
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Informatik 8 (Computer Vision)
Fakultät für Mathematik, Informatik und Naturwissenschaften

Prof. Dr. Bastian Leibe

Master Thesis

Volumetric Feature Transformation for
Pose-Conditioned Human Image Synthesis

vorgelegt von

Markus Knoche
Matrikelnummer: 343640

December 12, 2019

Erstgutachter: Prof. Dr. Bastian Leibe
Zweitgutachter: Prof. Dr. Leif Kobbelt

Contents

1 Introduction 1
1.1 Pose-Conditioned Human Image Synthesis 2
1.2 Challenges in Evaluation . 3
1.3 Outline . 4

2 Foundations 5
2.1 Artificial Neural Networks . 5

2.1.1 Multi-Layer Perceptron . 5
2.1.2 Learning . 6
2.1.3 Convolutional Neural Networks 8
2.1.4 Activation Functions . 11
2.1.5 Normalization . 12
2.1.6 Dropout . 13

2.2 Generative Adversarial Networks 13
2.2.1 Minimax GAN . 14
2.2.2 Wasserstein GAN . 15

2.3 Image Generation . 17
2.3.1 Conditioned Image Generation 18
2.3.2 Perception-Based Loss Functions 19

2.4 Mixed-Precision Training . 20
2.5 Transformations . 21

2.5.1 2D Transformations . 21
2.5.2 3D Transformations . 22

3 Related Work 25
3.1 Pose-Guided Person Image Generation 25

3.1.1 Image Generation for Re-Identification 29
3.2 Explicit Transformations . 30

3.2.1 Keypoint-Based Pose Representation 30
3.2.2 Dense Pose Representation 34
3.2.3 Transformations in 3D . 37

3.3 Unsupervised Approaches . 40
3.3.1 Disentangling Appearance and Pose 41

3.4 Identity Transfer . 44

iii

Contents Contents

4 Approach 45
4.1 Data Preprocessing . 45
4.2 2D Baselines . 46

4.2.1 ResNet with 2D Transformations 46
4.3 3D Generator . 47

4.3.1 Network Architecture . 48
4.3.2 3D Transformation Module 49
4.3.3 Dilation Block . 50
4.3.4 Pose Estimator . 51

4.4 Discriminator Architecture . 51
4.5 Training . 52
4.6 Ablation Models . 52

5 Analysis of Evaluation Metrics 55
5.1 Drawbacks of Metrics . 55

5.1.1 Structural Similarity . 55
5.1.2 Inception Score . 56
5.1.3 Detection Score . 57
5.1.4 Fréchet Inception Distance 57
5.1.5 Crowd workers . 58

5.2 New Evaluation Metrics . 58
5.2.1 Color Comparison . 58
5.2.2 Pose Estimator . 59
5.2.3 Pixel-Wise Comparison . 59

5.3 Elo-Based Evaluation . 59
5.3.1 Elo-Rating . 60
5.3.2 Naive Evaluation of Learned Models with Elo 61
5.3.3 The Regression Approach 62

5.4 Experimental setup . 65
5.5 Results . 66

6 Experiments 69
6.1 Datasets . 69
6.2 Experiments on Design Choices 71

6.2.1 Avoiding Overfitting . 71
6.2.2 Wasserstein-GAN . 73
6.2.3 Mixed Precision . 75
6.2.4 Advantage of Transformations 76
6.2.5 Depth Estimation . 78
6.2.6 Influence of Offcuts on Images 80

6.3 Image Generation vs. Pose Estimation 81
6.4 Final Evaluation . 86

6.4.1 Comparison with 2D Baselines 86

iv

Contents Contents

6.4.2 Ablation Study . 87

7 Conclusion 89
7.1 Future Work . 90

Bibliography 91

v

1
Introduction

Image editing tools have become indispensable in today’s world. They are uti-
lized in almost all areas where pictures or videos are used. Most apps of modern
smartphone cameras already have image processing tools built in. Image gener-
ation is the next level of this development. They allow to convert sketches into
images [IZZE17] or make photos look like works of art [JAFF16].

In recent years, many applications for image analysis, image editing or im-
age generation have been advanced using deep learning. This machine learning
technique tries to emulate parts of the structure of the human brain to automat-
ically deduct knowledge from experience. Especially in computer vision, this is
widely applied, for example to classify images in thousands of categories [SZ15]
depending on their content.

Humans play an important role in computer vision. Camera software often
includes a setting to enable the detection of faces or even to automatically take a
picture when all persons are smiling. For self-driving cars for example, a reliable
detection of pedestrians is crucial. Post-processing images with powerful editing
tools like Photoshop has become a central aspect of the work of professional
photographers. Many person images in social media are edited, for example to
remove wrinkles or to put oneself in a better body shape.

The generation of human images is particulary difficult but also allows a wide
range of applications. On the one hand it can be used for the generation of fake
news, for example by generating deep fakes [CC19], where videos of person’s are
generated to persuade viewers that the action shown in the videos took place.
The severe impact of such technology on our society is evident.

On the other hand, human image generation can be used for example in the
film industry where it could allow to create large numbers of people or to perform
stunts safely. Currently these tasks are performed using powerful rendering soft-
ware and human body models, which must be designed with cumbersome work.
It is also possible to use generated person as a method to enhance other appli-
cations of computer vision. For person re-identification this has already been

1

Chapter 1. Introduction 1.1. Pose-Conditioned Human Image Synthesis

Figure 1.1: Pose-guided person image generation. A image of a human has to be
generated which looks the same as in the input but appears in the
target pose.

applied by some authors [SSLS18, QFX+18], one could also consider generated
images to create more example for pedestrian detection or other tasks.

1.1 Pose-Conditioned Human Image Synthesis

In this master thesis we’re going to apply deep learning to change a person’s pose.
Based on an input image that shows a person and a target pose, a new image is
created that shows the same person as in the input but in the target pose. This
is shown in Figure 1.1.

The difficult aspect of this task is that classical architectures for computer
vision tasks are unable to transfer information over long distances. But if the
pose of a person is changed significantly, information needs to move large ways,
as visible for example for the left hand in Figure 1.1.

Some approaches tackle this problem by using 2D transformations within the
architecture. For this purpose, the person in the input image is broken down
into individual body parts, then the features of each bodypart can be moved to a
destined location. This allows to shuttle information describing a particular part
of the body to the region where it is needed to synthesize that part.

The execution of these transformations in two dimensions causes some diffi-
culties. First, the target pose is ambiguous, it cannot be distinguished whether
an arm is in front or behind the body if the projection of the three-dimensional
pose to two dimensions is identical. Second, when bodyparts are transformed in
2D, they often need distortion, since an actual 3D transformation of the human
is performed in 2D. This can cause patterns on clothes to be distorted as well.
And third, if some body parts lie in front of others, for example an arm in front
of the body, this body part is transformed together with the one behind, so its
information will get into the wrong area. Table 1.1 shows an example for each
case.

2

1.2. Challenges in Evaluation Chapter 1. Introduction

Table 1.1: Failure cases prom the paper of Siarohin et al. [SSLS18]using 2D trans-
formations. The right arm in the left image is falsely generated in front
of the body. The image in the center shows distorted patterns, in the
right image colors for arm and body are mixed.

in gt out in gt out in gt out

A possible solution to the above issues is to perform the transformations in
three-dimensional space. This approach will be investigated in this master thesis.
For this to work, it is necessary that the model learns to represent information
about the input image in a three-dimensional structure, so that a 3D transfor-
mation can transport them to the right place. The transformation’s result has to
be converted back into a two-dimensional image in order to obtain the output.

Note, that our approach does not make use of any additional depth input: we
only use the RGB image, neither depth maps not a 3D pose of the input image is
utilized. Our network has to estimate the depth of the persons bodyparts itself.
Several monocular depth estimation methods (e.g. [GMAB17]) show, that this is
possible.

Furthermore, it shall be examined whether it is possible to use this implicitly
learned volumetric information for other tasks, for example for the estimation of
poses. If the model learns general features that completely represent a person
in 3D space, then this method could serve as an intermediate task for 3D pose
estimation.

1.2 Challenges in Evaluation

To be able to compare different architectures and methods, evaluation metrics
are applied. These quantify the performance of a model, usually by assigning a
score or an error to the result.

The evaluation of image generation approaches is difficult in general. It is
necessary to check whether an image looks realistic or not, but quantifying this
is not trivial. For the given task this is hampered by the fact that the generated
images have to fulfill two additional aspects, besides being realistic: they have to
contain the same person in the same clothes as the input image and they have to
show the correct pose.

There are some metrics that have been used in other work to quantify the
results of pose-based human image generation. We propose two additional ones

3

Chapter 1. Introduction 1.3. Outline

and then carry out a user study to evaluate the performance of the metrics in
comparison with scores derived from human judges. For this purpose, we adapt
the Elo-rating, which is used to rate chess players.

1.3 Outline

We explain the foundations of this thesis in the next chapter. It includes various
aspects of neural networks which are important for image generation. In Chapter
3, we will summarize approaches which are related to this thesis, especially focus-
ing on different way to transform features in network architectures. We explain
our 3D model in Chapter 4, including the baselines and ablation models we use
for comparison.

Chapter 5 describes several evaluation metrics which can be applied to measure
the performance of image generation models. This includes two metrics proposed
by ourselves. We then describe the Elo-rating system and propose an adaption
which makes it more stable. Based on the results of a user study, we then evaluate
how well the objective metrics correlate with the Elo-ratings derived from human
judges.

In Chapter 6, we describe the experiments we conducted and analyze the re-
sults. First, different design choices for our 3D model are evaluated, then we
compare our model with two baselines and perform an ablation study. In the last
chapter, we summarize our results and present future work.

4

2
Foundations

In this chapter we will have a look at the foundations of artificial neural networks
and convolutions, generative adversarial networks and a modification of them as
well as their application on image generation tasks. Then, we will have a look
at mixed-precision training which allows to decrease the memory consumption of
neural networks and finally we will briefly introduce 2D and 3D transformations.

2.1 Artificial Neural Networks

Artificial neural networks achieve state-of-the-art results is many areas of com-
puter vision. They are able to automatically learn to distinguish cats from dogs,
to detect cars and pedestrians or to synthesize completely new images. These
networks learn from datasets, which contain a large amount of examples for the
given task, for example images of cats and dogs together with the information
whether a cat or dog is visible. If these samples are presented to a suitable net-
work architecture, the model slowly adapts to them and learns to execute the
task, even on inputs which it has never seen before.

This section briefly introduces the different aspects of artificial neural networks
focusing in particular on properties ad methods which are important for this
thesis. For a broad introduction into the area of neural networks we recommend
the book “Deep Learning” by Goodfellow, Bengio and Courville [GBC16].

2.1.1 Multi-Layer Perceptron

The origin of artificial neural networks lies in neurobiology [MP43]. An image of
a neuron is given in Figure 2.1a. The neuron gets the majority of inputs over
dendrites, which are visible in the bottom part of the image. They propagate
electrochemical stimulation from other brain cells to the soma, the neuron’s core.
If enough potential is received from these inputs, the neuron fires and generates

5

Chapter 2. Foundations 2.1. Artificial Neural Networks

(a)

y

x1 x2x0

w1 w2w0

b

(b)

x0 x1 x2

y1

y2

y3

y

W01

W12

W23

(c)

Figure 2.1: A real neuron (a) (adapted from [LHF+05]), a perceptron (b) and a
multi-layer perceptron (c).

an action potential itself. This is propagated through the axon, visible in the
image’s center, in order to stimulate other neurons. [KSJ+13, p. 21ff.]

Artificial neurons simulate this behavior. A perceptron, visualized in Figure
2.1b, gets inputs xi which are multiplied by respective weights wi and then
summed up. A bias b is added which represents the potential threshold of a
real neuron. This results in the output activation y =

∑
iwixi + b.

Due to its definition, a perceptron can only represent linear functions. To
get around this restriction, multi-layer perceptrons are utilized. These assemble
multiple neurons inside layers and stack multiple layers to form more complex
architectures. This results in a composite of linear functions, which is linear
as well. To allow complex non-linear functions to be represented by the multi-
layer perceptron, non-linear activation functions are added between the layers.
Several important ones are later introduced in Section 2.1.4. Figure 2.1c shows a
multi-layer perceptron.

Weights between layers i and j are represented by matrices W ij. Instead of
explicitly adding the bias, one can append an additional weight for each neuron
which has 1 as a constant input. The activation function of layer j is denoted as
gj. We can then define the intermediate output of layer j as

yj = gj
(
W ijyi

)
. (2.1)

2.1.2 Learning

For a typical approach like image classification, we have given a dataset with
tuples (xn, tn), where xn corresponds to the input image and tn to the image’s
class. Based on this set, the network is supposed learn a function which maps the

6

2.1. Artificial Neural Networks Chapter 2. Foundations

inputs xn to the corresponding target class tn. For neural network, learning means
an automatic adaption of its weights in order to decrease the error it makes.

We therefore need a method to measure the error which allows to guide the
network towards better outputs. This is usually done by defining an error func-
tion, a simple example is the mean squared error. we define the network’s output
for a single input xn as y(xn) and the corresponding target output as tn the mean
squared error is defined as

E(y) =
1

N

N∑
n=1

(y(xn)− tn)2 (2.2)

The weights inside the network should now be updated in order to minimize
this error. To do so the gradient of the error E with respect to each certain
weight wij must be computed, then the weight can be adjusted in the gradient’s
opposite direction. The learning rate η controls the rate of convergence. This
procedure is known as gradient descent:

w′ij = wij − η
∂E(wij)

∂wij
(2.3)

For a deep architecture with many hidden layers a naive calculation of these
gradients is intractable. Each possible path through the network from the out-
put to the respective weight would be considered, leading to a combinatorial
explosion. To counteract this issue, the backpropagation algorithm is used.

Starting from the error gradient of the output the gradient is propagated
backwards through the network and cumulated at each neuron. Consider the
last two layers of Figure 2.1c. From the intermediate layer output denoted as
y(2), we can compute z(3) = W (23)y(2). Applying the activation function yields
y(3) = g(3)(z(3)). The gradient to y(3) is directly derived form the error function.
The other gradients can be computed in the following way:

∂E

∂z(3)
=

∂E

∂y(3)

∂y(3)

∂z(3)
=

∂E

∂y(3)
(g(3))′(z(3)) (2.4)

Gradient descent

The classical approach computes the gradient on the whole dataset, which is also
known as batch learning. An alternative is online stochastic gradient descent
(SGD), which only uses a single sample per step and thus only approximates the
true gradient. This method updates the network weights much more frequent
which increases the time to process a dataset once. The training process also
becomes far more noisy, but on the other hand it allows to use datasets which
are too large to fit in memory. Due to the noisy updates, online SGD allows
to overcome flat areas and saddle points in the optimization surface fast, where
batch learning slows down due to the small gradients.

7

Chapter 2. Foundations 2.1. Artificial Neural Networks

Minibatch learning combines both methods. Instead of updating the weights
with respect to a single sample, a small set of samples is considered at the same
time. The convergence is thus more stable in comparison to online stochastic gra-
dient descent and the frequency of updates is decreased. It still allows the model
to converge fast in areas where batch learning suffers from small gradients. They
can further be processed very fast on parallel hardware like GPUs. Minibatch
learning is currently the mostly used way for neural network training.

Another approach to stabilize training is the momentum method. Instead
of updating the weights with respect to a single gradient, a running average is
used. This cancels out contrary gradient directions of subsequent samples. The
momentum method can be combined with minibatch learning as well.

Especially for deep architecture gradients can have very large differences in
their order of magnitude which makes it difficult to choose a global learning
rate for all weights. RMSProp tackles this by normalizing each gradient with a
running average of its magnitude.

The Adam optimizer was proposed by Kingma and Ba [KB15] and combines the
momentum method with RMSProp. This optimizer keeps a running average for
the first moment of the gradients and one for the second moments, which are the
squared gradients. The smoothing parameters are called β1 and β2, respectively.
The averages are bias-corrected, then the weight update is performed by first
normalizing the gradients running average with the second moment average. The
result is multiplied with Adam’s third hyper-parameter α, the step size, and then
subtracted from the weight.

2.1.3 Convolutional Neural Networks

In multi-layer perceptrons, each neuron in a layer is connected with each other
neuron in the following layer by a weight. For images with thousands to millions of
pixels, this approach would need critical amounts of memory even if only a very
small number of layers is used. Thus, a convolutional neural network (CNN),
derived from the convolution operation, is usually utilized.

A convolution applies a small matrix H ∈ Ra×b, called kernel, on an image F :

G[x, y] = H ∗ F =
a∑

u=−a

b∑
v=−b

H[u, v]F [x− u, y − v] (2.5)

For kernels larger than 1 × 1 the above equation is ill-defined: If x and y are
close to the border, F [x−u, y−v] will be outside of the image. A possible solution
is to only consider kernel positions which are completely inside the image. In this
case, G will be smaller than F by one kernel size. Alternatively padding on F
can be used to increase F by one kernel size, then G has the same size as the
original F . There are multiple ways to do padding, we will restrict ourselves to
zero-padding where the constant 0 is added around F .

8

2.1. Artificial Neural Networks Chapter 2. Foundations

convolution

Figure 2.2: A convolutional neural network. Two (convolutional) layers with
stride 2 are followed by one with stride 1 and two transposed con-
volutions with stride 2.

Convolutions have been used for multiple applications throughout computer
vision history. They can be used in image editing, for example to blur or sharpen
an image, which is an important preprocessing step for many applications.

Convolutional neural networks apply convolutions to extract local features from
images. Instead of using a specified kernel matrix, the kernel’s entries are adapt-
able and learned automatically by the network. This kernel matrix is applied
over the whole image, leading to an activation or feature map which has the
same width W and height H as the input image. Since usually multiple kernels
are applied on the input, we get a set of C feature maps or channels as the out-
put of a convolutional layer. These can be stacked into a depth dimension, which
leads to the image shown in Figure 2.2, where each activation map is visualized
by a cube W ×H × C.

Usually, a set of convolutional layers is stacked, the input of a single activation
of an intermediate layer is thus a set of activations from the previous layer of
size K × K × C, if K is the size of the kernel and C the number of channels
in the previous layer. Stacking allows the network to learn more global features:
the first layer can learn local information, like colors or edges, the following ones
combine these to learn simple textures or structures like corners. Later layers can
then detect object-parts like wheels or heads or even complete objects like cars
and humans.

If multiple convolutional layers are stacked, the spatial size of the feature maps
stays the same and the value of each activation is dependent on its location.
For classification one does not want this spatial dependence, instead a single
output value per class is desired. This can be achieved by adding fully connected
layers at the end of the network, which connects each output neuron of the last
convolutional layer to a single output vector. This leads to very large weight
matrices, if the features maps have a large spatial size.

To counteract this, pooling layers were introduced. They decrease both width
and height of the images by subdividing the feature maps into patches, for ex-

9

Chapter 2. Foundations 2.1. Artificial Neural Networks

ample of size 2 × 2, and replacing each patch by its mean or maximum value.
LeCun et al. [LBD+89] used average-pooling for hand-written digit classification,
max-pooling was successfully used in the VGG networks [SZ15] for general image
classification.

Another approach to downscale width and height of the feature maps is the
application of strided convolutions: the kernel is shifted by a stride larger than
one to get the output activations. If pooling layers are replaced by strided con-
volutions, the network itself can learn how to decrease the size of the feature
maps in a more sophisticated way. This can also be used in the reverse direction
to increase the spatial size of each feature map and is called transposed convo-
lution [LSD15]. A transposed convolution with stride 2 can be understood as
a usual convolution where between each row and column of the input a row or
column of zeros is added, thus the resulting feature map doubles its size. Figure
2.2 visualizes the effects of strides on feature maps.

Each activation in a convolutional network can only be influenced by a specific
area in the input image: the neurons receptive field. In many cases, some neurons
are supposed to learn global features and thus need a large receptive field, for
example in classification approaches, where at the end information from the whole
image is needed. There are several ways to increase the receptive field, but they
differ greatly in the number of parameters they need. Since this influences both
memory consumption and training time, a low number of parameters is often
preferable.

A naive approach to increase the receptive field is a larger kernel size. Un-
fortunately the number of parameters in a kernel depends quadratically on the
kernel size, so increasing the receptive field with this method slows down training
a lot. A better approach stacks multiple layers, where each layer has a small
kernel, as it is done in the VGG-networks [SZ15]. If each layer uses a kernel size
of 3, the receptive field increases by two for every additional layer. The number
of parameters also grows linearly with the number of layers, so we have a linear
dependency between the size of the receptive field and the number of parameters.

