 64)
3 encoder edge+BN+ReLU (128, 128, 64)
3 encoder edge+BN+ReLU (128, 128, 64)

4 encoder edge+BN+ReLU (128, 128, 64)
4 encoder edge+BN+ReLU (128, 128, 64)
4 encoder edge+BN+ReLU (128, 128, 64)
3 decoder edge+BN+ReLU (256, 128, 64)
3 decoder edge+BN+ReLU (128, 128, 64)
3 decoder edge+BN+ReLU (128, 128, 64)

2 decoder edge+BN+ReLU (256, 128, 64)
2 decoder edge+BN+ReLU (128, 128, 64)
2 decoder edge+BN+ReLU (128, 128, 64)

1 decoder edge+BN+ReLU (256, 128, 64)
1 decoder edge+BN+ReLU (128, 128, 64)
1 decoder edge+BN+ReLU (128, 128, 64)

1 final Lin+BN+ReLU (64, 32)
1 final Lin (32, 21)

# parameters: 564, 949
Table 7.1: SingleConvNet architecture for the ablation study. For the ablation

study, we use the SingleConvNet architecture. Here, we do not use dual
convolution modules but directly apply edge convolutions (edge) with 128
hidden and 64 output features on the designated Euclidean or geodesic neigh-
borhood. To reduce the feature size to the number of classes C = 21 we
apply 2 linear transformations. We use batch normalization (BN) and ReLU
activation functions.
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#level level type module type filters

1 encoder edge+BN+ReLU 2 ∗ (9, 64, 32)
1 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
1 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

3 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
3 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
3 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

4 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
4 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
4 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
3 decoder edge+BN+ReLU 2 ∗ (256, 64, 32)
3 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)
3 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)

2 decoder edge+BN+ReLU 2 ∗ (256, 64, 32)
2 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)

1 decoder edge+BN+ReLU 2 ∗ (256, 64, 32)
1 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)
1 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)

1 final Lin+BN+ReLU (64, 32)
1 final Lin (32, 21)

# parameters: 478, 933
Table 7.2: DualConvNet architecture for the ablation study. In the DualConvNet

architecture, we leverage dual convolution modules which perform convo-
lutions simultaneously in both the geodesic and Euclidean space and sub-
sequently concatenate the features. Note that the total size of hidden and
output features for each dual convolution equals its SingleConvNet’s edge
convolution equivalent (see Table 7.1). We are therefore able to perform fair
comparisons between SingleConvNets and DualConvNets. To reduce the
feature size to the number of classes C = 21 we apply 2 linear transforma-
tions. We use batch normalization (BN) and ReLU activation functions.
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#level level type module type filters

1 encoder edge+BN+ReLU 2 ∗ (9, 64, 32)
1 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
1 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

3 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
3 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
3 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)

4 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
4 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
4 encoder edge+BN+ReLU 2 ∗ (128, 64, 32)
3 decoder edge+BN+ReLU 2 ∗ (384, 96, 48)
3 decoder edge+BN+ReLU 2 ∗ (192, 96, 48)
3 decoder edge+BN+ReLU 2 ∗ (192, 96, 48)

2 decoder edge+BN+ReLU 2 ∗ (320, 64, 32)
2 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)
2 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)

1 decoder edge+BN+ReLU 2 ∗ (256, 64, 32)
1 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)
1 decoder edge+BN+ReLU 2 ∗ (128, 64, 32)

1 final Lin+BN+ReLU (64, 32)
1 final Lin (32, 13)

# parameters: 728, 045
Table 7.3: Architecture used for obtaining the final scores on the S3DIS bench-

mark. In contrast to the DualConvNet used for the ablation study, we use
more filters in the final two graph levels. As we have discussed in Chap-
ter 4.1, the mesh resolution of S3DIS is low. We therefore do not benefit
from increasing the number of geodesic filters in early levels and the num-
ber of Euclidean filters in later levels. So, we set the ratio to 50% for both
types in each level.

70



Chapter 7. Appendix

filters

#level level type module type geodesic Euclidean

1 encoder edge+BN+ReLU (9, 96, 48) (9, 32, 16)
1 encoder edge+BN+ReLU (128, 96, 48) (128, 32, 16)
1 encoder edge+BN+ReLU (128, 96, 48) (128, 32, 16)

2 encoder edge+BN+ReLU (128, 96, 48) (128, 32, 16)
2 encoder edge+BN+ReLU (128, 96, 48) (128, 32, 16)
2 encoder edge+BN+ReLU (128, 96, 48) (128, 32, 16)

3 encoder edge+BN+ReLU (128, 48, 24) (128, 144, 72)
3 encoder edge+BN+ReLU (192, 48, 24) (192, 144, 72)
3 encoder edge+BN+ReLU (192, 48, 24) (192, 144, 72)

4 encoder edge+BN+ReLU (192, 48, 24) (192, 144, 72)
4 encoder edge+BN+ReLU (192, 48, 24) (192, 144, 72)
4 encoder edge+BN+ReLU (192, 48, 24) (192, 144, 72)
3 decoder edge+BN+ReLU (384, 48, 24) (384, 144, 72)
3 decoder edge+BN+ReLU (192, 48, 24) (192, 144, 72)
3 decoder edge+BN+ReLU (192, 48, 24) (192, 144, 72)

2 decoder edge+BN+ReLU (320, 96, 48) (320, 32, 16)
2 decoder edge+BN+ReLU (128, 96, 48) (128, 32, 16)
2 decoder edge+BN+ReLU (128, 96, 48) (128, 32, 16)

1 decoder edge+BN+ReLU (256, 96, 48) (256, 32, 16)
1 decoder edge+BN+ReLU (128, 96, 48) (128, 32, 16)

1 final Lin+BN+ReLU (64, 32)
1 final Lin (32, C)

ScanNet # parameters: 761, 333
Matterport3D # parameters: 761, 366

Table 7.4: Architecture used for obtaining the final scores on ScanNet and Mat-
terport3D. In contrast to the DualConvNet used for the ablation study, we
use more filters in later two graph levels and use the best performing filter
ratio from Table 5.3. We obtain different numbers of parameters for Scan-
Net and Matterport3D since they differ in their number of labeled classes
(Cscannet = 21 and Cmatterport = 22).
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