Strided convolutions have an even greater impact: the size of the receptive field
grows exponetially in the number of parameters. The first layer receives size 3,
the second size 7. Three layers already have a receptive field of size 15. This has
the downside that the height and width of the feature maps halves at every step,
so a large amount of the spatial information gets lost. Dilated convolutions, first
used by Yu et al. [YK16] in the context of convolutional networks, also allow an
exponential grow of the receptive field while not losing spatial information. The
dilation increases the size of the kernel by adding rows and columns of constant
zeros. A dilation rate of 2 therefore increases a kernel of size 3 to a kernel of size 5.
This does not increase the number of trainable parameters, since the additional
values in the kernel are constant, but it increases the receptive field.

One could now set the dilation to a very large value in the first layer, a kernel
with size 3 would then collect 9 values all across the input image. The receptive

10

2.1. Artificial Neural Networks Chapter 2. Foundations

field of this neuron would then be shattered in 9 parts, which is usually an un-
wanted behavior. Instead, one chooses the dilation to be at most the size of the
receptive field of the previous layer. Doubling the dilation rate at every layer is
the usual approach, with a kernel of size 3 this leads to a receptive field of 3 at
the first layer with dilation 1, a field size of 7 after the second and a field size of
15 after the third.

We have introduced convolutional neural networks for images, thus they com-
pute two-dimensional feature maps. Originally, convolutions were applied on con-
tinuous 1-dimensional functions [Dom15] and they can also be easily extended to
three-dimensional data. The third dimension was first used as a temporal axis by
combining multiple video frames [KLY07,JXYY12], but this can also be applied
to three spatial dimensions, where each activation vector corresponds to a voxel
in space.

2.1.4 Activation Functions

In order to introduce non-linearities into the network, activation functions are
used. Early works often employed the sigmoid function σ or the hyperbolic tan-
gent tanh:

σ(z) =
1

1 + e−z
(2.6)

tanh(z) =
2

1 + e−2z
− 1 = 2σ(2z)− 1 (2.7)

The sigmoid function returns an output between 0 and 1, and thus emulates
a real neuron which is either active or not. An output between −1 and 1 is
returned by the hyperbolic tangent, which is often preferred since in has better
training properties in deeper architectures [GBB11]. Those activation functions
can also be used for another pupose: the output of a network is often bounded by
some values, e.g. 0 to 255 for pixel values. This can be achieved with a sigmoid
activation function, which is then scaled according to the desired output range.

Since both sigmoid and hyperbolic tangent converge for large and small values,
the gradient in these areas are very small. Especially in deep architectures, where
multiple of these activations are included, the gradient often vanishes such that
little to no training happens in early layers. Thus, the rectified linear unit (ReLU)
[HSM+00] or its modification LeakyReLU [MHN13] is often employed:

ReLU(z) = max(0, z) (2.8)

LeakyReLU(z) = max(αz, z) with 0 < α� 1 (2.9)

ReLU clips the activation, such that it is always equal or larger than 0. For
its active part, the magnitude of the gradient stays the same, so vanishing gra-
dients do not happen. For the inactive parts there is no gradient at all. Despite

11

Chapter 2. Foundations 2.1. Artificial Neural Networks

this, it has been shown that ReLU activations have significant advantages com-
pared to sigmoidal activations [GBB11]. To further enhance the training process,
LeakyReLU multiplies negative activations with a small value instead of setting
them to 0, such that a small gradient still exists.

All previous functions are calculated for each activation value independently.
The softmax function can be used if the output of a set of activations should
correspond to a probability distribution with sum 1. This can be utilized for
classification or semantic segmentation. It is defined as

softmax(z)i =
ezj∑K
j=1 e

zj
for i = 1, . . . , K. (2.10)

2.1.5 Normalization

Ioffe and Szegedy [IS15] introduced batch normalization in order to reduce the in-
ternal covariate shift of networks. They argue, that in deep neural networks small
changes in the distribution of an early layer’s activation lead to large differences
in the activations of deeper layers. The network must adapt to these changes, so
the deeper layers are occupied with adapting instead of learning helpful features.

To tackle this, the activations are normalized to have a mean of 0 and a variance
of 1. To preserve the ability of the model to learn specific scales and shifts they
add additional learnable parameters γ and β. For convolutional networks batch
normalization is executed for each channel independently but across all samples
in a mini-batch and across with and height, represented by the 3D tensor X. The
scalars µ and σ2 correspond to the mean and the variance of X, a small value ε
is added for numerical reasons. Then the output for the i-th channel Yi can be
computed as:

Yi =
γ(Xi − µ)√
σ2 + ε

+ β (2.11)

Batch normalization has been applied to a large variety of tasks with great
success. Santurkar et al. [STIM18] suggest that the enhancement from batch
normalization does not stem from a reduction of covariate shift but instead leads
to a much smoother optimization: the loss and its gradients tend to variate much
less if batch normalization is used, so it is simpler for the network to decrease its
error.

If the network is evaluated on single unseen samples from the validation or test
set, it is not possible to compute the batch statistics. For this reason, moving
averages of mean and covariance are calculated during training and the results
are used for inference.

Batch normalization introduces additional noise to the dataset: the output
feature maps of a sample depend on the feature maps of the whole batch. This
gets even more problematic if the batch size is small. This is why we use instance

12

2.2. Generative Adversarial Networks Chapter 2. Foundations

normalization by Ulyanov et al. [UVL16] which does not compute mean and
variance over the batch dimension but for each sample independently. Another
alternative is layer normalization by Ba et al. [BKH16], where the normalization is
computed over height, width and all channels. Group normalization by Wu et al.
[WH18] is a midway between layer normalization and instance normalization: the
channels are partitioned in groups, then each group is normalized independently.

2.1.6 Dropout

Srivastava et al. [SHK+14] introduced dropout in order to reduce overfitting in
networks. Dropout is applied by setting activations to 0 randomly during the
training process. This forces the neurons of the network to learn features inde-
pendently from other neurons, since the presence of others is not guaranteed.

2.2 Generative Adversarial Networks

In this thesis, we want a neural network to generate new images. This task
differs from many typical machine learning application, which train discrimina-
tive models, for example image classification, like VGG [SZ15], or segmentation
approaches.

For an input sample x a discriminative model learns the probability distribution
p(y|x), where y represents a class. In a supervised scenario the basic concept of
the learning procedure is fairly simple: given an input x, the model has to return
the correct class y, the difference between the correct output can be measured
with an error function and this guides the network towards producing better
predictions.

Instead of estimating a distribution, the network used in this thesis should re-
turn a single sample x ∼ p(x). The learning task is far less trivial compared to
discriminative models, because it is not easily decidable whether a generated sam-
ple x stems from the target distribution or not and how the model must change
to create better samples. Traditional losses would lead the network to learn some
average output of p(x|y). Just imagine a toy dataset {(a, 0), (a, 1), (b, 1), (b, 2)}.
Even if a random input is added, an L2-based loss would make the network’s
output 0.5 for input a and 1.5 for input b. For images, this leads to blurry
results.

A possible approach to train generative models is by employing a second dis-
criminative network. This idea leads to generative adversarial networks (GAN)
which will be explained in the following section. Since the classical minimax for-
mulation has some downsides, the Wasserstein-GAN will be further introduced.

13

Chapter 2. Foundations 2.2. Generative Adversarial Networks

z

c

Generator x̂

x

Discriminator

or

input real
or fake?

Figure 2.3: A conditional generative adversarial network. The dataset consists of
pairs (c, x), for a given c the generator synthesizes an output x̂. The
fake pair (c, x̂) should be indistinguishable from the real pair (c, x)
for the discriminator.

2.2.1 Minimax GAN

Generative adversarial networks were proposed by Goodfellow et al. [GPAM+14].
A second model, the discriminator D, is defined to serve as a discriminative model
for distinguishing real and generated samples. The generator’s task is to fool the
discriminator. This can be represented by a minimax game with value function
V (G,D), which is derived from the cross entropy error:

min
G

max
D

V (G,D) (2.12)

V (G,D) = Ex∼preal [logD(x)] + Ez∼pz [log(1−D(G(z)))] (2.13)

To carry out this game in practice, two neural networks are used for generator
and discriminator and trained alternately. Since the generator can only influence
the second term, the first one is dropped for its loss. Furthermore a practical
modification is suggested by the authors, namely replacing log(1−D(G(z))) by
− log(D(G(z))). This is based on the observation that the latter one provides
larger gradients in early training when the discriminator outputs small values for
generated samples.

This GAN formulation allows a network to create samples according to a given
distribution p(x). However in practice it is often needed to condition the distri-
bution, such that the network generates a distribution p(x|c). Goodfellow et al.
suggest to simply add this condition to both the generator and the discriminators
input. A visualization is shown in Figure 2.3.

Training a GAN is difficult. If the discriminator is too weak and fails to distin-
guish between real and generated samples, the backpropagated gradients do not
point the generator into the right direction. However a discriminator which is too
strong also has a downside. Goodfellow et al. show that a perfect discriminator
reduces the loss of the generator into the Jensen-Shannon divergence between the
real and the generated distribution, which measures their the dissimilarity.

Figure 2.4 visualized this behavior for a toy example of two Gaussian distri-
butions. If the difference of the distributions is too large, the gradient of the

14

2.2. Generative Adversarial Networks Chapter 2. Foundations

pr pg1 pg2

Jensen-Shannon

Wasserstein

Figure 2.4: Comparison of Jensen-Shannon divergence and Wasserstein distance.
The target distribution is a simple Gaussian (blue). If the generated
distributions is close to the target, both Jensen-Shannon divergence
and Wasserstein distance increase and show usable gradients. But if
the generated distribution is far away from the target, the gradients
of Jensen-Shannon vanish whereas Wasserstein behaves nicely.

discriminator’s output with respect to its input vanishes. One therefore neither
wants a discriminator which is too strong nor one which is too weak. This can
be achieved by changing the size of the models or by training one of the models
for multiple gradient descent update steps per update of the other model.

2.2.2 Wasserstein GAN

The Wasserstein GAN by Arjovsky et al. [ACB17] presents another solution to
the balance problem. It is based on the Wasserstein distance, which is defined as

W (pr, pg) = inf
γ∈Π(pr,pg)

E(x,y)∼γ[‖x− y‖]. (2.14)

In this definition Π(pr, pg) corresponds to the set of all possible joint distribu-
tions whose marginal distributions are pr and pg. The Wasserstein distance is
also often called earth-movers distance, which is a more intuitive way of under-
standing the definition. The distributions pr and pg correspond to piles of earth.
A γ ∈ Π(pr, pg) corresponds to a specific movement plan which transforms pr
to pg. The term E(x,y)∼γ[‖x− y‖] calculated the cost of such a plan, the farther
earth has to be moved the more costly it is. Finally, W (pr, pg) corresponds to the
cheapest movement plan. This is visualized in Figure 2.5.

The advantage of the Wasserstein distance is shown in Figure 2.4. In con-
trast to the Jensen-Shannon divergence its gradient does not vanish even if the
distributions are very dissimilar. But while the Jensen-Shannon divergence cor-
responds to the optimal discriminator in a classical GAN, there is no direct way
to compute the Wasserstein distance. A naive approach would compute all pos-
sible joint distributions γ ∈ Π(pr, pg) and to find the cheapest one, which is

15

Chapter 2. Foundations 2.2. Generative Adversarial Networks

0.6 0.3 0.1

0.4

0.5

0.1

0.3 · 0 0.1 · 2

0.3 · 1 0.2 · 0

0.1 · 1

0.6 0.3 0.1

0.4

0.5

0.1

0.4 · 0

0.2 · 1 0.3 · 0

0.1 · 0

Figure 2.5: Two possible Wasserstein movement plans. The marginal distribu-
tions pr and pg are shown in yellow, the blue numbers correspond to
two movement plans / joint distributions γ. To calculate their costs,
these values are multiplied by the distances (black). As an example,
in the left plan 0.1 is moved from the first pile to the third over a
distance of 2, so the cost is 0.2. As a result the left movement plan
has a total cost of 0.6, whereas the right one costs 0.2. The latter is
a minimal solution, so W (pr, pg) = 0.2.

intractable. Instead, using the Kantorovich-Rubinstein duality, the equation can
be transformed into its dual form:

W (pr, pg) =
∑
‖f‖l≤1

Ex∼pr [f(x)]− Ex∼pg [f(x)] (2.15)

Instead of computing the infimum over all possible joint distribution, now the
supremum of all possible 1-Lipschitz continuous functions is needed. Hence, the
problem has transformed into a function-optimization problem, so one can use an
additional network to represent f . Since this network’s task is not the discrimi-
nation between real and fake images, but rather to yield a well-defined gradient
back to the generator, it is now called a critic.

As a simple way to enforce the 1-Lipschitz continuity in the critic, the authors
use weight clipping, but also state that this is only a first solution, which already
achieves good results. The clipping range is an important hyperparameter: a too
small one restricts the critic too much and could lead to vanishing gradients for
larger networks, while a too large one makes it harder for the critic to achieve
optimality as the authors argue.

The Wasserstein GAN already solves the balance problem of classical GANs.
Due to the 1-Lipschitz continuity a strong critic does not lead to vanishing gradi-
ents, the opposite actually holds: since a weak critic still returns bad gradients it
is suggested to train the critic multiple steps per generator update. Arjovsky et
al. used a factor of 5 which slows down training. Heusel et al. [HRU+17] instead
train the discriminator with a larger learning rate and show a faster convergence.

16

2.3. Image Generation Chapter 2. Foundations

Gradient penalty

Gulrajani et al. [GAA+17] argue that gradient clipping in the critic decreases
the ability of learning complex functions. Since a differentiable function is 1-
Lipschitz continuous if and only if it’s gradients are at most 1 almost everywhere,
they define the following penalty to the gradient of the discriminator’s output
with respect to its input:

GP (px̂) = λEx̂∼px̂ [(‖∇x̂D(x̂)‖2 − 1)2] (2.16)

This penalty can be added to the Wasserstein distance and penalizes the critic
if the gradient’s norm diverges from 1. Note that the original Wasserstein formu-
lation requires the gradients to be at most 1. The authors state that a two-sided
penalty does not constraint the critic additionally, since it is trained until it
reaches optimality where its gradients will be as large as possible anyway.

In an optimal case the gradient norm is 1 on the whole domain, which means
for all possible inputs, real and generated ones.. Since this is intractable the
authors propose to sample x̂ ∼ pẑ which corresponds to a random point on the
straight line between a real sample x ∼ pr and a generated sample x̃ ∼ pg.

They show, that this approach outperforms weight clipping on toy datasets and
real datasets. For toy datasets the critic is able to learn more difficult distributions
since its parameters are much less restricted in comparison to weight clipping. In
real-world examples they show a higher variability of generated images. Instead
of finding a clipping range, the weighting factor λ is the important parameter for
the WGAN-GP. The authors suggest to use λ = 10.

2.3 Image Generation

Several works have applied the classical GAN architecture combined with convo-
lutional networks to datasets in order to generate samples consistent with these
sets. Most of them are based on the deep convolutional GAN (DCGAN) by
Radford et al. [RMC16]. The basic generator architecture consists of a decoder
network which transforms a random vector input into an image using transposed
convolutions. The discriminator’s architecture corresponds to an encoder and
returns a scalar output, 0 for fake images and 1 for real ones. Their paper sug-
gests some general guidelines for DCGANs: strided and transposed convolutions
as a replacement of pooling layers, batch normalization1 in both generator and
discriminator and ReLU for the internal generator layers as well as LeakyReLU
for the discriminator layers.

1Note, that instance normalization was introduced several months after DCGANs.

17

Chapter 2. Foundations 2.3. Image Generation

...

convolutioncopy

LGAN

Generator Discriminator

L1 LGAN

Figure 2.6: Pix2Pix architecture by Isola et al. [IZZE17]. A U-net is used for
the generator network, the discriminator network classifies patches of
the image. As an intermediate loss for the generator, L1 compares
generated images with the ground truth.

2.3.1 Conditioned Image Generation

In this thesis we aim to generate images not based on a random input vector
but based on another image. Ronneberger et al. [RFB15] proposed the U-net
architecture for this purpose. This network first transforms the input image into
a feature vector using an encoder and then upsamples it to the original size in
order to get the input’s semantic segmentation. In order to get access to high-
resolution features in the decoder, skip connections are used which append the
encoder’s feature maps to the corresponding ones in the decoder. Training is
performed using a weighted categorical cross-entropy loss. The standard cross-
entropy loss is defined as

L(t, y) =
∑
i

(ti · log yi) (2.17)

For semantic segmentation and other tasks, where for each input image there
is only one correct solution, the U-net architecture combined with a classical loss
is very well suited. But for the given task this is not the case: especially if parts
of the target are invisible in the input image, there are multiple correct solutions
for the synthesized image. In order to cope with this, a GAN can be used.

Isola et al. [IZZE17] proposed Pix2Pix, a combination of the U-net with a
conditional DCGAN. Instead of using a decoder as the generator, a U-net is
used. This approach is visualized in Figure 2.6. They applied this architecture to
various tasks, for example the reverse of a segmentation: a semantic segmentation
is used as the input, the network then generates images which correspond to these
segmentations. If a classical loss would be applied here, the optimal result would
be an average over all possibilities. A GAN only generates one of them.

18

2.3. Image Generation Chapter 2. Foundations

In order to retain a more direct connection to the ground truth, they combine
the L1-loss with the GAN architecture. They argue that the blurry results of L1

correspond to the low-frequency target image whereas the GAN is used for high
frequencies. Therefore they introduce a PatchGAN which applies the discrimina-
tor not to the full image but to patches of it. With a patch size of 70× 70 and a
weighting factor of 100 for the L1-loss, they achieved the best results.

Instead of using an additional random input as the original formulation of
GANs requires, they apply dropout in the three most central layers of the decoder.
They argue that the network otherwise learns to ignore the random input. To
also apply this kind of noise during testing, dropout is kept enabled for inference.
Nevertheless they only found little change in the generated images.

The ResNet was introduced by He et al. [HZRS16] for image classification.
This architecture tackles the problem of vanishing gradients for very deep models.
Instead of stacking convolutions on top of each other, residual blocks are used. If
x is the input feature map of a residual block, a set of convolutions, normalization
and activation functions is applied which compute a function F (x). The output
of the block is formed by adding F (x) + x.

Each residual block thus learns to compute a difference or residual F (x) to the
block’s input x which is the central difference to stacked convolutions. Due to
the direct connections this approach allows the gradient to flow more easily in
deeper parts of the network.

Using Ck,s for a convolution with a kernel size of k×k and stride s, B for batch
norm and R for a ReLU activation, a single residual block can be visualized as

C3,1BR C3,1B R

The classical Resnet first applies a single convolution with a large kernel and
stride 2 to the input image, followed by a pooling layer. This is followed by
several sets of residual blocks, after each set height and width are halved while
the number of features in doubled. For the final classification result global average
pooling and fully connected layer is appended.

The Resnet architecture can be adapted to apply it for image generation, an
example is the CycleGAN by Zhu et al. [ZPIE17]. After a short encoder firstly
quarters both height and width of the input, a set of residual blocks is applied
without pooling or strided convolutions. To get an output image with the same
size as the input, a decoder is appended at the end.

2.3.2 Perception-Based Loss Functions

Many image-generation approaches use perceptual losses as a replacement or ad-
ditionally to a pixel-wise L1-loss. They are based on features which are extracted
from an intermediate layer of a pretrained network, which resembles the networks

19

Chapter 2. Foundations 2.4. Mixed-Precision Training

perception. In practice the image classification networks VGG16 or VGG19 pre-
trained on ImageNet [RDS+15] are usually applied.

Let φj(x) be the output of the j-th convolution given the input x. Then the
feature reconstruction loss is defined by Johnson et al. [JAFF16] as

Lj(t, y) =
1

CjHjWj

‖φj(t)− φj(y)‖2
2. (2.18)

This loss therefore does not compare the image directly but instead compares
feature maps. This approach is motivated by the assumption that the features
extracted from a general image classifier correspond to the features which are also
important for human vision, thus helping the network to focus on more important
aspects of vision instead of optimizing attributes like lightning or small spatial
shifts. This perceptual loss therefore focuses on the content of images. The L2

norm is often replaced by an L1 norm.

A texture loss, which is often referred to as a style loss, was proposed by Gatys
et al. [GEB15]. If the spatial dimensions of an internal convolution’s output φj
are flattened, the result is a matrix F j

nk, where k defines the position and n the
feature map. The authors argue that the texture of an image is independent of the
spatial dimension, hence they use the correlations across the spatial dimension
as a statistic. This is given by the Gram matrix G:

Gj
mn =

∑
k

F j
mkF

j
nk (2.19)

The style loss for a given layer can then be defined as

Lj(t, y) =
1

CjHjWj

‖Gj(y)−Gj(y)‖2
F . (2.20)

2.4 Mixed-Precision Training

The memory consumption of a network depends to a large extend on two factors:
the size of the architecture and the representation of floating point numbers which
is used. Since memory is limited and larger architectures are often preferred, it
is useful to adapt the number representation. Different standardized formats
exist [IEE08]: usually the single-precision floating-point format is utilized, where
each floating-point number is stored using 32 bits. Choosing double-precision
increases the ability of the network to work with small numbers while it also
increases the needed memory by a factor of two. Half-precision does the opposite:
it halves the size but also increases the smallest exponent from−126 to−14. Half-
precision can also be computed faster, especially if tensor cores are used which
do 4× 4 matrix multiplications in hardware.

Mixed precision was proposed by Micikevicius et al. [MNA+18] as a combina-
tion of single-precision and half-precision. The idea is that the weights are stored

20

2.5. Transformations Chapter 2. Foundations

in single-precision, then casted to half-precision in order to perform forward and
backward pass. This has the consequence that activations, activation gradients
and weight gradients are also computed in half-precision. Before applying the
gradient to the stored weights, they are casted back to single-precision. This
approach combines the best out of both worlds: Weights and weight updates can
still be very precise, while the remaining values only need half the memory.

One issue arises: the gradients are usually very small values, especially for large
networks. For half-precision this leads to many gradients being 0, since only 5
bit are available for the exponent. To tackle this the authors propose to use a
scaling factor, which is multiplied to the loss function, such that the gradients
become larger. Before applying them to the weights, but after casting them to
double-precision, the gradients are divided by that scale factor. In order to have
as many gradients as possible above the smallest representable number, the loss
factor can be increased every couple of steps by a small amount until an overflow
happens, then it is decreased by a larger factor.

Mixed precision decreases the memory consumption for activation and activa-
tion gradients by a factor of two. Weights and weight gradients will need slightly
more space, because they exist in both half- and single-precision. Especially for
convolutions this is not an issue since the activation maps are orders of mag-
nitudes larger than the kernel sizes such that the memory requirement is still
roughly halved.

2.5 Transformations

This thesis applies 3D transformations to implicitely learned feature maps. The
needed foundations for this process are covered in the following section including
2D transformations which are used in the important related work by Siarohin et
al. [SSLS18].

2.5.1 2D Transformations

Siarohin et al. utilize 2D affine transformations to shuttle features in their de-
formable skip-connections. Affine transformations can be represented by matrix

multiplications. If a point
[
x y

]T
should be transformed, it is first converted to

homogeneous coordinates by appending a 1 which allows to include the transla-

tion
[
t1 t2

]T
in the transformation matrix. Then the affine transformation can

be applied: x′y′
1

 =

a1 a2 t1
a3 a3 t2
0 0 1

xy
1

 (2.21)

In affine transformations two parallel lines remain parallel after transforma-
tion. They allow operations such as translation, rotation, scaling, reflection and

21

Chapter 2. Foundations 2.5. Transformations

shearing. For two sets of three non-collinear points there exists a unique affine
transformation which maps one set exactly to the other set.

If an affine transformation has to be estimated for more than three points,
a perfect fit is in most cases not possible. Thus, a least-squares minimization
is often applied. If only two points are considered to define a transformation,
four constraints exist which are enough for a similarity transformation. This one
allows translation, rotation and the same scaling for both axes.

2.5.2 3D Transformations

There are several possibilities to select a transformation for the 3D case. An affine
transformation in 3D would have similar properties as the 2D case, it would also
allow shearing and scaling, but these are not necessary: A simple model for
humans subdivides the person into ten rigid bodyparts, two for each limb, one
for the head and one for the torso. Thus, if we want to transform a body using
this model, a rigid transformation would be enough. This assumes, that neither
scaling nor shearing is necessary to map a human to another pose.

If the transformations use real-world coordinates, the humans have the same
size before and after the transformation. We represent the pose in pixel coordi-
nates, so the size of humans is larger if they are close to the camera. For this
reason we need to include a single scale-parameter which is used for all three
axes, so we need three parameters for translation, three for rotation and one for
the scale.

Watson [Wat06] shows a method to estimate such a 7-parameter transforma-
tion, also known as a Helmert-transformation, from two point sets. Of course
it is again possible to describe this transformation using a matrix multiplication
with homogeneous coordinates, but for their estimation algorithm the following
parameterization is more useful:

p′ = dRp+ t (2.22)

The scalar d corresponds to the uniform scaling parameter, R is a rotation ma-
trix and t a translation vector. Their first observation is, that an approximation
for R which is optimal regarding least squares is independent of the scale d.

Therefore R can be computed for example using the method by Arun et al.
[AHB87]. To apply this the mean vectors of both sets are computed and then
used to normalize both sets:

p̄ =
1

N

N∑
i=1

pi p̄′ =
1

N

N∑
i=1

p′i (2.23)

p̃i = pi − p̄i p̃′i = p′i − p̄′i (2.24)

Then, a correlation matrix is defined by

22

2.5. Transformations Chapter 2. Foundations

H =
N∑
i=1

p̃ip̃
′T
i . (2.25)

Applying SVD to H yields a decomposition H = UΛV T , the optimal rotation
matrix with respect to minimum least-squares is then given by R = V UT .

Watson argues that by derivating the least-squares formula, one can compute
d as

d =

∑N
i=1 p̃

T
i Rp̃

′
i∑N

i=1 p̃
′T
i p̃
′
i

. (2.26)

The translation t can be computed similar as described by Arun et al. [AHB87],
except that the scale d is included:

t = p̄− dRp̄′ (2.27)

23

3
Related Work

Pose-conditioned person image generation is a generalization of novel view syn-
thesis. In novel view synthesis, the person visible in the input image should be
generated as if the camera is placed in another position, for example on the op-
posite side. This task can equivalently be defined as rotating and translating the
whole person instead of the camera. The task we approach in this thesis is more
complicated: the human does not transform in one part, instead the human is
articulated and can move bodyparts independently of each other.

Several works have already tackled one of these tasks. In this chapter we will
first introduce the work by Ma et al. [MJS+17], who defined pose-conditioned per-
son image generation and then describe several approaches which build on top of
this. In the next section we summarize architectures which make use of explicit
transformations, either of features or directly on the input images. This section
also contains the important related work by Siarohin et al. [SSLS18] which is the
foundation of this thesis. Then we summarize several unsupervised architectures,
which train networks with unpaired images. The chapter is concluded by a se-
lection of papers which tackle identity transfer, a task which is closely related to
pose-conditioned person image generation.

3.1 Pose-Guided Person Image Generation

The task we are tackling in this thesis was introduced by Ma et al. [MJS+17]. A
model is presented an input image showing a person and a target pose represented
by body joints as input. A new image should then be synthesized which shows
the same person from the input image but in the target pose.

The difficulty of this task lies in the fact that input pose and target pose can be
heavily misaligned, if poses are selected randomly. Each neuron of a convolutional
network only has a given receptive field which allows to extract local information
from the corresponding image patch. As Luo et al. point out [LLUZ16], neurons
often are only influenced by values in the center of the receptive field. They state,

25

Chapter 3. Related Work 3.1. Pose-Guided Person Image Generation

Figure 3.1: Architecture from Ma et al. [MJS+17]1. Two stages are used, the first
one refines a coarse result, the second stage applies a difference map
to this.

that the effective receptive field grows with the root of the actual receptive field
size. This makes it difficult for convolutions to move high-resolution information
over large distances inside the feature maps.

Ma et al. tackle this task with a two-staged approach (see 3.1), noth networks
are similar to a U-net [RFB15] and are trained after each other. The input to the
first stage is the input image concatenated with 18 heatmaps, each representing
a single joint of the target pose by a small circle. The first stage is trained using
the L1 loss and transforms this input into a coarse result. To allow the network
to transfer information across large distances, a fully connected layer is used in
the U-net’s center.

The second stage gets the coarse result of the first stage and the input image
and learns a difference map to the coarse result. It is trained using a DCGAN
discriminator loss in combination with an L1 loss. The discriminator’s inputs
consist of target or generated image together with the input image. The target
pose is not added, thus the discriminator can only answer whether both persons
are the same but not whether they show the correct pose.

Their architecture achieves mixed results. Especially when input and target
pose are misaligned the network fails to generate realistic results. Figure 3.1 shows
some examples. It is visible that many bad results are caused by a misaligned
difference map of the second stage because noisy patterns are especially visible in
areas of highly textured areas in the input image. As an example, the person in
the bottom left shows a noisy pattern on her shorts in the same area where the
input image has the shorts.

Lakhal et al. [ILLC18] extend the previously described approach by Ma et al.
They also use two stages for their approach, but different from Ma et al., their
stages use two different encoders in each stage: the first stage splits between
aligned inputs, so one encoder gets the target pose, the other one input image

1Architecture images with given source are always taken from the original publication.

26

3.1. Pose-Guided Person Image Generation Chapter 3. Related Work

Figure 3.2: Foreground transformer from Si et al. [SWWT18]. A U-net archi-
tecture with different encoder streams is used. A siamese encoder
processes input and target pose, an independent one processes the
masked person. The difference between the pose features is added to
the person features before passing them to a decoder.

and input pose. The second stage splits appearance from pose: again the first
encoder gets the target pose while the second one get input image and the coarse
result from the first stage.

They use a U-net architecture combined with residual blocks in the encoders.
Similar to Ma et al., the first stage contains a fully-connected layer to shuttle
features over large distances. The first stage is trained with an L1 loss, the
second stage uses a combination of an adversarial loss, an L1 loss and a loss,
which depends on the structural similarity index (SSIM), which is explained in
detail in Section 5.1.1.

Si et al. [SWWT18] propose a method for novel-view synthesis. They subdivide
their architecture into three stages, each having a corresponding loss. The first
one learns to rotate a 2D input pose into a 2D target pose from another camera.
An embedding layer transforms the rotation angle and the input pose into a
feature vector which is passed through two residual blocks. It is trained with an
L2 loss comparing the estimated joint coordinates with the ground truth.

The foreground stage (see Figure 3.2) transforms the human into the target
pose and uses a masked input image, input pose and target pose. Its architecture
is based on a U-net with three distinct encoder streams for input pose, target
pose and the masked input image. The pose-encoders share their weights. The
extracted features are combined before passing them to the decoder by taking the
difference between the pose features, in order to represent the pose change, and
then adding (not concatenating) them to the person features. Skip connections
from input image and target pose but not from the input pose are further added.

27

Chapter 3. Related Work 3.1. Pose-Guided Person Image Generation

Figure 3.3: Architecture from Zhu et al. [ZHS+19]. Pose-attentional transfer
blocks adapt a residual architecture which allows a pose-stream to
generate masks for the image-stream. Concatenating the result of the
image stream back to the pose stream allows to condition later blocks
on intermediate image results. Note that the inter-stream connec-
tions also have convolutions in between which are not depicted in the
image.

A foreground discriminator is combined with masked l1-losses for foreground and
background where the latter has a small weighting factor.

The third stage fills in the background using the transformed foreground from
the second stage and the conditioning image as input. It also corresponds to a
U-net with two respective encoders and a single decoder. A weighted combination
of a foreground discriminator with masked input, a full-image discriminator and
masked l1-losses for foreground and background as in the previous stage is utilized.

Zhu et al. [ZHS+19] use learned masks in their generator (see Figure 3.3).
They propose pose-attentional transfer blocks of which many are combined as a
replacement for residual blocks in a ResNet architecture. Each block consists of
two streams, one gets the input image as input, the other one input and target
pose. The second stream is supposed to learn masks for bodyparts, for this reason
the output of this stream is element-wise multiplied with the other stream after
every block. To feed back information in the other direction, they concatenate
the first stream’s output to the second stream. After several pose-attentional
transfer blocks, a decoder is applied to the image stream to get the final image.

They use two discriminators, the appearance discriminator decides whether in-
put and generated image depict the same person, the shape discriminator verifies
whether the correct pose is generated. The scores emitted by both discrimina-
tors are combined by multiplying them. This adversarial loss is combined with a
direct pixel l1 loss and a VGG19-based perceptual loss.

28

3.1. Pose-Guided Person Image Generation Chapter 3. Related Work

Figure 3.4: Architecture from Ge et al. [GLZ+18]. Visual features from two dif-
ferent input images showing the same person are extracted with an
encoder. These are combined with a target pose and synthesized into
two images which are supposed to show the same person in the same
pose. This is enforced by pose and identity losses. The implicitly
learned visual features can be used in a verification classifier for re-
identification.

3.1.1 Image Generation for Re-Identification

While human image generation is an interesting task by itself, one can also apply
them to improve the performance of other tasks. One example is person re-
identification, where it should be decided whether the same person is visible in
two different image. In this section we describe two methods which realize this
idea. The first approach generates additional images of existing persons to get
more training samples, the second approach learns to extract appearance features
from images to generate new images in another pose, the feature extractor is then
utilized for re-identification.

In order to augment a dataset for person re-identification, Qian et al. [QFX+18]
apply a generative model: for each original image they generate eight further im-
ages in canonical poses and use them additionally for training. Their architecture
firstly combines input image and target pose by concatenating them and feeds
the result through a small ResNet. During training they combine an adversarial
loss with a pixel-wise L1 loss which compares the generated and the target image.

Ge et al. [GLZ+18] generate images to implicitly learn visual features for re-
identification. They use two Siamese encoders (see Figure 3.4), which are pre-
sented a different image showing the same person. Before passing these images to
a decoder, the same pose-features are added to both vectors, together with ran-

29

Chapter 3. Related Work 3.2. Explicit Transformations

dom noise. The Siamese decoder is now supposed to generate the same person in
the same pose, which enforces the visual features extracted from both images to
be the same.

An identity discriminator leads the generators into generating the same person
as in the input image while a pose discriminator checks whether the target pose
is resembled in the generated image. An L1 loss between the generated image
and the target image and one between the two generated images of the Siamese
streams are further added. Finally and most important for the re-identification
purpose, an identity verification classifier takes the two visual feature vectors and
classifies them to either being from the same person or from different ones.

Combinations of ResNets and classical convolution blocks are used for the
different networks. Training is carried out in three steps: first only image encoders
and the verification classifiers are trained, then pose encoder, decoder and the
discriminators are trained while the others are kept fixed. Finally all networks
are fine-tuned jointly.

3.2 Explicit Transformations

Several approaches apply transformations in their architecture, either directly on
images or on features inside the model. These allow to tackle misalignments be-
tween input image and target pose. We can distinguish them according to the
pose input they use, since this influences the transformation methods which are
available: some approaches compute transformations based on keypoint-based in-
put and target poses. These approaches have in common that a mask is required
for each bodypart, such that different transformations can be applied. Others
utilize a dense pose representation. The resulting transformations are indepen-
dent of bodyparts, so masks are not needed. Finally, transformations in 3D are
possible.

3.2.1 Keypoint-Based Pose Representation

Transformations of features in the architecture of Siarohin et al. [SSLS18] ap-
proach the problem of misalignments between input and target pose. Espe-
cially the high-resolution skip-connections in the U-net architecture of Ma et
al. [MJS+17] suffer from them: the features corresponding to a right upper arm
are copied to the same position in the decoder but might be actually needed in a
completely different area. Some examples are visible in Table 3.1. Siarohin et al.
therefore propose to apply transformations to these copied feature maps in order
to shuttle the features approximately to their target area.

Based on the given poses they define ten rectangular masks {Mi}1≤i≤10 for the
bodyparts: eight for the limbs, one for the head and one for the body. Except
for the last one, all of them are derived from the corresponding body joints. For
example the left lower leg’s rectangular mask is created from the joints for the

30

3.2. Explicit Transformations Chapter 3. Related Work

input image/pose

target pose

 T

feature map
from encoder

feature map
for decoder

define
masks

compute
transformations

apply
masks

transform

merge

Figure 3.5: Steps of a deformable skip-connection. The input pose is used to
generate a mask for each bodypart, a transformation per mask is fitted
based on input and target pose. Both masks and transformations are
then resized to fit the size of a given feature map. After applying
the masks, the transformations can be executed. The transformed
bodyparts are merged using the maximum activation.

left knee and the left ankle by defining a rectangle with some padding around
these joints. Figure 3.5 shows this procedure. Only for the torso they use the
whole image as a region in order to copy background information as well.

To shuttle the features of a bodypart to the target area, a suitable transforma-
tion Ti is needed. Siarohin et al. use affine 2D transformations to do this. For
each bodypart such a transformation is fitted using the body joints associated to
this part. This procedure yields ten bodypart masks and ten affine transforma-
tions for each pair of input and target pose. For input features ϕin, 10 warped
output maps are created:

ϕiout = W (Mi � ϕin;Ti) (3.1)

Here, � represents an element-wise multiplication and W (ϕ;T) an affine warp
of ϕ according to the transformation matrix T . The resulting features ϕiout are
combined to the result ϕout by taking the maximum activation at each spatial
location (x, y) and each channel c:

ϕout(x, y, c) = max
i
ϕiout(x, y, c) (3.2)

Since masking and transformation are applied in different layers of the encoder,
masks and transformations must be rescaled to fit the respective size. The skip-
connections then take a layer’s output, apply all body masks to get ten masked
body parts, transform these masks using the fitted transformations and then

31

Chapter 3. Related Work 3.2. Explicit Transformations

Table 3.1: Advantage of deformations from Siarohin et al. [SSLS18]. The archi-
tecture by Ma et al. [MJS+17] shows issues when input and output are
not aligned, for example noisy patterns in the generated image where
the input has patterns with large contrast.

in gt Ma
[MJS+17]

Siarohin
[SSLS18]

in gt Ma
[MJS+17]

Siarohin
[SSLS18]

merge them together using the maximum activation. The result is then concate-
nated to the corresponding decoder layer. A visualization of this process is shown
in Figure 3.5.

The architecture is derived from Pix2Pix (see Figure 2.6). The U-net in the
encoder has two input streams, one for the target pose, which is already correctly
aligned and uses usual skip-connections, and one for the misaligned input, namely
the conditioning image. Additionally they feed the input pose to this stream.
Their pose representation also uses joint heatmaps, but instead of circles as Ma
et al. they use Gaussian ones.

The PatchDiscriminator gets either the target or the generated image as input
as well as conditioning image, conditioning pose and target pose. This allows
the discriminator to also discover generated images in the wrong pose, other
than the discriminator used by Ma et al., where the poses are not given to the
discriminator. Different from Isola et al. dropout is disabled during testing such
that no random input is given.

Additionally they propose a new loss function, the nearest-neighbor loss, as an
replacement for the perceptual loss with an L1 norm. Since an L1 loss leads to
median regression, generated images often have averaged valued instead of strong
texture gradients. A shirt with alternating black and white stripes for example
shows gray, smoothed color transitions.

Each feature activation of VGG-19 corresponds to a patch of the input image
defined by the neurons receptive field. Instead of directly comparing these acti-

32

3.2. Explicit Transformations Chapter 3. Related Work

vations directly between generated and target image using L1, as the perceptual
loss would do, the nearest neighbor loss allows small misalignments between gen-
erated and real image. To this end it compares a single activation Cy(p) of the
generated image y at position p with multiple activations Ct(q) of the original
image t where q is in the neighborhood of p.

LNN(y, t) =
∑
p∈y

min
q∈N (p)

‖Cy(p− Ct(q)‖1 (3.3)

The loss only considers the most similar activation in the neighborhood, and
since each activation in the layer corresponds to an image patch, it looks at the
most similar patch close to the original patch. This way it allows patches of the
generated image to be slightly shifted which reduces the need for averaged values
in the generated image and thus generates less smoothed outputs.

Horiuchi et al. [HISSI19] extend the approach by Siarohin et al. in three as-
pects. Self-attention layers [ZGMO19] are included after the last two layers of the
generator’s encoder and the last two layers of the discriminator. Self-attention
allows the network to learn long distance dependencies in the following way: the
input feature map is fed through three 1× 1 convolutions, the results are called
keys, queries and values. For keys and queries width and height dimensions are
flattened, then the outer product between both is computed. The resulting atten-
tion map therefore contains a value for each combination of two spatial positions.
After applying a softmax to each row, it can be matrix multiplied with the re-
sult of the third convolution, the values. Each resulting feature vector is thus
a weighted combination of feature vectors from different spatial locations. This
allows the network to gather information across large spatial distances.

Additionally they use spectral normalization [MKKY18] in the discriminator
and in the generator’s decoder. The power iteration method is applied to the
weight matrices to compute their largest singular value. Then the weights are
normalized by them. Similar to WGANs this method restricts the Lipschitz
continuity which avoids vanishing or exploding gradients.

Finally they apply a relativistic average hinge adversarial loss. Relativistic
discriminators [JM19] do not assign realism-values to single samples which are
either real or fake, instead they compare a real and fake sample and return a value
stating how much more realistic one sample is compared to the other. Relativistic
average discriminators compare a single real or fake sample with a set of fake or
real samples, respectively.

Instead of transforming features, Balakrishnan et al. [BZD+18] directly perform
a transformation of the input image (see Figure 3.6). A U-net produces soft
masks for the body parts and the background, then the input image is masked
and transformed using 2D transformations which are based on input and target
pose. A merging module merges the parts into a foreground image and further
returns a foreground mask for the transformed image. The missing background

33

Chapter 3. Related Work 3.2. Explicit Transformations

Figure 3.6: Architecture from Balakrishnan et al. [BZD+18]. Bodypart masks are
learned for the input image which allows to apply different transfor-
mations directly to the masked parts. The parts are merged and a
new mask is returned by an additional network. A second streams
inpaints the background for the new image.

is generated by first masking the input with the background mask and then
inpainting it with a third U-net. For training they combined a perceptual loss
based on VGG with a GAN loss.

3.2.2 Dense Pose Representation

Semantic segmentations of humans assign each pixel in the input image a value
depending on the bodypart. If these replace sparse joint heatmaps to resemble
the human’s pose, the generator gets additional inforamtion about the person’s
shape. Dense pose representations [AGNK18] take this a step further: a mesh
is applied to the human surface in 3D, such that each point on the human body
gets assigned a unique value. Each pixel of a given input image gets assigned the
corresponding value of the mesh. In other words: the dense pose representation
maps each point to a different coordinate, so it allows to create a texture map
for a human. We will see two approaches which apply this method

Dong et al. [DLG+18] use a two-stage approach and semantic segmentations as
pose input (see Figure 3.7). They consider only a keypoint-based representation
of the target pose to be given, so a first stage synthesizes a semantic segmentation
for the target pose based on a segmentation of the input image and a heatmap-
representation of the target pose.

The second stage can be subdivided into two parts. Firstly, both input and
target segmentation are passed through Siamese feature extractors, the features
are matched and passed through a regression network. This forms the “Geometric

34

3.2. Explicit Transformations Chapter 3. Related Work

Figure 3.7: Architecture from Dong et al. [DLG+18]. A first stage synthesizes
a semantic segmentation of the target image which is used by the
second stage to estimate warping parameters which are then applied
to the internal feature maps to transform the input image.

matcher” and yields parameters for a thin-plate spline transformation [Boo89].
Such a transformation can be conceived of as a thin metal plate which is trans-
formed such that a given set of points corresponds to another given set of points.
The thin-plate spline transformation minimizes the bending energy which is
needed for this process.

The resulting parameters are used to transform the features from the input im-
age in a “Soft-gated Warping-Block”: internal features Φ are first passed through
a set of residual blocks, the result is then transformed by the estimated thin-plate
spline transformation and added to the original features Φ to get the output of a
block. the result is concatenated with target-pose features and fed through the
decoder to synthesize the image.

Training is performed using a combination of four losses: an adversarial loss
is combined with a pyramidal hierarchy loss, which compares the intermediate
feature layers in the discriminator between target and generated image, similar
to a perceptual loss. A classical perceptual loss is also used, together with a
pixel-wise loss. Both stages are trained independently.

The approach by Neverova et al. [NAGK18] makes use of a dense pose repre-
sentation. It contains two streams, a predictive module and a warping module.
The former one corresponds to a small ResNet using input image, input pose and
target pose as input and tries to generate the target image without applying any
transformations.

35

Chapter 3. Related Work 3.2. Explicit Transformations

Figure 3.8: Inpainting autoencoder training from Neverova et al. [NAGK18].
Based on a dense pose representation, the input image is warped to
UV maps using an STN. The loss for inpainting is only applied to UV
pixels visible from the target view.

The warping module warps pixels which are visible in both input and target
pose and applies an inpainting network to fill the remaining ones. To this end
they define two-dimensional UV-coordinates and train two spatial transformer
networks [JSZ+15], one which performs the mapping from the image to the UV-
coordinates according to the dense pose input and one for the opposite mapping.
The UV-maps for each bodypart are processed by an inpainting autoencoder to
fill in missing parts, whose training procedure is shown in Figure 3.8: the input
view and multiple target views are warped to UV-coordinates. Since some areas
in the generated UV-map are not visible in any of the target views, so no ground-
truth is available, a masked loss is applied such that the network can freely guess
the unknown pixels.

Both streams are trained independently first, then a blending module is applied
which consists of several convolutions and residual blocks. Multiple losses are
applied: a PatchDiscriminator as an adversarial network, an L1 reconstruction
loss which compares target and input image, and a perceptual loss as well as a
style loss using a combination of different internal layers of VGG19.

Grigorev et al. [GSVL19] combine the deformable skip connections by Siarohin
et al. with the dense pose approach of Neverova et al. in two stages. The first stage
(see Figure 3.9) transforms a dense pose representation of the input MS into a
coordinate map C which the inpainting autoencoder completes. This coordinate
map is similar to a texture map but instead of having color values at each texel
the coordinate map has a coordinate at each texel which encodes the pixel of the
source image where a lookup has to happen in order to get a texture image for
the person. In other words, each texel in C points to a pixel in the source image
S, if one replaces the texels with the pointed values, one would get a UV map of
the body.

This coordinate map C contains empty space since the person is not visible
everywhere. An inpainting network resembled by an hourglass model without

36

3.2. Explicit Transformations Chapter 3. Related Work

Figure 3.9: First stage from Grigorev et al. [GSVL19].

skip-connections fills these areas. The infilled coordinate map D hence defines a
pointer for every texel of the coordinate map to a pixel in the source image, which
allows the network to learn properties like symmetry and repeated patterns due
to the additional layer of indirection.

Combining this coordinate map D with the target pose MN and the source
image S allows to synthesize a new image W by first looking up the pose co-
ordinates MN on the coordinate map D to get warped coordinates E and then
applying these warped coordinates on the source image S.

The second stage refines this result using deformable skip-connections. The
input is split into aligned and misaligned parts for two different encoders. The
first one contains the warped color image W from the first stage, the dense target
pose MN and the warped coordinates E, while the misaligned encoder gets input
image S and input pose MS. Different from Siarohin et al. the deformation
is based on the warped coordinates E from the previous stage, which directly
define where to look up encoder features from the misaligned encoder. A U-net
architecture with residual blocks between convolutions is used.

The inpainting network is trained first by a combination of two masked l1
losses, one which compares the inpainted texture D with the texels visible in
the input map C and one which compares D with the target texels. The latter
are generated by warping the target image to texture space based on the dense
target pose. After this, the second stage is trained using a patch GAN loss and
the nearest neighbor loss together with a perceptual and a style loss based on
VGG19.

3.2.3 Transformations in 3D

We will describe two very different approaches which make use of three dimensions
in order to transform the human pose. The first one rotates feature maps to

37

Chapter 3. Related Work 3.2. Explicit Transformations

Figure 3.10: Architecture from Rhodin et al. [RSF18]. An unsupervised autoen-
coder implicitly learns a 3D point-cloud which is rotated to match
the view from another camera. A shallow network is then applied to
the point clouds for pose estimation.

generate the view from another image, the second one applies a three-dimensional
mesh for transformation. Finally, we cover another approach which is not related
to pose-conditioned human image generation, but where 3D features are also
rotated to generate different views.

Rhodin et al. [RSF18] propose a method to perform 3D pose estimation with
a much smaller amount of training data. Novel view synthesis is only utilized as
an intermediate task. To this end they take multi-view images, then they train
an encoder to learn a sparse 3D point cloud representing the pose and a feature
vector for the appearance of the input image (see Figure 3.10). The point cloud
is then transformed according to the relation between the two cameras with a
rigid body motion. To disentangle pose and appearance-related information, the
appearance vector is taken from another video frame showing the same person. A
decoder transforms the point cloud and the appearance vector back to an image.

This leads the encoder into learning an implicit 3D representation of the hu-
man. By applying a shallow network to the implicit 3D point cloud, a 3D pose
estimation can be computed. They show that even if the amount of labeled
pose annotations is decreased to only 1%, their method still yields good results
while other approaches degrade quickly. This leads to the conclusion that such
a pose-transformation task allows a network to learn rich features which can be
transferred on other tasks as well.

A very explicit approach is proposed by Zanfir et al. [ZPZS18]. Instead of an
input image and a target pose they use two images showing different persons as
input, the appearance of one person should then be transformed on the second
one. Their method can be subdivided into three modules. The first one fits a 3D
mesh model with 6890 vertices to both images (see Figure 3.11). By projecting
the input image to its mesh, the vertices can be colored. Vertices which are
visible in both input and target pose can be colored using a barycentric transfer.

38

3.2. Explicit Transformations Chapter 3. Related Work

Figure 3.11: Mesh infilling procedure from Zanfir et al. [ZPZS18]. Vertices visible
in input and target mesh are copied using a barycentric transfer, the
missing ones are filled with a neural network.

Figure 3.12: Architecture from Nguyen-Phuoc et al. [NPLT+19]. A constant 3D
tensor learns a generic representation of a dataset. Style/appearance
information is fed into several convolutions using adaptive instance
normalization. A random rotation enforces a 3D representation in-
side the network.

To color the remaining vertices, a vertex color completion network is learned.
Training data for this procedure is generated by splitting the visible vertices from
a single input image into arbitrary subsets.

The second module projects semantic segmentations of the appearance input
image with 20 clothing labels to the mesh model and transforms them to the
target pose to get the clothing layout for the target pose. Together with a depth
map and the output of the first module, these warped labels are put into a
refinement network which combines and enhances the intermediate results.

Nguyen-Phuoc et al. [NPLT+19] implicitely learn a generic 3D representation
of the object inside a particular dataset, e.g. a face or a chair (see Figure 3.12).
The voxels are randomly rotated inside their architecture and fed to further con-
volutions which leads to a 2D image at the end. The style of the image, which cor-
responds to the object identity, is changed using adaptive instance normalization
(AdaIN) [HB17] which normalizes similar to the classical instance normalization
but scale and shift per channel are depending on the random input z. In their
approach they apply a multi-layer perceptron to z before applying it to AdaIN.

Three losses are applied by them: a discriminator learns to detect realistic
images, independent from the pose or the style input. Secondly, an additional
network learns to recover z which enforces the generator to keep the object’s

39

Chapter 3. Related Work 3.3. Unsupervised Approaches

Figure 3.13: Architecture from Pumarola et al. [PASMN18]. The first generator
of a CycleGAN transforms the input image into a randomly selected
pose. The second one transforms the result back to the original input
image. A discriminator enforces realistic images, a pose detector the
correct pose and a patch- and style-loss the appearance.

identity. Finally, a style discriminator is proposed, which compares mean and
standard deviation of features, since these contain the image’s style.

3.3 Unsupervised Approaches

By building an architecture around an unsupervised or semi-supervised approach
it is possible to train the network with unpaired data. We will first describe a
method using a CycleGAN [ZPIE17]. This architecture applies two generators,
one to the input image and the other to the output of the first generator. The first
generator could for example transform horses into zebras and the second one does
the opposite. A reconstruction loss enforces that the input of the first generator
is the same as the output of the second one, while adverarial losses guide the first
generator into generating zebras and the second one into generating horses.

Pumarola et al. [PASMN18] apply a CycleGAN for pose-conditioned image
generation (see Figure 3.13). The first generator is conditioned by an input
image Ic and a randomly selected target pose pt. The second generator receives
the first generator’s output image It and the pose of the input image pc. Note,
that a ground truth image for It is not needed with their approach, the pose pt
can be arbitrary. Since both generators perform the same task, they share their
weights, which is different from the original CycleGAN approach.

Four different losses are applied to their model. An unconditioned PatchDis-
criminator is used as an adversarial whose only task is to distinguish real from
generated images, without getting the target pose or the generator’s image as
input. To check for the correct pose a pose detector is applied to the output of
both generators. The difference to the respective generator’s input pose is added
as the second loss.

40

3.3. Unsupervised Approaches Chapter 3. Related Work

Figure 3.14: Architecture from de Bem et al. [dBGA+18]. A VAEGAN learns
disentangled representations for appearance and pose in a semi-
supervised fashion.

Finally the generators are supposed to generate the same person as in the
respective input images. Two losses are used for this: the input Ic of the first
generator is supposed to be the same as the second generator’s output. This is
utilized by comparing both images using a perceptual loss. To also constrain the
output of the first discriminator, a patched style loss is applied. They first extract
patches around each joint by multiplying the probability maps of the pose’s joints
with the generated image. The extracted patches are then compared between
input and output image of the first generator using a style loss.

3.3.1 Disentangling Appearance and Pose

The following methods allow unsupervised learning and are based on a variational
autoencoder (VAE) [KW13]. A VAE consists of an encoder which transforms the
input in a mean vector and a standard deviation vector. According to this dis-
tribution, a vector is sampled and put through the decoder to re-synthesize the
input image. A Kullback–Leibler divergence (KL divergence) [KL51] is computed
which penalizes if the encoders outputs deviate from the standard normal distri-
bution. Without this term the means would quickly diverge from each other and
the standard deviations would converge to 0. This hampers sampling random
images using the decoder, so the KL divergence is added which leads to a smooth
latent space.

If a VAE is used for pose-guided image generation, it is needed to disentangle
appearance features from pose features. Only then, pose features can be replaced
in the fully trained model to generate an image of the input person in another
pose. This idea is utilized by the following two approaches and was also used in
the approach by Rhodin et al. [RSF18], which was already presented in section
3.2.3.

41

Chapter 3. Related Work 3.3. Unsupervised Approaches

Figure 3.15: Architecture from Esser et al. [ESO18]. A combination of a U-net for
pose-features and a VAE for appearance-features learns a disentan-
gled representation such that inference can be applied with different
input and target images although training is performed with iden-
titcal inputs and targets.

De Bem et al. [dBGA+18] use a VAEGAN [LSLW16], a combination of a VAE
and a GAN, to build the semi-supervised architecture (see Figure 3.14). An en-
coder learns disentangled vector means and variances for both pose and appear-
ance of a given input image. A mapper module is pretrained which transforms
2D joint coordinates of the pose in heatmaps for body joints and body parts.

If no ground-truth pose is given, an appearance and pose is sampled from
mean and variance according to a Gaussian. Both are concatenated and passed
through the decoder in order to reconstruct the input. The pose features are
further processed by the mapper module and the resulting heatmap is added in
an intermediate layer of the decoder. This implicitly forces the pose features to
represent 2D pose coordinates. Together with a GAN-loss and a regularization
of the encoder’s Gaussian using the KL-divergence, this forms the loss for the
unsupervised case.

In the supervised case pose labels are available. Therefore the KL-divergence
regularization is only applied to the appearance mean and variance. The pose
estimation can instead be directly compared to the ground truth. The decoder
gets a sampled appearance vector and the ground-truth heatmap. The supervised
loss combines the reconstruction loss, the KL-divergence for the appearance dis-
tribution, a GAN-loss and the pose regression loss.

Esser et al. [ESO18] combine a U-Net generator with a VAE which share the
same decoder (see Figure 3.15). The U-net encoder is supposed to yield only pose-
related features, so only the target pose is added as input. The VAE encoder gets
both pose and image as input, a Kullback-Leibler term is added which enforces
that the U-net’s pose features and the VAE’s appearance features diverge.

Aside from the KL-divergence a perceptual reconstruction loss based on VGG19
is used. Different from other approaches they do not apply an adversarial loss.
Training can be performed with unpaired data, since input and target images

42

3.3. Unsupervised Approaches Chapter 3. Related Work

Figure 3.16: Architecture from Ma et al. [MSG+18]. The generator of a Wasser-
stein GAN contains eight encoder-streams for body parts and back-
ground. The encoded vectors are concatenated with each other and
with a heatmap of the pose before passed to the decoder.

are always the same. Nevertheless they show that their approach allows pose-
conditioned image generation with different input and target image, since pose
and appearance features are learned in a disentangled way.

Ma et al. [MSG+18] want to sample persons, background and pose randomly.
They use an autoencoder as the first stage of their network (see 3.16). The
architecture is split into three parts to learn three different feature vectors to
represent one image: one related to the pose, one for the background and one for
the body appearance. A simple autoencoder learns embedding vectors from 2D
pose heatmaps, the decoder can later be applied to sample random poses.

For the foreground stream, a person mask is generated based on the pose and
applied to the image. The foreground is then further subdivided into seven body
parts using masks derived from the joints. Each of the masked bodyparts is
fed through the same encoder, a different encoder is used for the background.
Foreground and background vectors are then concatenated and combined with
the pose heatmap, the result is fed through a decoder which finally generates the
result image. Due to the distinct pose stream and the destruction of spatial infor-
mation caused by the subdivision into bodyparts, the model learns to disentangle
appearance from shape.

In the second stage they learn mappings from a random input to a pose, fore-
ground and background feature vector which allows them to sample new images.
The architecture can also easily applied for pose-conditioned image generation by
changing the conditioning pose from the input pose to the target pose.

43

Chapter 3. Related Work 3.4. Identity Transfer

3.4 Identity Transfer

Instead of a synthetic representation of the pose as joint-heatmaps, bodyparts
segmentations or skeletons, other approaches use an additional person image as
input from which the target pose is deduced. This task differs significantly from
pose-conditioned person image generation, since the model already gets a person
in the correct pose as input, so it only needs to adapt the appearance. We will
only summarize three approaches briefly. The task of identitiy transfer applied
to images with persons was introduced by Joo et al. [JKK18]). They feed both
input images through distinct streams, then fuse them to generate an image with
one person’s appearance and the other person’s pose.

Zheng et al. [ZYY+19] perform identity transfer implicitly to learn disentan-
gled representations for pose and appearance by swapping one of the features of
different inputs. If two different persons are used as input, swapping the pose
features generated the persons in the pose of the other. If both inputs show the
same person in different poses, replacing the pose features of one stream by the
other should generated the same image in both streams. The learned appearance
features are then used as input for re-identification.

The work by Chan et al. [CGZE19] is also partially related to identity transfer.
They apply their method on videos, the performance of one person is applied to
another person. For each target person a separate network needs to be trained.
Poses are first extracted from a video of the target person, then a model learns
to generate images of this person based on the pose. To transfer the performance
of a video, poses are extracted and the model can be applied.

44

4
Approach

We describe our approach in this chapter, starting with the data preprocessing
steps, then we explain the two 2D baselines which we use. This is followed by
a detailed explanation of our approach. Finally two modifications of our archi-
tecture are described which allow ablation studies with respect to two different
aspects of our approach.

4.1 Data Preprocessing

The data we use consists of cropped and masked images of persons together with
camera parameters and the person’s 3D body joints in world-coordinates. Using
masked images allows to combine multiple datasets which do not have the same
background and also allows to focus on the persons instead of the background.
By selecting two images and their corresponding poses from one person, we can
generate pairs for training, the generator then has to use input image and target
pose to synthesize an image showing this person.

Our approach applies 3D transformations of volumetric feature maps. Since
the network is only supposed to estimate the depth, but should not have to move
the features in width and height, it is needed that the projection of the 3D pose
to the image plane matches with the image. This can be achieved by applying
the transformation in pixel space. Since the target pose is provided in real-world
body joint coordinates, we need to preprocess the pose.

We first transform the 3D pose into camera coordinates by applying the cam-
era’s extrinsic parameters. 2D pixel points in the image can then by acquired
using the projection matrix, but this drops the depth information. To recover
the depth, we use the same scale factor which was also used for width and height.
This is applied to all joints, then they are shifted such that the mean of the
depth coordinate of all joints lies in the center of the volume. This procedure was
partially based on code by István Sárándi.

45

Chapter 4. Approach 4.2. 2D Baselines

To enrich the data, we apply two forms of augmentations: geometric trans-
formation and color augmentation. The former method takes an image and the
corresponding pose, and rotates, translates and scales them randomly. Rotation
and translation are only performed in the image plane, since an out-of-the-plane
rotation would need a different image which does not exist and a translation into
the depth dimension would correspond to the same image, so the network can
not distinguish them. Scaling is performed with the same scaling parameter for
all axes.

We additionally use color augmentation, which changes hue, brightness, con-
trast and saturation of the images. Code for this was provided by István Sárándi.
Input and target image are augmented with the same parameters. Color augmen-
tation is not performed for validation.

4.2 2D Baselines

We make use of two baselines in this thesis. The first one is the model by Siarohin
et al. [SSLS18], their code is available on GitHub1 and was partially adapted by
us. The second architecture is a Resnet similar to the generator of a CycleGAN
[ZPIE17], which was also successfully applied by Pumarola et al. [PASMN18] (see
Section 3.3) to the task of pose-conditioned human image generation. We add
the 2D transformations defined by Siarohin et al. to this baseline, the details are
explained in the following section.

4.2.1 ResNet with 2D Transformations

Similar to Siarohin et al. we use two input streams, one for the aligned target
pose and one for the misaligned input image. After the latter is transformed
using the same masking and transformation procedure as applied by Siarohin et
al., both streams are concatenated. Apart from these two aspects, the model’s
architecture is the same as the generators in a CycleGAN. Since our 3D model
does not get the input pose we also do not add the input pose to the 2D baseline.

Both encoders have the same architecture, first a 1-strided convolution with
kernel 7, followed by two 2-strided convolutions with kernel 3. This decreases the
spatial size of a feature map from 256×256 to 64×64. Then, the transformation
procedure defined by Siarohin et al. is applied to the image-stream: A mask
is created for each of the 10 bodyparts using rectangles derived from the 2D
joint coordinates, the input feature maps are then masked by an element-wise
multiplication. An 2D affine transformation which is fitted to the corresponding
joint sets of a body part in input and target image is applied to the masked areas.
The results are combined using the maximum activation. For more details of this
procedure see Section 3.2.1.

1https://github.com/AliaksandrSiarohin/pose-gan

46

https://github.com/AliaksandrSiarohin/pose-gan

4.3. 3D Generator Chapter 4. Approach

Generator

Discriminator

Dilation
block

Transform
module

repeated
n times

repeated
m timesIn

p
u

t
Im

a
g
e

+ +

T
a
rg

et
P

o
se

+ +

In
p

u
t

P
o
se

|| +

T
a
rg

et
Im

a
g
e

∨
||

Lpose

LNN

LGAN

2D features 3D features addition concatenation selection convolution reshape copy other

+ || ∨

Figure 4.1: Overview of our 3D architecture.

The streams are concatenated and then passed through 9 residual blocks. Fi-
nally a decoder is applied, who first passes the features through two transposed
convolutions with stride 2, then through a convolution with kernel 7 and stride
1. With Cf

k,s for a convolution with f output feature maps, I for instance norm
and tanh for a hyperbolic tangent activation, the full model can be represented
by

C64
7,1IL C128

3,2 IL C256
3,2 IL

C64
7,1IL C128

3,2 IL C256
3,2 IL T C256

3,1 IR C256
3,1 I C128

3, 1
2
IR C64

3, 1
2
IR C3

3,1 tanh

repeated 9 times

As Siarohin et al. we also apply a PatchDiscriminator and combine the adver-
sarial loss with the nearest neighbor loss.

4.3 3D Generator

Transformations in 2D have several disadvantages. Firstly, human poses are
naturally in 3D, thus a restriction to only 2 dimensions drops some information.
This makes 2D poses often ambiguous: as long as the projection to the image

47

Chapter 4. Approach 4.3. 3D Generator

plane stays the same, it is not possible to distinguish whether an arm is in front
of the body or behind it, since the depth information is missing. Furthermore,
the masked 2D parts will contain segments of other body parts. If one arm is
visible in front of the body in the input image, the masked segment of the arm
will contain parts of the body around it and the masked body part will contain
an arm in the center. If the network represents the body in a volumetric form,
the masks are able to capture single bodyparts with much less overlap.

A third reason is that the human body also transforms in 3D, so a 2D affine
transformation is a very rough estimation. Especially in cases where multiple
body joints are close together or even collapse into one point, an affine transfor-
mation fails to return good results. We address these shortcomings by performing
the transformation in 3D using volumetric features.

4.3.1 Network Architecture

Our architecture can be summarized as follows: Two input streams are used to
distinguish between the target pose, which is aligned to the target image, and
the input image, which is not aligned. The image stream learns to estimate a
volumetric representation of the input image, such that a 3D transformation can
be applied. Then, both streams are combined and a single decoder transforms
the 3D volume back to a 2D image.

Similar to the 2D baseline, the input image is first put through three 2D con-
volutions, where the first one is 1-strided with kernel 7 and the other two are
2-strided with kernel 3. The result is a feature block with height H, width W
and C channels. To receive three-dimensional features, a reshape operation is ap-
plied, which subdivides the C channels into depth D and new channels C ′ = C/D,
such that the resulting tensor has size H ×W × D × C ′ with H = W = 64 for
an input image of size 256× 256.

The network thus has to learn that the first C ′ channels of the 2D features
correspond to the channels in the 3D features where the depth is 0. The next
C ′ channels in 2D correspond to the 3D features with depth 1 and so on. This
means, that a rough depth estimation must happen before this point. To further
refine this, a set of residual blocks is applied, which have the same structure as
in the 2D architecture, except that 3D convolutions replace the 2D convolutions.
Then, the volumetric feature transformation is applied, which will be explained
in detail in Section 4.3.2.

The target pose stream does not receive a 2D heatmap for each joint as input,
instead we use 15 3D heatmaps, each one of size 64×64×D. To allow the model
to preprocess these heatmaps, they are fed through an initial 3D convolution and
then through three 3D residual blocks. Since these features are already aligned
to the target pose, no transformation is applied.

The resulting volumetric feature maps of both streams are then concatenated
and fed through multiple residual blocks with 3D convolutions, which allow the

48

4.3. 3D Generator Chapter 4. Approach

Table 4.1: Generated 3D masks. The network has D = 32, so the volumes are of
shape 64× 64× 32. Right- and top-view thus are not squares.

image front right top image front right top

network to refine the rough estimate which resulted from the transformation.
Then, the depth dimensions and the channels are flattened, such that the volu-
metric features become 2D features again. A decoder of the same structure as
in the 2D baseline with three 2D convolutions transforms the result back to an
image.

4.3.2 3D Transformation Module

The general approach of our transformation is similar to the 2D case described
by Siarohin et al., but in 3D. We first need to generate a mask for each of the
bodyparts together with a transformation. To efficiently generate the masks, we
apply the following algorithm for every bodypart: We start with a tensor of shape
H ×W × D containing only zeros. Then a line is drawn between each pair of
joints corresponding to that body part. For the limbs this is only one line, the
body has four joints and thus six lines. To add thickness to that line, a number
convolutions with a constant kernel having 1 everywhere is applied to the set of
lines. Since the depth D of our volumetric tensor usually differs from height H
and width W , firstly 3×3×3 convolutions are applied, then 3×3×1 convolutions.
The number of each of the convolutions depends on the factor D

W
and the scale of

the person, a person which appears larger in the image also gets a large number
of convolutions and thus larger masks. Table 4.1 shows two examples.

Apart from the masks, we also need a 3D transformation for each body part. We
decided to use 7-parameter transformations in 3D which are introduced in Section
2.5.2. The fitting algorithm is also explained there. These transformations use 3
parameters for translation, three for rotation and a single scale parameter across
all spatial dimensions.

To decrease the model size, the feature volume often has a depth different from
height and width. This makes a slight adaption of the transformation matrix.
We firstly compute the transformation as if the volume is a cube, then we rescale
the resulting transformation matrix by multiplying its third row and dividing the
third column by the scale factor D

W
.

A 7-parameter transformation needs two sets of three (non-collinear) points to
be well-defined, which is not given for the limbs, which only depend on two joints.

49

Chapter 4. Approach 4.3. 3D Generator

In this case the limb could rotate freely around its longitudinal axis. To restrict
this, we include a third joint. Since the human elbow can only move with one
degree of freedom, a different roll of upper and lower arm is not possible. Thus,
we use the wrist as the third point for the upper arm and the shoulder as the
third point for the lower arm. A similar relation holds around the knee.

Let x and y be the two joints defining a body limb, for example the left upper
arm represented by the left shoulder and the left elbow. The left wrist is then
used as the third joint z. The corresponding joints in the target pose are x′, y′

and z′, respectively. We now want a transformation which maps x to x′ and y
to y′, but considers the pair z and z′ only for the roll around the limb. The
direction of the roll can be represented by the cross product between both limbs,
(x− y)× (z − y). To not influence the scale, we can define

z̃ := y + ‖x− y‖ (x− y)× (z − y)

‖(x− y)× (z − y)‖
. (4.1)

The points x, y and z̃ thus define an isosceles, right-angled triangle, where one
leg is between y and x and the other one is orthogonal to both body limbs. If
one defines z̃′ analogously, it is easy to see that a transformation from x, y and
z̃ to x′, y′ and z̃′ always matches the points exactly (if they are not collinear)
and has the desired properties.

The transformation module’s volumetric input is firstly copied ten times, once
for each body part. Then the mask for each bodypart is applied to the correspond-
ing copy by an element-wise multiplication. The corresponding transformations
are executed, a trilinear interpolation is used for this purpose. The ten trans-
formed bodyparts are combined by choosing the maximum activation for each
voxel and feature.

Offcut

For some experiments, we want to let the network decide whether it wants to
make use of the transformations or whether features which are not transformed
are better suited for the task. To this end, we define an eleventh mask, the offcut.
It includes all those voxels in the volume, which are not included by any of the
bodypart masks.

This offcut volume is not transformed in any way. In the merging step of
the different masked volumes, the offcut is also combined with the other masked
parts using the maximum activation, so higher activations in the offcut are able
to override features from transformed bodyparts.

4.3.3 Dilation Block

Approaching misalignments with transformations has the advantage that the re-
ceptive field of neurons can be reduced, since the information which is needed

50

4.4. Discriminator Architecture Chapter 4. Approach

for each neuron is already close to the target area, so global knowledge is not
necessary. In our model, a larger receptive field size might be necessary, since the
network needs to estimate the depth of joints to successfully utilize the 3D trans-
formations, which might only work with access to features which are far away.
If two residual blocks are used before the transformation, the receptive field has
size 45 × 45. To evaluate whether this local information is enough for depth
estimation or whether a more global overview is needed, we define the optional
dilation block.

The dilation block is the same as a residual block, but is uses two dilated
convolutions, one with dilation rate 4 and the second with dilation rate 8. This
increases the receptive field to 141× 141. For input images of size 256× 256, this
is roughly 55% of the image. The dilation block therefore enables the network to
evaluate global context.

We chose to use 2D convolutions for the dilation block, because they allow ac-
cess to all depth layers at once, so depth information can be more easily gathered
by the network. Additional residual blocks between the dilated block and the
transformation can then be used for further refining the result.

4.3.4 Pose Estimator

We want to evaluate, whether the volumetric features which are implicitly learned
by the network are a general representation of the human in three-dimensional
space. To this end, we want to use the features directly before the transformation
to estimate the human’s 3D pose.

We apply a single 3D convolution with kernel 1 to the feature map directly
before the transformation and then compare it to the ground truth pose heatmap
by applying a voxel-wise cross-entropy error. This method enforces, that only
very local information can be used by the pose estimator.

4.4 Discriminator Architecture

Unless otherwise noted, all models use the PatchGAN discriminator by Isola et
al. [IZZE17] as an adversarial loss. This was also used by Siarohin et al. It
consists of multiple strided convolutions C with kernel 4, combined with instance
norm I and LeakyReLU L:

C64
4,2IL C128

4,2 IL C256
4,2 IL C512

4,2 IL C1
4,2σ

The discriminator receives either the real or the generated image as input,
together with input image and target pose. This way it is able to decide both
whether the same person in visible and whether the pose matches the input. If a
3D model is used, the pose is also given in 3D but reshaped such that the depth
dimension is part of the channel dimension.

51

Chapter 4. Approach 4.5. Training

If a Wasserstein-GAN with gradient penalty is used instead of a classical one,
the sigmoid layer is dropped and instance norm is replaced by layer norm, as
suggested by the authors [GAA+17].

4.5 Training

The adversarial loss LGAN is combined with the nearest-neighbor loss LNN defined
by Siarohin et al. [SSLS18]. Additionally, the volumetric pose loss Lpose is applied
in some experiments. The total loss is thus defined as

L = LGAN + λNNLNN + λposeLpose. (4.2)

For classical GANs we use the same λNN as Siarohin et al., which is 0.01, if the
WGAN-GP is used instead of the classical GAN, this has to be adapted. For the
gradient penalty we use the weight λGP = 10 which is also applied by Gulrajani
et al. [GAA+17].

We want to utilize different datasets for training to present a larger variety
of appearances to out model. During training, the different are considered to
be equally important. To get a training sample, i.e. a pair of two images of the
same person with the corresponding poses, we thus first select a dataset randomly
with uniform probability. Then for the chosen dataset a person and clothing is
randomly selected where each is again weighted equally. For this person, two
images and the corresponding poses are sampled.

Unless otherwise noted we train each model for 150000 iterations, each with
a batch size of 2 which is the same Siarohin et al. selected. Adam [KB15] is
used to train all networks, for the classical GAN the learning rates alpha of both
generator and discriminator are set to 2 · 10−4, β1 = 0.5 and β2 = 0.999. If a
WGAN-GP loss is employed, we use the TTUR scheme with different learning
rates for generator and discriminator to avoid training the discriminator multiple
times per generator step. We use the same learning rates suggested in the TTUR
paper [HRU+17], i.e. α = 1 · 10−4 for the generator and α = 3 · 10−4 for the
discriminator. The values for Adam’s betas are set as suggested by the authors
of WGAN-GP [GAA+17]: β1 = 0 and β2 = 0.9.

4.6 Ablation Models

Our architecture makes use of three dimensions in two different ways. Firstly,
the masks and transformations are computed in 3D and secondly, the target pose
is given in 3D. The comparison to the 2D baselines from Section 4.2 does not
allow to study the impact of both independently. For this reason, we define three
additional baselines, which use the exact same architecture as our 3D model, but

52

4.6. Ablation Models Chapter 4. Approach

either perform masking and transformation in 2D, get the target pose in 2D, or
both. This leads to three 2.5D models.

To apply 2D masking and transformation to 3D feature maps, we compute the
projection of our 3D masks to the image plane. Then, the result is applied to
every feature map across the depth. This way, each new 3D mask correponds to
a prism in space, where the base is the projection of the original 3D mask. Affine
2D transformations as defined by Siarohin et al. [SSLS18] are applied to move
the masked parts without considering the depth.

A 3D pose is mapped to 2D similar as the mask: first it is projected to the
image plane, then copied for each depth. In the end, the 2D masks in 3D contains
a line across the depth for every joint.

To keep the computational power of the networks the same, we do not change
the architecture except for the described modifications. This also means, that
even if the transformations are performed in 2D, the model uses 3D convolutions
in the residual blocks. Of course, usual 2D convolutions would increase the models
abilities, since each neuron would get access to all depth layers at once, but this
does not invalidate this baseline. The important aspect is, that changing from 3D
transformations to 2D ones, does not decrease the abilities of the model except
for the transformation aspect.

Since the same convolutions are used in both models, the computational power,
i.e. the number of parameters and the number of multiply-add operations stays
the same. The only difference would be, if one of the models could carry more
information through the transformation. Since the 2.5D transformation masks
are larger, this model has an advantage to the 3D transformation, if it learns to
utilize different depth layers to carry different types of information. If it fails to
do so and thus contains the same content in all depth layers, the 3D architecture
would have the same issue and thus both models would carry the same amount
of information. Better results of the 3D architecture can thus be attributed to
the use of 3D transformations.

53

5
Analysis of Evaluation Metrics

The evaluation of generated images is difficult. For unconditional generation
tasks where images are synthesized based on a random input there is no ground
truth target image to compare to. Even for conditional tasks where a ground
truth might exist, a pixel-wise comparison is problematic, because in most cases
there are multiple good solutions for a given input image. If the input image
of the person only shows the back, it is impossible for the network to know the
pattern on the front of the person’s shirt.

We perform a meta evaluation which evaluates the existing evaluation metrics.
The next section explains those metrics which were already used by related work.
Then, we propose a method based on the Elo-rating system from chess which
uses human raters to decide which image is better. We conduct a user study with
different users, the results of this are then compared to already existing metrics
and new ones, proposed by ourselves.

5.1 Drawbacks of Existing Evaluation Metrics

In this section we first explain the evaluation metrics which are used in related
work. We then state their drawbacks, especially with respect to the task tackled
in this thesis. Finally, we propose additional metrics ourselves.

5.1.1 Structural Similarity

The structural similarity (SSIM) was proposed by Wang et al. [WBS+04] as a
measure to quantify image quality. It was applied to evaluate image compression
methods such as JPEG and is based on a comparison between target and input
image. They argue that differences in the local structure play a more important
role than differences in luminance or contrast. For this reason they compare
luminance, contrast and structure independently.

55

Chapter 5. Analysis of Evaluation Metrics 5.1. Drawbacks of Metrics

The luminance of an image patch x is defined as the patch’s mean µx, which is
computed and then subtracted from the patch to obtain the luminance-normalized
patch x′. Then the contrast, represented by the patch’s standard deviation σx′
is computed and again removed to get x′′. The results are then compared for
structure using the correlation coefficient σx′′y′′ between both patches. All three
measures are combined in one formula, C1 and C2 are small constants added for
numerical stability:

SSIM(x,y) =
(2µxµy + C1)(2σx′′y′′ + C2)

(µ2
x + µ2

y + C1)(σ2
x′ + σ2

y′ + C2)
(5.1)

SSIM was introduced to evaluate compression algorithms and thus compares
the generated image to the target image. For image compression this measures
the desired property, but for GANs it is not very well suited: there are multiple
outputs possible, SSIM only compares with one of them. If only the back of the
head is given, one can not now how the face looks like. Thus a perfect SSIM score
is impossible.

Another issue is pointed out by Wang and Bovik [WB09]: if one just slightly
misaligns the target image, for example by a 1-pixel shift, a small rotation or a
little zooming, the score drops remarkably. For generated images these transfor-
mations are in most cases completely irrelevant and should not be punished by
the metric, thus the SSIM score might be problematic in some cases.

5.1.2 Inception Score

The Inception score (IS) by Salimans et al. [SGZ+16] was proposed to evaluate
unconditioned GANs. It utilizes the Inception v3 network [SVI+16], pretrained
for classification on the ImageNet dataset, which has 1000 image classes. This
network is applied to a large set of generated images. A single realistic genera-
tion x is supposed to be classified into a single class, for a less realistic image the
network should a mixture of different labels. If a GAN is applied on a dataset
with a large variety, e.g. ImageNet, it is supposed to generated images from dif-
ferent classes. A large set of generated images is thus supposed to get a large
variety of labels assigned by the Inception network. This means that the un-
conditioned output of the Inception network p(y) should be close to a uniform
distribution. They combine these two requirements using the Kullback-Leibler di-
vergence [KL51], which measures the difference between two distributions: large
differences lead to large scores. In order to allow an easier comparison of the
results, they exponentiate them, which leads to the following formula:

IS = exp(Ex KL(p(y|x)||p(y))) (5.2)

As already pointed out by Siarohin et al. [SSLS18], the inception score assumes
different output classes and not just a single one as in the given task. Thus, a

56

5.1. Drawbacks of Metrics Chapter 5. Analysis of Evaluation Metrics

large set of different samples should also always be labeled as humans, so in
the optimal case p(y) and p(y|x) are equal. The inception score encourages the
opposite: it yields high scores if these distributions are dissimilar.

Some more general issues were detected by Barrat and Sharma [BS18]. They
calculated the inception score on the same set of 50k images, once using the
pretrained model from Keras, once using Torch. For CIFAR-10 the score differed
by 3.5%, for ImageNet even 11.5%. It is suggested by the authors of the inception
score to split the dataset into chunks and then calculate the score once for each
chunk in order to get a mean value and a standard deviation. Barrat and Sharma
show that the mean score gets slightly better if the number of splits is smaller
and the chunks thus larger.

5.1.3 Detection Score

As Siarohin et al. [SSLS18] point out, the second requirement of the Inception
score is not met in the given task: we are only interested in generating a single
class, humans. Therefore they propose their own metric, the detection score,
based on the object detector SSD [LAE+16], pretrained on Pascal VOC 07. They
apply this detector to generated images, the score then simply correponds to the
detection probability which is computed by the network. A similar approach is
done by Zanfir et al. [ZPZS18] using Faster R-CNN [RHGS15].

5.1.4 Fréchet Inception Distance

The Fréchet Inception distance (FID) by Heusel et al. [HRU+17] was proposed
for unconditioned GANs, code for its computation is available1. Similar to the
Inception score it also utilizes the Inception network. It compares statistics of the
real data with generated data in the following way: for a specific layer mean and
covariances of the activations are collected across the set of real and generated
samples. Based on these, Gaussian distributions are defined, N (µr,Σr) for the
real data andN (µg,Σg) for the generated. These distributions are then compared
using the Fréchet distance, which corresponds to the following formula for two
multivariate Gaussian distributions:

d2(N (µr,Σr),N (µg,Σg)) = ‖µr − µg‖2
2 + Tr(Σr + Σg − 2

√
ΣrΣg) (5.3)

The Fréchet Inception distance was proposed for unconditioned GANs, so it
does not take the target pose into account. It is thus only able to measure whether
the image shows a person or not, but it is not suited to check whether the right
pose as generated. This is an issue for the inception score and the detection score
as well, since they also do not take the target image into account.

1https://github.com/bioinf-jku/TTUR

57

https://github.com/bioinf-jku/TTUR

Chapter 5. Analysis of Evaluation Metrics 5.2. New Evaluation Metrics

FID was not applied by related work, but we want to evaluate whether it is
able to evaluate the realism of images. We apply it in two different ways which
only differ with respect to the used target distributions: once it is computed for
the whole set of validation images and once only with the target images which
correspond to the training images.

5.1.5 Crowd workers

Some authors, for example Ma et al. [MJS+17] and Siarohin et al. [SSLS18]
perform a study using crowd workers. Each person gets to view a set of images,
some of them are real and others were generated. Then they have to decide in
a limited amount of time whether the image is real or not. If authors perform
their own user-study to only evaluate their own results, this method is strongly
non-comparative: many things influence the result, for example the actual size
on the screen or the resolution of the shown images, the used monitor and the
distance to the observer.

5.2 New Evaluation Metrics

We propose two additional metrics which allow to evaluate the generated image
with respect to two important aspects: does the image show the same person as
from the input image and is the pose the same as in the target image?

5.2.1 Color Comparison

Our preliminary experiments showed, that overfitting to the training data is a
typical failure of models: instead of generating the person shown in the input,
they synthesize an image of a similar person from the training dataset. We thus
want to detect whether the network generates a completely different person. In
this case the generated image will contain different colors than input image and
ground truth.

We try out two different ways to compare the color distributions. The first one
computes a histogram with 10 bins for each channel of an image, then combines
them to get a vector with 30 elements. This procedure is applied once for the
generated image and once for either ground truth or input image. The chi-squared
statistic is then used to compare both distributions with each other.

The second approach compares two images using the Wasserstein distance.
This has the advantage than binning is not necessary, for each color channel
the number of occurrences of each color can be counted, then the Wasserstein
distance between both distributions is computed. The mean distance of the three
channels is the metric.

58

5.3. Elo-Based Evaluation Chapter 5. Analysis of Evaluation Metrics

Both methods do not incorporate the spatial position of the pixels, only the
overall distribution of color is relevant. This should allow to measure whether
the correct person is contained in the image independent of the pose.

Another possibility would be to apply a re-identification network to match
input and generated image. Since comparing the colors can be performed more
easily and is much faster, we stick to the color comparison approach.

5.2.2 Pose Estimator

To evaluate whether the person is in the correct pose, independently of the per-
son’s identity, the pose estimator based on [SLAL18] was trained on our training
split and provided by István Sárándi.

For evaluation, the pose is estimated on the generated image and the corre-
sponding target image. The poses are returned relative to the pelvis joint, so
further alignment is no performed. Then, the Euclidean distance between corre-
sponding joints is computed.

The joint distances are then turned into a score using the AUC of PCK
[PIT+16]. PCK computes the proportion of keypoints which are closer than
a specific threshold from the target coordinate. This is performed for several
threshold up to a maximum one, then the area under the curve is computed
which corresponds to the score.

A maximum threshold of 150 mm is usually applied for the evaluation of pose
estimators. Since we need to compare two estimations with each other, we also
try a larger threshold of 200 mm. If the threshold is increased even more, noise
would probably influence the result too much.

5.2.3 Pixel-Wise Comparison

We further include two additional metrics: The mean pixel-wise L1 distance and
the mean pixel-wise L2 distance between target image and generated image. We
can compare those to the SSIM metric to examine, whether the complex three-
step method which is applied for SSIM has an advantage.

5.3 Elo-Based Evaluation

We described conceptual issues of existing evaluation metrics in Section 5.1, the
validity of some is thus at least questionable. To measure how close these metrics
resemble the opinion of human judges, we perform a user study. We put two
demands on this study: first, the task of the human should be as simple as
possible, and second, we want to independently evaluate different aspects of pose-
conditioned human image generation, i.e. realism of image, preservation of the
person’s appearance and generation of the correct pose.

59

Chapter 5. Analysis of Evaluation Metrics 5.3. Elo-Based Evaluation

A user study as performed by other authors, which shows an image for a limited
amount of time where the user has to select whether the image is real or not, does
not allow to distinguish between different subtasks. We instead decided to use
the following approach: each user is presented pairs of images, each one generated
from a different model. Then he has to select, which of them fulfills a given task
better. Three subtasks can be identified, which are relevant in this thesis: first,
we want to generate realistic images. Second, the generated images are supposed
to contain the same person with the same clothes as in the input image. And
third, we want to generate the person in the correct target pose.

After a judge has evaluated one task, we get a set of pairwise decision. We
need to combine these to get a score for each model, which can then be compared
to the the objective metrics. A famous method to combine different pairwise
decisions between a large set of players is the Elo-rating, which was developed
by Arpad Elo to score chess players. It has been adapted by the international
chess federation FIDE [FID17] and is still used to rate chess players. Each player
gets assigned a number, higher numbers correspond to better players. After
each match the Elo-rating is updated. This section will firstly introduce the
mathematical foundations and then describe the application to generated images.

5.3.1 Elo-Rating

Elo assigns a rating ri to each player yi. In chess, a game is either won, tied
or lost which gives the player 1, 0.5 or 0 points, respectively. Elo computes the
expected number of points for a player yi who plays against yj as

ei =
1

1 + 10
rj−ri

C

. (5.4)

The constant C was chosen to be 400 in order to allow compatibility to the
previously used system. 400 is also chosen as the initial value for new players.
Both C and the initial value are completely arbitrary: the former represents a
scaling factor of the whole rating, the latter a constant shift. Note that the
Elo-rating is not lower-bounded by 0, ratings can become negative.

After each match, the Elo-rating must be adapted. If si is defined as the actual
score of player yi (1 for a winning, 0.5 for a tie, 0 for losing), the following linear
update to ri is executed:

r′i = ri + k · (si − ei) (5.5)

The value k determines the speed of convergence. In chess it is set to 40 for
new players, 20 for usual players and 10 for top players above a certain rating.

Since ej = 1− ei and sj = 1− si, it holds that k · (si − ei) = −k · (sj − ej). If
neither players are added nor removed from the system, the sum over all ratings
r remains constant, the mean value will always stay at the initial value.

60

5.3. Elo-Based Evaluation Chapter 5. Analysis of Evaluation Metrics

A more intuitive way for the relation between the ratings of two players can
be given by considering the odds. For the odds of yi winning against yj it holds
that

ei
ej

=
1 + 10

ri−rj
C

1 + 10
rj−ri

C

= 10
rj−ri

C . (5.6)

This means that a difference of C between the ratings of players corresponds
to a factor of 10 in the odds. If ri is larger than rj with a difference of C, yi is
expected to win 10 times more games than yj if both play against each other.
This does also mean, that the rating of a player who wins all games will go to
infinity in the long term, while all other ratings will go to negative infinity.

5.3.2 Naive Evaluation of Learned Models with Elo

Instead of relying on a computable metric, the Elo-based evaluation uses a human
judge to let different models play against each other. To find out how realistically
images appear to a human, using an actual human is not a far-fetched approach.
Instead of using 400 as an arbitrary selected initial value and scale parameter,
we use 0 for the initial value and a C = 1. We further replace the base 10 in the
denominator by e, since this simplifies further analysis. As a result we get the
following equation for the Elo-system:

ei =
1

1 + erj−ri
. (5.7)

A transformation of rating values from the old system to the new one can be
applied by first subtracting 400 from all rating values to remove the shift, and
then multiply each rating with ln 10

400
to adapt to the different scale and base. For

the update function, k has to be adapted as well. A value of 10 in the old system
would correspond to k ≈ 0.058

The rough idea can be described as follows: A set of models {ym}1≤m≤M should
be evaluated using the Elo-rating. Each model ym could correspond to a com-
pletely different architecture or just to a different set of hyperparameters. Then,
a random but constant subset {(cn, tn)}1≤n≤N of the validation dataset is defined
with conditioning inputs cn (input image and input pose in our task) and tar-
get images tn. Each model ym is now used to create a set of generated images
{ym(cn)}1≤n≤N based on the validation samples.

The rating rm is set to 0 for each method ym. Then, a random conditioning
input ci from the validation subset is selected, together with two random methods
yj and yk. The human judge is now shown the two generated images yj(ci) and
yk(ci) together with the conditioning input ci. Without knowing which methods
were selected, he can now decide which one is better or if there is a tie. This is
considered to be a single game between yj and yk. Their respective ratings can
now be adapted according to the above update formula.

61

Chapter 5. Analysis of Evaluation Metrics 5.3. Elo-Based Evaluation

Issues

This naive approach has some drawbacks: Each game changes the ratings of two
players by an amount depending on k. Even if the system has converged, a new
game will change the ratings, so they fluctuate a lot over time. The update
difference is depending on k, so decreasing k would also decrease the fluctuation
and stabilizes the system. Unfortunately this would also increase the number of
games which are necessary for the system to converge. Since a human has to
manually perform every update, this is not a well-working approach.

A slightly better solution would consider the average Elo-rating of a player
over time instead of the rating at a single time step. But this method also has
some issues: First, consecutive ratings of a single player are highly correlated,
so a large set of games should be performed for each player. Furthermore, the
initial value and the following ones are often far from correct. One either needs
to collect a lot of ratings, such that the initially wrong ones are the minority, or
one must drop the first ratings, which would need some way to measure whether
the system has converged.

In the following section we address these problems by performing a small adap-
tion to the system. This adaption does not change Elo’s core idea, but has better
properties in our case.

5.3.3 The Regression Approach

The function which Elo uses to evaluate the winning probability pij = p(yi, yj) of
a player yi against a player yj corresponds to a logistic sigmoid:

pij =
1

1 + erj−ri
= σ(ri − rj) (5.8)

It is thus not far-fetched to formulate the search for the optimal rating values
ri as a logistic regression with the binary cross-entropy error and then apply
gradient descent to find the rating r. A standard logistic regression has scalar
target values tn and a model t̂n = σ(wTφn). We can fit this to our problem by
defining

tn := pij and t̂n := p̂ij = σ(wTφn) = σ(rTφij), (5.9)

where φij corresponds to the vector which has zeros everywhere except for a 1
at φi and a −1 at φj. The binary cross-entropy error and its gradient are then
given by:

E(r) = −
∑
i,j

[
pij ln p̂ij + (1− pij) ln(1− p̂ij)

]
(5.10)

∇E(r) =
∑
i,j

(p̂ij − pij)φij (5.11)

62

5.3. Elo-Based Evaluation Chapter 5. Analysis of Evaluation Metrics

We can now consider a single online gradient descent update step, where a
game between players yi and yj has a result of pij ∈ {0, 0.5, 1}. Since φij 6= 0
only for ri and rj, the online gradient descent equation is given by

∂E(r)ij
∂rk

=

0 if i 6= k 6= j

+(p̂ij − pij) if i = k 6= j

−(p̂ij − pij) if i 6= k = j

0 if i = k = j.

(5.12)

Hence, the online update only changes the ratings ri and rj and leaves the
remaining ratings untouched:

r′i = ri − η(p̂ij − pij) r′j = rj + η(p̂ij − pij) (5.13)

This is similar to the update equation of the standard Elo system (5.5). We
just need to set η = k

2
, since Elo performs a second update step with pji = 1−pij.

Hence, each game in the original Elo system performs a single online update step
of a logistic regression. This property leads to the slow and noisy convergence
process.

Different from the original Elo update where only one single update step per
game is run, we can do multiple updates. The most simple way to achieve this
is to assume that the actual target probabilities pij ∈ [0, 1] are known instead of
applying a different target pij ∈ {0, 0.5, 1} in each update step. This also requires
the training set to have a size of M2 containing each pij and the corresponding
φij only once. We can then further switch from online to batch regression. The
update equation for a single entry ri can thus be derived from

∂E(r)

∂rk
=
∑
j

(p̂kj − pkj)−
∑
i

(p̂ik − pik) (5.14)

= 2
∑
j

(p̂kj − pkj) (5.15)

= 2
∑
j

(σ(rk − rj)− pkj). (5.16)

We just need to know the probabilities pij. To this end a counter matrix
C ∈ RM×M is initialized with zeros, each row and column corresponds to one of
the M models. If a model yi wins a game against a model yk, the value Cij is
incremented by 1, if there is a tie, both Cij and Cji are increased by 0.5. The

elements of the probability matrix P can then be computed as Pij =
Cij

Cij+Cji
.

Based on this matrix, the logistic regression can be executed until convergence
after each game.

This method neither needs to perform averaging over multiple values nor is
it needed to find a good value for k. The rating returned by the regression is

63

Chapter 5. Analysis of Evaluation Metrics 5.3. Elo-Based Evaluation

always the best possible output using all available knowledge. Different from the
standard Elo this procedure weights all games the same. Note, that this is also the
reason why this approach does not work in chess: since the chess-playing skill of
players changes over time, it is intended that newer games are weighted stronger.
With standard Elo the stability of the systems and the impact of noise depends
on k, whereas the regression approach automatically becomes more stable the
more games are played.

In the standard Elo system a single new game between yi and yj only changes
ri and rj. This is different in the new system: a game changes the probabilities pij
and pji by the same amount. The gradient in Equation 5.16 shows, that the first
update step still just changes the ratings ri and rj. But each following update
takes the new ratings into account, such that σ(rk−rj) is different to the previous
step for all k. Thus, a single game in the new system influences the ratings of all
models.

The new Elo system keeps an important property: the mean value of the ratings
r stays at zero. This can be shown by computing the sum of the gradient (5.16)
and utilizing that σ(ri − rj) = 1− σ(rj − ri). Then,∑

k,j

σ(rk − rj) =
∑
k,j

Pkj (5.17)

holds, since both sides essentially each sum up a matrix where the sum of each
element and the one at the transposed position is 1. The sum of the gradient is
therefore 0, so the mean of all ratings does not diverge from its initial value.

Pair-selection heuristic

The more decisions a human judge makes, the more the rating converges. But
this also needs a lot of time. For this reason we want to find heuristic which
allows to select model pairs in a way which speeds up convergence. Intuitively it
does not make sense, to choose two models which already played a large amount
of games against each other.

If Cij contains a large value, incrementing it by one would not lead to large

rating changes, since Pij =
Cij

Cij+Cji
stays approximately the same. But if Cij and

Cji are small, a game between yi and yj can have a large impact.
The probabilities change whenever there is a game, but the size of δ depends

on the game which is selected. If yi wins against yj, the corresponding δij can be
computed as

δij =
Cij + 1

Cij + Cji + 1
− Cij
Cij + Cji

. (5.18)

This means, that for a single game between yi and yj the change in r is at most

δ̂ij = max{δij, δji}. This value can be used to weight the games: pairs with large

64

5.4. Experimental setup Chapter 5. Analysis of Evaluation Metrics

values of δij and δji can be selected more frequently since these lead to a large
change in the ratings. Selecting them thus leads to a faster convergence.

We test the effectiveness of this weighting approach empirically. To this end
we randomly sample real Elo scores rr for eight players from a standard normal
distribution. Then we run 200 games between these players, for each game the
winning probability is computed based on rr with Equation 5.7. Three heuristics
are used to sample a pair for the next game: uniformly random, weighted by δ̂ij
or by always selecting one of the pairs where δ̂ij is the largest.

After 200 games, the mean absolute error between the real ratings rr and the
estimated scores r is computed. For each weighting methods, 50 runs were exe-
cuted. Compared to the uniform selection, weighting the games with δ̂ij decreased

the average mean absolute error by about 8%. If we only consider pairs where δ̂ij
is maximal, the error is roughly 20% smaller than the uniform weighting method.
We thus conclude, that selecting the pairs with a large δ̂ij makes the system
converge faster.

5.4 Experimental setup

For each judge of our user study, we split the process according to the three
important subtasks of pose-conditioned person image generation. In the first part,
the user is shown just two generations without any conditioning input to select the
more realistic image. To evaluate whether the same person is generated, the user
gets two generated images together with the image input. For pose evaluation, a
skeleton of the target image is visible together with two generations. The skeleton
is animated to turn slightly to the left and to the right, which allows to see depth
much easier. This allows the user to select the generation with the more correct
pose.

We selected eight different architectures from our experiments which achieve a
wide range of quality in their output. Among them were different 3D architectures
and loss-combinations, the model by Siarohin et al. [SSLS18] and the 2D baseline
in four different variations: standard, WGAN, WGAN and nearest neighbor loss,
and without color augmentations. For the purpose of this section, the mapping
between those models to the respective scores is not relevant. We thus randomly
assign the character A to G to those models.

Six judges were asked to evaluate 200 pairs of images for each of the three
tasks, they report that this took them between 30 and 45 minutes. Each user is
shown different pairs of images, so together they cover a large range of samples.
Since each user compares the same number of images, it is possible to combine
the counter matrices of all user by summing them together. This leads to a much
more converged result, since the Elo-rating of each task then depends on 1200
comparisons.

65

Chapter 5. Analysis of Evaluation Metrics 5.5. Results

E C H F D B A G

−4

−2

0

Model

E
lo

Realistic Image

D H C E F A G B

Model

Same Person

E H B C F A D G

Model

Correct Pose

Figure 5.1: Results of the user study. Each blue graph represents a single user,
the black one shows the result if the counter matrices are combined.
Models are sorted according to these averaged results.

Figure 5.1 shows the Elo-ratings of each user and the combined rating. In most
cases the user’s ratings correspond to each other, a similar trend is visible in all
graphs with only a few exceptions. It is also visible, that some users have more
extreme values in their graphs, for example the loosely dotted one, while others
have more averaged ratings as the densely dashed one. This depends on how
often the user decides, that both images fulfill the task with the same quality. If
this is done often, the Elo-ratings are closer together.

The graphs further show, that the selected models vary more with respect to
realistic image, while the ability to generate the same person and the correct
pose is more similar for all the models. The best and the worst models differ by
roughly 1.5 in both the latter tasks, which means that the highest rated one wins
about 4.5 more often if it plays against the lowest rated model.

5.5 Results

First of all, we need to quantify the agreement between the judges. This is
needed to evaluate the stability of the Elo-rating and its dependence on the person
performing the decisions. We use the intraclass correlation defined by Shrout and
Fleiss [SF79]. Since in our case each target is rated by each judge once, we need
to apply the variant ICC(3, 1). For same person, we get an intraclass correlation
of about 0.61, for realistic image about 0.79 and for correct pose about 0.75.
According to Koo and Li [KL16], values between 0.5 and 0.75 are moderately
reliable, the reliability of values up to 0.9 is good and everything larger is excellent.

Given the fact that 200 decisions have been made by our judges, which means
on average only 3.125 decisions per possible pair of models, we can assume that
the evaluation has not converged yet. This means, that the ICC would probably

66

5.5. Results Chapter 5. Analysis of Evaluation Metrics

G
DA

E

F
H

B

C

re
al

is
ti

c
im

ag
e

G
DA

E

F
H

B

C

G
DA

E

F
H

B

C

G
DA

E

F
H

B

C

G
DA

E

F
H

B

C

G
DA

E

F
H

B

C

G
DA

E

F
H

B

C

G
DA

E

F
H

B

C

G

D

A

E

F

H

B

Csa
m

e
p

er
so

n G

D

A

E

F

H

B

C

G

D

A

E

F

H

B

C

G

D

A

E

F

H

B

C

G

D

A

E

F

H

B

C

G

D

A

E

F

H

B

C

G

D

A

E

F

H

B

C

G

D

A

E

F

H

B

C

GDA

E

F
H

BC

SSIM

co
rr

ec
t

p
os

e

G DA

E

F
H

B C

L1

GDA

E

F
H

B C

L2

GDA

E

F
H

B C

IS

G DA

E

F
H

B C

FID

GDA

E

F
H
BC

DS

GDA

E

F
H
BC

PoseEst

G DA

E

F
H

B C

Wass

Figure 5.2: Comparison between Elo-ratings and different metrics. The X-axis
contains the different metrics, the Y-axis shows the Elo-ratings.

increase, if more decisions are made. We can thus conclude, that different human
judges lead to relatively similar results.

We will now compare the results from the Elo-evaluation with the existing
metrics. Figure 5.2 shows scatter plots for every pair of Elo-test and metric.
Model E seems to be an outlier, it has very low Elo-ratings for both realistic
image and correct pose. For same person, all metric except one assign an extreme
result to it.

The two variants of FID, either with the full validation set or only with the
subset of images, which were targets for generations, showed extremely similar
results. We thus only show the one on the full validation set. Changing the thresh-
old for the pose estimation from 150 mm to 200 mm increased the correlation with
correct pose marginally, so we decided for the latter threshold. The appkciation
of the Wasserstein distance for color comparison correlated more strongly with
same person than using the chi-squared metric on the histograms. Comparing
the targets with the generated images also showed better results than using the
inputs.

To quantify the correlation between the Elo-ratings and the metrics, we use
Spearman’s rank correlation coefficient [HMC05]. Different from Pearson’s cor-
relation coefficient, Spearman’s only compares the order across both axes. This
has the advantage, that the outlier E can be included in the correlation but does
not dominate it. Spearman’s rank correlation coefficient for each comparison is
shown in Table 5.1.

A particular interesting result is visible for the Inception score: good models get
bad scores. IS compares the distribution of the Inception network’s output labels
and assigns a good score if the output for a single image differs strongly compared
to the mean output of all images. This makes sense, if the model is supposed to
generate a large variety of classes, but in our case only one class exists. In the best
case, the output of a single image is “human” and the mean output of all images

67

Chapter 5. Analysis of Evaluation Metrics 5.5. Results

Table 5.1: Spearman’s rank correlation coefficients between Elo-ratings and dif-
ferent metrics. Correlations with absolute values above 0.8 are printed
in bold, correlations lower than 0.6 (and the Inception Score) are in
gray.

SSIM L1 L2 IS FID DS PoseEst Wass

realistic image 0.98 -0.81 -0.88 -0.91 -0.79 0.81 0.71 -0.57
same person 0.69 -0.83 -0.79 -0.33 -0.62 0.50 -0.12 -0.81
correct pose 0.71 -0.50 -0.57 -0.86 -0.52 0.41 0.81 -0.19

is “human” as well, so the score will be very low. Unfortunately one can not
simply invert the score and apply it to evaluate pose generation, since generating
only noise images would also make both distributions the same. This is why IS
should not be used to evaluate pose-conditioned human image generation.

SSIM correlates strongly with realistic person and mediocre with same person
and correct pose. L1 and L2 both show similar results, L1 is better for same
person, L2 for realistic image. For pose evaluation they are not suited. FID
only evaluates realistic image and same person moderately well. The detection
score only correlates strongly with realistic image, but SSIM and the pixel-wise
comparisons achieve a higher correlation.

The pose estimator allows to evaluate correct pose very well, while it is un-
correlated to same person. With the color comparison based on the Wasserstein
distance it is possible to evaluate same person while not considering correct pose.
Both methods correlate partly with realistic image.

It is not surprising that there is correlation between the three tasks: If the pose
of a person is broken, for example due to unconnected bodyparts, the realism of
the person decreases. Spearman’s coefficient for comparing the Elo-ratings of
correct pose and realistic image is 0.762. If realistic image is compared to same
person, the result is 0.595, a person which is generated badly does not look similar
to the input person. The tasks correct pose and same person do not correlate,
Pearson’s coefficient is only 0.143.

We conclude, that SSIM is a valid metric to measure the realism of images,
while the pose estimation and the color comparison can be used to evaluate correct
pose and same person independently of each other.

68

6
Experiments

We start this chapter by introducing the datasets. This is followed by experiments
and detailed evaluations with respect to several design choices. After this, we
measure the ability of the model to combine the tasks of pose estimation and
image generation, which allows to state whether these tasks are compatible with
each other. Finally, we report and analyze our architecture in comparison to two
baselines and perform an ablation study.

6.1 Datasets

The In-shop Clothes Retrieval Benchmark1 of the DeepFashion dataset [LLQ+16]
is used in many pose-generation approaches (e.g. [MJS+17, MJS+17, PASMN18,
GSVL19, DLG+18]) but lacks ground truth poses. Two datasets with ground-
truth 3D poses were used by us: the Human3.6M dataset2 [IPOS13] and the
MPI-INF-3DHP dataset3 [MRC+17].

Both datasets contain videos of several people together with ground-truth 3D
poses which are generated using a motion-capture system. H3.6M has seven
actors for which ground-truth poses are available, three others are kept secret
as a test set. A large variety of actions was filmed by four cameras, totaling in
about 3.6 million images, thus the name of the dataset. 3DHP includes eight
people, each with two different sets of clothes. 14 cameras are used in parallel,
but with much less images per person. H3.6M and 3DHP both show challenging
poses with persons crawling on the floor or doing Yoga poses.

The Fashion dataset only contains simple poses of subjects standing with small
variations to the pose of arms and legs. The difficulty lies in the fact, that the
conditioning image might contain just the upper part of the body or an image
from the back and that the target pose shows the full body or its front. In contrast

1http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/InShopRetrieval.html
2http://vision.imar.ro/human3.6m/
3http://gvv.mpi-inf.mpg.de/3dhp-dataset/

69

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/InShopRetrieval.html
http://vision.imar.ro/human3.6m/
http://gvv.mpi-inf.mpg.de/3dhp-dataset/

Chapter 6. Experiments 6.1. Datasets

Table 6.1: Training samples from the three used datasets.

Fashion H3.6M 3DHP

to this, 3DHP and H3.6M both include difficult poses, for example performing
different kinds of gymnastics on the floor.

Our preliminary experiments have shown that the variety of persons and clothes
is too small even if H3.6M and 3DHP are combined, such that the models overfit
on the persons in the training dataset. In order to cope with this, we included
the Fashion dataset as well, generated 3D poses were provided by István Sárándi,
based on the pose estimator described in [SLAL18]. We only utilized the images
where the full body is visible, which limits the amount of persons to about 1000,
most of them having 2, 3 or 4 different full-body images. This leads to a total of
roughly 8500 conditioning-target pairs. During training we further use unpaired
full-body images of this dataset, where input and target image are the same,
except for the augmentations based on transformations described in Section 4.1.
About 9500 images are usable this way.

The backgrounds of the datasets differ greatly: H3.6M and 3DHP are filmed in
a controlled environment, the former in a room with white walls and a red carpet,
the latter with green curtains and floor, whereas the images of the fashion dataset
mostly have a white background. To cope with this, masks for all images were
computed by István Sárándi and all backgrounds were colored magenta. Images
are cropped with a small margin around the person and rescaled to a size of
256× 256. Furthermore, we drop samples from both 3D datasets where a a chair
is visible because this conflicts with the masking process. Table 6.1 shows some
training examples from all three datasets.

Evaluation is only performed on H3.6M and 3DHP, for each of these dataset we
selected one person randomly for evaluation (S11 for H3.6M and S6 for 3DHP).
Since each person in the second dataset has two different sets of clothes, the
validation split thus contains three clothing layouts. For each one two images are
shown in Table 6.2. We also selected a testing split the same way (S5 for H3.6M
and S4 for 3DHP).

70

6.2. Experiments on Design Choices Chapter 6. Experiments

Table 6.2: Validation samples.

H3.6M 3DHP 3DHP

The H3.6M dataset has a lot more samples in comparison to 3DHP, 3DHP
shows more clothing variation, but people appear twice. To cope with this mis-
match we consider H3.6M and 3DHP to be equally important, thus both datasets
are selected with the same probability for both training and validation.

Both 3D datasets contain a large amount of joints, we restrict ourselves to 15
of them, which are commonly used in other works. 12 joints are used for the
limbs, each arm consists of shoulder, elbow and wrist, a leg uses hip, knee and
ankle. The shoulders and elbows further define the shape of the body. The head
is made of the neck, a joint in the head’s center and one at the top.

6.2 Experiments on Design Choices

We will try and evaluate different design choices in this section. First, we de-
scribe how we approach the overfitting problem due to the low variability in
persons. Then, we test the Wasserstein-GAN for image generation and describe
our experience with mixed precision.

We evaluate whether the network utilizes the transformations if is is given the
possibility to circumvent them using the offcuts. To measure whether the network
is able to estimate the depth, we apply the pose loss in the next part and report
the errors of the joint estimates given different design choices. Finally we evaluate
the influence of the offcut on image generation.

6.2.1 Avoiding Overfitting

As already stated in Section 6.1, initial experiments showed, that the two 3D
datasets H3.6M and 3DHP show too little variation in person appearance, since
each only consists of a low number of people. This encourages the network to
memorize the persons from the training set and thus to generate images showing
those even if images from the validation set are used as input. Hence, the fash-
ion dataset is added, restricted to those images, where persons are fully visible.
Sometimes, two different images of a person are available, sometimes only one
full-body image exists. In the latter case the network can still be trained similar
to an autoencoder.

71

Chapter 6. Experiments 6.2. Experiments on Design Choices

Table 6.3: Different proportions of the fashion dataset. The seven left columns
show results of the validation set where Siarohin’s model is trained on
different proportions of the available training sets. The second column
is for example trained 20% on paired images of fashion and 0% on
single fashion images. 3DHP and H3.6M share the remaining 80%.

paired only paired and unpaired

0/0 0.2/0 0.4/0 0.6/0 0.1/0.1 0.2/0.2 0.3/0.3 in gt

One one hand it is crucial that the correct persons are generated, so a large
variation of possible appearances is wanted. On the other hand we want to avoid
that the network focuses too much on the simple poses of the fashion set, so we
want the proportion of these images to be low. We thus train a set of models
where the input data consists of different fractions between H3.6M/3DHP, paired
fashion images and single fashion images. We use the model as proposed by
Siarohin et al. [SSLS18] for this test.

Example images of both persons of the validation set, one of them in two sets of
clothes, are visualized in Table 6.3. For the first person only lighting differences
are visible in all generated image, but the other show very significant differences.
The second one wears green trousers and a blue shirt with short sleeves. If one
trains without fashion at all, the result has blue trousers and a purple shirt. This
clothing is worn by another person in the training set. This gradually converges
to the correct result the larger the proportion of the fashion data is, independent
on whether only paired images are used or single images as well. The last person
shows a similar result: only if a large fraction of fashion is used, the clothing
matches the input. Otherwise either stripes are generated across the body or
differently colored trousers are visible.

72

6.2. Experiments on Design Choices Chapter 6. Experiments

Table 6.4: Overfitting of the 2D ResNet baseline.

resnet skip augm. in gt resnet skip augm. in gt

While including the fashion dataset works fine using the model of Siarohin et
al., our 2D ResNet baseline still shows overfitting. We tried two approaches to
overcome this issue: First, we included U-net-style skip-connections between the
ResNet’s encoder and decoder. Secondly, we apply color augmentation to input
and target images: hue, saturation, brightness and contrast are randomly altered.
Generated images with all three methods are visible in Table 6.4. It is visible,
that especially for the left person both methods enhance the results drastically.

We decided against skip-connections for two reasons: Firstly, we want the
volumetric features in the center to contain as much information as possible.
This way it might be possible to use them for further tasks as well, for example
for pose estimation. Secondly, it would be unclear whether to shuttle the features
in the encoder with 2D or 3D transformations or even a mixture of both, since the
network is supposed to actively estimate the depth of the person in the encoder.
Choosing between 2D or 3D shuttling would constrain the network additionally.

6.2.2 Wasserstein-GAN

As a first experiment we tried to only use the WGAN critic to guide the 2D-
baseline generator without using any additional direct loss. A patched discrimi-
nator can not be used for this purpose, because it is needed to gather information
from the full image. The generated images were very poor, two examples are
shown in Table 6.5. It is visible, that the resulting images show strange parts
and checkerboard patterns. We thus need to combine the adversarial loss with a
direct loss in this case as well.

Since the critics loss function changes it is not possible to take over the same
weighting factor for the nearest-neighbor loss as for the classical GAN. Based on
a comparison of the gradient magnitude between the GAN loss and the WGAN-
GP loss, we found a factor of λNN = 0.1 to be roughly matching. Table 6.5 shows
some results with different weights.

The table further shows the classical GAN with the same architecture in com-
parison. If λNN = 0.03 is used, the generated images show blurry results and
white patches in some areas of the body. A factor of λNN = 0.1 shows results
which are comparable to the classical GAN. A model where the nearest neighbor

73

Chapter 6. Experiments 6.2. Experiments on Design Choices

Table 6.5: Different values of λNN for WGAN-GP in comparison with the classical
GAN.

WGAN-GP GAN

0 0.03 0.1 0.3 0.01 in gt

0 50k 100k 150k

1.1

1.2

1.3

Steps

L
os

s

gen
dis

(a) GAN loss

0 50k 100k 150k

0

2

4

6

8

Steps

L
os

s

crit

(b) WGAN loss

Figure 6.1: Comparison between GAN and WGAN loss over time. Values are
smoothed for a better visualization.

loss is further increased to 0.3 tends to overfit to the training data, the first person
shows blue shorts.

The Wasserstein-GAN has a helpful advantage compared with the classical
GAN: it shows a useful loss-function which allows to conclude how far training
has converged. Figure 6.1a shows the generator loss and the discriminator loss
for a single training procedure. It is visible that both losses fluctuate more or
less randomly without any sign of convergence. To find out whether training has
converged it is needed to generate images and measure their quality at different
training steps.

74

6.2. Experiments on Design Choices Chapter 6. Experiments

0 50,000 100,000 150,000

102

103

104

Steps

S
ca

li
n
g

fa
ct

or

not regularized
regularized

Figure 6.2: Effect of regularization on the scale factor. If weights are not regu-
larized, the scale factor crashes after some time. Note that the y-axis
is logarithmic.

The Wasserstein-GAN is different as Figure 6.1 shows. Since the critic is either
trained for multiple steps or trained with a higher learning rate, it becomes better
much faster than the generator. Due to the additional constraint of a gradient
norm of 1 its loss corresponds to the Wasserstein-distance in the optimal case.
Plotting this loss therefore yields a helpful measure of convergence as Figure 6.1b
shows.

To allow an easier comparison to the related work we decided to keep the
classical GAN for all remaining experiments.

6.2.3 Mixed Precision

Mixed precision, which was introduced in Section 2.4, is useful to decrease training
time, especially on tensor cores, and memory consumption which allows larger
architectures. We included mixed precision in both generator and discriminator,
but performed normalization in full precision as suggested in [MNA+18]. We use
an adaptive scale factor, which increases every couple of steps by a small factor
such that it effectively doubles every 2000 batches. As soon as a gradient becomes
infinity or NaN, the scale factor is divided by

√
2.

The computation of the nearest-neighbor loss was performed in full precision,
since it computes sums over large amounts of features. Similar as for normaliza-
tion, this would put values into the system which are several orders of magnitude
larger than others. The scaling factor, which depends on the largest value, would
be much smaller in this case and more values would become zero at the lower end
of the floating point scale.

75

Chapter 6. Experiments 6.2. Experiments on Design Choices

Table 6.6: Comparison between full precision and mixed precision. Note that
at the time of this experiment, the fashion dataset was not used and
to color augmentation was applied, such that the network generates
partly wrong persons.

full mixed in gt full mixed in gt

The blue graph in Figure 6.2 shows a behavior which was visible often: Starting
from its initial value, the scaling factor firstly grows fast for some time until the
first overflow happens. Then it grows much slower, because infinite values occur
more often, and eventually stops growing. But in nearly all cases at some point
the loss scale drops to negative infinity. Even restarting the training from a
checkpoint several thousand steps before does not help, a loss scale crash still
occurs.

The reason for this to happen were weights which became too large. As a simple
solution we added L2 regularization for kernel weights, so large parameters are
strongly penalized. We chose 10−4 to weight the regularization penalty. As the
red curve in Figure 6.2 shows, this solved the issue.

Table 6.6 contains generated images with full and mixed precision using the
2D-baseline. At the time of this experiment, the fashion dataset was not yet
included and a different validation set was used. It is visible that mixed precision
produces slightly smoother results, but apart from this the differences are small.

Unfortunately mixed precision did not work in combination with the 3D archi-
tecture, the scale factor kept crashing even with regularization. To avoid wasting
too much time on this issue we therefore decided to use full precision for all
further experiments.

6.2.4 Advantage of Transformations

We want to evaluate whether the model makes use of the 3D transformations
or tries to circumvent them if it is given the possibility to do so. The standard
definition of our architecture does not allow this, since only the features inside
the masks are available after the transformation. We therefore experiment with
including the offcut, an additional mask containing all features which are not
used by the other masks.

If an architecture which includes the offcuts utilizes the transformations but
not the offcuts, we would expect the activations to be high where the bodypart

76

6.2. Experiments on Design Choices Chapter 6. Experiments

Table 6.7: Visualization of internal feature maps. The models have D = 32 and
C = 8, thus side and top view each have a size of 64 × 32 pixels. In
the table below they are scaled to squares for a simpler evaluation.

in front right top in front right top

masks copy the features and low everywhere else. A model which circumvents
the transformation would only use features which are in the offcut. If strong acti-
vations exist everywhere, we could conclude, that the spatial position of features
is not relevant.

To evaluate where features are active, we will use the following visualization
method for volumetric features: we can reduce one axis by computing a statistic
over this dimension, as a result we get a single 2D heatmap per channel. The mean
over all heatmaps can then be used to visualize the activity of a vector across
a dimension. Using this method we can compute a front-view, a top-view and
a side-view by computing the statistic over depth, width or height, respectively.
We tried the mean, the maximum and the standard deviation as a statistic.

Since features and their statistics can theoretically become arbitrarily small
or large, normalization is needed to transform them into color channels. We
use the same normalization values for all three dimensions of each channel by
first computing the statistic across all dimensions and then subtracting the same
minimum value from all of them. The same procedure is applied to divide all the
reduced maps by the same maximum value. This allows to compare the results
between the different views.

If the mean activation is used as a statistic, the resulting images become very
blurry. Small and large activations cancel each other out and since the feature
volumes are dominated by non-human features which are all very similar due to
the magenta background, the pixel values in the resulting images are similar to
each other. Maximum activation and standard deviation yield better images and
both show very similar results. High activations across a dimension lead to large
differences between activations, so both maximum and standard deviation are
high. Since the maximum value only depends on a single activation across the
reduced dimension and thus is not very robust to noise, we keep the standard
deviation as a statistic.

This method is used to visualize feature maps of a model with a depth of
D = 32, C = 8 channels and n = m = 2 residual blocks before and after the
transformation. Table 6.7 show the results. If visualized from the front, the shape
of the person is clearly visible. The standard deviation of activations across the

77

Chapter 6. Experiments 6.2. Experiments on Design Choices

Table 6.8: Pose estimation results. For all models, λpose = 104.

parameters MAE

D C n m dilation X Y Z

32 8 2 2 no 16.2 21.2 16.3
32 8 2 2 yes 13.7 9.9 14.8
16 32 2 2 yes 9.6 6.9 11.9
16 32 5 1 no 14.1 8.7 15.1

depth dimension is much higher where the person is and very low everywhere
else.

Across width and height, the features are only active in the center of the volume.
This shows, that the network does not make use of the possibility to ignore the
transformation, but instead only uses features in the center of the volume, where
the transformation usually takes features.

On the other hand we can see that the person on the left, which is strongly
stretched into he depth of the volume, does not have a larger set of active features
in the depth dimension. The depth of the region with active features has the same
size. It seems like the network does not perform a depth estimation to put the
features in the area where they are actually shuttled, but learns to put them
where there are usually shuttled: in the center.

This leads to the conclusion that the network only utilizes the 2D aspect of the
transformations. It puts very similar features into different depths of the volume,
then a 3D transformation with 3D masks is very similar to the 2D transformation
with 2D masks which corresponds to the projection of the 3D transformation to
the image plane. Hence, the model only uses the transformation in 2D space and
ignores the depth. In the following section we will evaluate this issue further.

6.2.5 Depth Estimation

In this experiment we want to study the influence of different architecture design
choices on the model’s ability to estimate depth. For this purpose, we apply
the pose loss Lpose with a large scale factor of λpose = 104. For evaluation, we
need to get pose estimates from the heatmaps. This is performed by applying
a soft argmax, which basically measures the center of gravity per channel. We
report the mean absolute error separate for each axis in pixels, measured on 5000
samples.

The first 3D network we use has a depth of 32 and uses 8 channels. It contains
n = 2 residual blocks before and m = 2 after the transformation. We train it once
with and once without including the dilation block. The results are shown in the
first two rows of Table 6.8. The dilation block reduces the errors significantly:
about 15% in the width, more than 50% in the height and 9% in the depth.

78

6.2. Experiments on Design Choices Chapter 6. Experiments

lelb
lwri
relb
rwri
lank
lkne
rank
rsho
lsho
rkne
lhip
rhip
htop
head
neck
pelv

3.16

3.40

5.72

2.85

6.92

7.89

8.76

9.44

8.58

11.18

11.30

12.29

14.16

15.84

16.38

17.94

MAE

(a) Width / X direction.

lwri
rwri
relb
lelb

lank
rank
lkne
htop
rsho
lsho
rhip
rkne
lhip

head
pelv
neck 3.06

3.84

6.10

3.83

4.44

5.07

5.11

5.56

4.92

6.93

7.05

8.19

9.81

10.49

17.26

18.32

MAE

(b) Height / Y direction.

rwri
lwri
lank
rank
relb
lelb

htop
lkne
head
rkne
rsho
rhip
lhip
lsho
neck
pelv

8.17

10.46

12.82

7.88

8.78

9.10

9.58

9.64

10.06

11.17

15.63

16.21

14.57

15.23

16.75

18.58

MAE

(c) Depth / Z direction.

Figure 6.3: Mean absolute pose estimation error per joint for a 3D model with
high λpose and dilations. The bars are colored depending on whether
the joints belong to body, head, arms or legs.

The results can be further increased by changing the depth to D = 16 and the
number of channels to C = 32, while keeping the dilations. The error of width
and height estimate decrease by about 30%, the depth estimate’s error by about
20%. In addition we evaluated a model which uses 3 more residual block in front
of the transformation but does not include the dilation block. This increases the
error, so we conclude, that the dilation block is a helpful way to enable global
information access inside the network while also keeping the size of the network
small.

If we compare the first to the third model it is visible, that the error of the
height estimate becomes the lowest if global dependencies are added, although it
was the largest before. This is unexpected at first sight, but the reason for this
can be deduced from Figure 6.3: it shows the errors for each joint separately for
the third model.

For each axis, the joints are ordered by their error. This order is remarkably
similar in width and height: joints of the head are estimated very well, followed
by torso and legs. Across both axes, the arms have the largest errors. But the
sizes of the errors differ. Head, neck and pelvis are estimated with about the
same error across both axes. For the other joints, the width estimate is much

79

Chapter 6. Experiments 6.2. Experiments on Design Choices

worse than the height estimate with one exception: the wrists, which have the
largest error for both axes and roughly the same size.

The error in the width is often larger, since the network mixes up the left and
right side in some cases, especially if joints are far away from each other: head
and torso can be estimated quite well, while arms and legs can move around
much more. Since the left and the right version of a joint is usually roughly at
the same height, the height estimate is better when the pose estimation returns a
point between both joints. This is true for all joints except for the wrists, which
are the joints which are most independently moved across the height if persons
gesticulate. This is why their height error is large as well.

The errors across the depth show that joints close to the body’s center are
estimated better. The worst results are returned for wrists and ankles, followed
by elbows, knees, and the outer head joints. The depth estimation is thus easier
for the network if joints are close to each other. The advantage of performing the
transformation in 3D is especially high, when bodyparts are overlapping, in this
case the joints are close to each other and the different depths can be evaluated
better.

Our input images have a size of 256 pixels. If we approximate the average size
of a human to be 200 pixels and 175 cm, an error of 20 pixels would correspond to
17.5 cm. Our best architecture only uses 16 depth layers, each layer thus roughly
has a depth of 14 cm. We draw the assumption that a depth estimate with this
error is completely acceptable for the purpose of putting overlapping bodyparts
into different depths layers.

6.2.6 Influence of Offcuts on Images

We now want to examine the offcut’s impact on the quality of images. Table 6.9
shows results for two models, once with offcuts and once without. Both models
are able to retain the person’s identity, but the network with added offcuts often
contains parts of the human which are disconnected and contain holes.

We can only speculate about the reason for this. If the offcuts are added,
the encoder learns to only use the features where the transformation procedure
might take and shuttle them. Since this is difficult, due to the added offcuts some
features will stay where they are without being transformed. For this reason the
decoder needs to learn which features have been transformed and which features
probably just remained where they were. Especially for unusual poses, parts of
the transformed feature maps thus might get identified as noise, so the decoder
ignores them and holes appear.

Another hypothesis is that the inclusion of the offcut forces the encoder to
decide for only a few depth layers. If it puts features in the wrong depth, they
are not shuttled and stay at the wrong position. This has the result, that if the
encoder estimated the depth wrongly, no features are moved from this bodypart.

80

6.3. Image Generation vs. Pose Estimation Chapter 6. Experiments

Table 6.9: Influence of adding the offcuts. Both model have D = 16, C = 32 and
use dilation blocks. Samples are selected, where one of both shows
disconnected bodyparts.

without with in gt without with in gt

Without included offcuts, the encoder can put features into different depths and
rely on the transformation to only copy them to the decoder once.

Probably a combination of both explanations is the reason the observed pat-
terns, it is not important which of them has the greater impact. Both theories
allow to conclude, that adding the offcuts has a negative influence on the quality
of images and should thus not be added.

6.3 Image Generation vs. Pose Estimation

The following experiments will answer one of the central research questions of
this thesis: are the features needed for image generation and pose estimation
compatible with each other? We perform this experiment using an architecture
with D = 16, C = 32, two residual blocks on each side and the dilation block.
Models are trained with a wide range of λpose. The results on the pose error are
shown in Table 6.10.

The pose estimation error changes drastically if the pose loss is weighted
strongly. Between λpose = 100 and λpose = 106, we can see a decrease of about
50% for width and depth and 84% for the height. If λpose is small, the gradient
of the model is dominated strongly by the generation losses. The only part of
the network which is significantly influenced by the pose loss is the single 3D
convolution with kernel 1. Thus, a pose loss of 1 is similar as minimizing the
pose loss from the intermediate feature map while freezing the previous layers.

One possible explanation for the strong dependency of the weight is, that the
features which are needed for pose estimation and for image generation are in-
compatible. Otherwise the features which are learned for image generation would

81

Chapter 6. Experiments 6.3. Image Generation vs. Pose Estimation

Table 6.10: Pose estimation depending on λpose and offcuts. The architecture has
D = 16, C = 32, n = m = 2, uses the dilation block and no offcuts.

MAE

λpose X Y Z

100 17.8 39.9 22.7
102 15.9 15.3 16.5
103 14.2 10.0 15.1
104 9.6 6.9 11.9
106 8.2 6.3 11.5

Table 6.11: Visualization of internal feature maps. The models have D = 32 and
C = 8, thus side and top view each have a size of 64 × 32 pixels. In
the table below they are scaled to squares for a simpler evaluation.

in front right top in front right top

allow the pose estimator to estimate the correct pose at least to some degree,
even if only a single layer is applied.

But there might be another reason why λpose = 100 fails to estimate the pose:
if the offcuts are not added to the generator, it does not matter what the encoder
puts in areas of the volume, which are not transformed. Thus, it creates noise
there, which is visualized in Table 6.11. The noise has no impact on the generation
if images, since it is not included in the masks, but the pose estimator can not
distinguish noise from joints.

If the pose estimator’s weight is increased, it forces the noise to disappear, so
the pose estimation results get better. We can thus hypothesize, that the strong
impact of the pose loss is caused by this noise. To evaluate this hypothesis, we
repeat the experiment, this time with adding the offcuts. Table 6.12 contains the
results and also shows the percentage difference to the previous table.

Adding the offcuts increases the pose estimation in all cases. First of all, we can
see that the noise hypothesis is partly correct: for λpose = 100, both width and
height estimate only get marginally better. On the other side, the depth estimate
decreases strongly. Especially the depth axis suffers from noise if offcuts are not
added. With offcuts, the network decreases the noise and the pose estimator
works better.

In contrast, the other results rather support the explanation, that features for
pose estimation and image generation do not work well together: the estimation

82

6.3. Image Generation vs. Pose Estimation Chapter 6. Experiments

Table 6.12: Pose estimation depending on λpose and offcuts. The architecture has
D = 16, C = 32, n = m = 2, uses the dilation block and offcuts

MAE ∆MAE %

λpose X Y Z X Y Z

100 17.4 36.3 17.2 -0.02 -0.09 -0.24
102 15.6 13.6 16.1 -0.02 -0.11 -0.02
103 13.1 8.7 14.2 -0.08 -0.13 -0.06
104 7.2 6.1 10.7 -0.25 -0.12 -0.10
106 6.6 5.7 10.3 -0.20 -0.10 -0.10

Table 6.13: Visualization of internal feature maps. Side-views are generated using
the standard deviation across the width dimension. The models have
D = 16 and C = 32, thus the images have a size of 64× 16 pixels. In
the table below they are scaled to squares for a simpler evaluation.
Dilation blocks are used and offcuts are added.

in 100 102 103 104 106

error still significantly depends on λpose. If both tasks would need the same
features, the impact would be expected to be rather low. Even more, especially
the two models which were trained with a particularly high λpose, showed overall
the biggest improvement if compared to the unmasked part, λpose = 104 changed
more.

To explain this behavior, we visualize feature maps with added offcuts and
different λpose in Table 6.13. First we see, that dilation blocks enable the model
to put features in different depths depending on the pose. The woman in the
upper row shows a triangular shape, her features fit to her pose: the legs at the
bottom are spread out widely, the body in the middle is medium thick and the
arm at the top is very thin. The standing person in the bottom row yields feature
maps with a pattern in the center corresponding to the standing position.

83

Chapter 6. Experiments 6.3. Image Generation vs. Pose Estimation

Table 6.14: Deletion of features in different depths. The model has D = 16 and
C = 32, uses dilation and includes offcuts.

inner features only outer features only

in 100 106 100 106

Interestingly, the depth is more visible if the pose loss is lower. For λpose = 104,
the triangular shape in the upper row just barely exists, while for λpose = 106 the
features in the center of the volume are much less active than the one in the front
and in the back. This is surprising, since it was expected that a strong pose loss
guides the features better to the correct depth.

The following theory explains this behavior: if the pose loss is weighted much
larger than the losses on the generated image, the model tries to use all the
features in the center to estimate the pose. These features only contain pose-
related information. To also keep appearance information, the network needs to
use the features which are not used for pose estimation, i.e. the features in the
front and in the back, where no pose is visible. Hence, the strong activations
at the borders are those which contain the appearance information, thus the
standard deviation is high.

To test this hypothesis we conduct the following experiment. For two fully
trained models, one with λpose = 100 and one with λpose = 106, we delete the
information in either the inner or outer half of the depth dimension in the feature
map directly before the transformation by setting the corresponding features to
0.

84

6.3. Image Generation vs. Pose Estimation Chapter 6. Experiments

Table 6.15: Effect of pose loss on generated images. The model has D = 16,
C = 32, n = m = 2 and uses the dilation block and offcuts.

100 102 103 104 106 in gt

The results are shown in Table 6.14. If we remove the first and last depth layers
in the intermediate feature volume of the model with low pose loss weight, the
generated images obviously reduce in quality but the identity of the persons is
still visible. If the inner part is deleted, the identity of the person is lost. Hence,
for a small pose loss the identity is contained in the features which are shuttled
during the transformation.

If the pose loss is very high and the outer part is deleted, all generated persons
look similar to each other. If the central features are set to 0, the model is able to
generate the person’s appearance much better. This shows the correctness of the
theory: a large pose loss forces the inner features, which are later transformed,
to only contain pose-related features and pressures the appearance information
in the offcut-part of the feature volume.

Finally, we also want to evaluate images which were trained with different pose
losses and added offcuts. These are shown in Table 6.15. The first row shows
that models with a stronger pose loss lose the identity of the persons. In the left
column, green trousers and a blue shirt is still visible, but further to the right the
trousers get blue and the shirt becomes purple. Also, the realism of images for
stronger λpose decreases.

If strong pose losses are applied, the model tries to disentangle appearance from
pose, and is unable to use the transformation to shuttle features into different
areas. For low pose losses, the pose estimator is unable to estimate the pose
from the appearance features, so they do not contain pose information. We
thus showed in this section, that pose estimation and image generation are not
compatible with each other.

85

Chapter 6. Experiments 6.4. Final Evaluation

Table 6.16: Comparison of our model with 2D baselines. For each model, the
number of params and multiply-add operations is also included.

computation power metrics

params ops SSIM PoseEst Wass

Siar. 82M 547G 0.887 0.610 2.120
2D 44M 1497G 0.888 0.638 2.188
ours 28M 915G 0.883 0.650 2.266

6.4 Final Evaluation

To evaluate the performance of our network in comparison to the 2D baselines
and for the ablation study, we kept a random test split of the dataset, which was
not considered before. It contains one person of H3.6M and one of 3DHP, the
latter one in two clothings.

Due to the results from Section 6.2, we use the following design choices for
the 3D architecture: the volumetric features use a depth of D = 24 and C =
64 channels. We include n = m = 2 3D residual blocks before and after the
transformation, a dilation block is also added, but offcut and pose loss are not.

To allow comparison between the approaches, we use the classical GAN loss ev-
erywhere, combined with the nearest neighbor loss and λNN = 0.01. The propor-
tion of the Fashion dataset is 60%, both transformation and color augmentation
are applied with all archiectures.

6.4.1 Comparison with 2D Baselines

We will now compare the results of our model with the 2D baselines defined in
Section 4.2. Results are reported in Table 6.16. We can see, that every archi-
tecture is best according to one of the metrics: the most realistic images are
generated by the 2D ResNet, the model by Siarohin et al. allows to keep the
person’s identity and our 3D approach scores the highest for the target pose.

The preservation of identity in the approach by Siarohin et al. could be re-
lated to the high-resolution skip connections. Both ResNet-based models have
a bottleneck which compresses the spatial size of the features to a fourth. If we
compare the computational power between the approaches, we can see that our
model uses much less parameters and multiply-add operations in comparison to
the 2D baseline. The decrease in realism could be related to this. Since volumet-
ric features require a lot of memory, it was not possible to further increase our
model’s size.

86

6.4. Final Evaluation Chapter 6. Experiments

Table 6.17: Ablation study of the different 3D aspects.

validation set test set

SSIM PoseEst Wass SSIM PoseEst Wass

full 3D 0.874 0.635 2.618 0.883 0.650 2.266
trans 2D 0.867 0.525 2.555 0.875 0.583 2.675
pose 2D 0.877 0.596 2.700 0.886 0.615 2.239
both 2D 0.868 0.512 2.894 0.877 0.548 2.388

6.4.2 Ablation Study

We will now evaluate the influence of the two different 3D aspects of our archi-
tecture separately. To this end, we use the three 2.5D models, which were defined
in Section 4.6 Our model masking and transformation in 3D and gets 3D target
poses as input. The first ablation model performs masking and transformation
in 2D, but gets the pose in 3D. The second model get a 2D pose, but masks and
transforms with volumetric features. Both aspects are performed in 2D by the
third model. The remaining architecture is the same for all models.

We can see from Table 6.17 that the ability of the model to generate the correct
pose drops, when one either transformation or pose only use two dimensions. The
impact of the transformation is significantly larger. Regarding SSIM, the model
which only uses 2D poses is better, but the difference to the full 3D model is very
small compared to the other two. The color comparison is won for both training
and validation set by one of the models, which only do one aspect in 3D. The full
3D model gets the second place in both datasets.

87

7
Conclusion

In this thesis we analyzed several aspects to tackle the task of pose-conditioned
human image synthesis. Our first contribution is the evaluation of commonly
used evaluation metrics. To this end, we performed a user study to rate a set
of models based on the decisions of several human judges. The study was sepa-
rated according to the three important aspects of pose-conditioned human image
synthesis: is the image realistic, has the generated person the same appearance
as the input person and is the correct target pose generated. We combined all
pairwise decisions of a judge using an adaption of the Elo-rating system to get
a score for each model, and showed, that the ratings of different judges coincide
quite well.

We then used the decisions of all judges together to get a more stable rating
of each model. By measuring the correlation with the classical metrics and with
two additional metrics defined by ourselves, we concluded, that structural sim-
ilarity [WBS+04] allows to measure the realism of images quite well, while the
application of a pose estimator and a comparison of the colors in the image based
on the Wasserstein distance independently allow to measure whether the pose is
correct and whether the same person is visible.

We approached the task of pose-conditioned person image generation by defin-
ing a model which implicitly learns to put features into different depths. This
allowed us to apply a transformation in 3D space to each bodypart, which shuttles
the features into the target pose. The network then transforms the volumetric
features back to a 2D image.

We evaluated different design choices and found, that a large receptive field is
necessary for the model to estimate the depth of the human. This was a flaw
in our initial design: the deformation of feature maps is supposed to move the
features close to the target area, such that only local features are necessary. By
adding a residual block with dilated convolutions, we enabled a global overview
without complicating the network significantly.

89

Chapter 7. Conclusion 7.1. Future Work

By applying a pose estimation module to the volumetric feature map directly
before the transformation, we found, that the features which are needed for pose-
estimation and those which contain the appearance attributes of a person are
not compatible with each other. Models which are strongly weighted for one of
both tasks showed significant issues in the other one and if the model is given the
ability to disentangle pose-related and appearance-related features, it makes use
of it.

If compared to the approach by Siarohin et al. [SSLS18] and to another baseline
which also includes 2D transformations, we found that our approach increases the
ability of the network to generate the correct pose. If realism and appearance
retention are evaluated, our model scores worse. We concluded, that this is caused
by the different architectures and the much lower computational complexity of
our model.

Finally we performed an ablation study, where we disabled the 3D aspects of
our architecture separately from each other: either the pose was only included
in 2D or masking and transformation were performed in 2D. All other aspects
stayed the same compared to our model.

For pose estimation, only the full 3D model achieved good scores, if either
pose and transformation are applied in 2D, the result decreased significantly.
Regarding realism and the ability of the network to keep the appearance, the 3D
model only got slightly worse scores.

We thus conclude, that the model utilizes the 3D transformations and enhances
the ability of the network to generate the correct pose.

7.1 Future Work

Our evaluation of metrics was performed with six different judges on eight models.
Although we showed, that the judges often agree, a larger number of persons and
models would make the findings more significant.

Due to the low variation of persons in the 3D datasets, we needed to add the
DeepFashion dataset which lacks ground truth poses, so it was needed to estimate
them, and further only contains a low variety of different poses. Since our 3D
models especially tackles complex poses, where for example parts overlap with
each other, we would like to apply our architecture on a larger dataset. This
could increase the advantage of our model even more.

90

Bibliography

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein
gan. arXiv:1701.07875, 2017.

[AGNK18] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. Dense-
pose: Dense human pose estimation in the wild. In IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[AHB87] K Somani Arun, Thomas S Huang, and Steven D Blostein. Least-
squares fitting of two 3-d point sets. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1987.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer
normalization. arXiv:1607.06450, 2016.

[Boo89] Fred L. Bookstein. Principal warps: Thin-plate splines and the de-
composition of deformations. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 1989.

[BS18] Shane Barratt and Rishi Sharma. A note on the inception score.
arXiv:1801.01973, 2018.

[BZD+18] Guha Balakrishnan, Amy Zhao, Adrian V Dalca, Fredo Durand,
and John Guttag. Synthesizing images of humans in unseen poses.
In IEEE Conference on Computer Vision and Pattern Recognition,
2018.

[CC19] Robert Chesney and Danielle Citron. Deepfakes and the new disin-
formation war: The coming age of post-truth geopolitics. Foreign
Affairs, 2019.

[CGZE19] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros.
Everybody dance now. In International Conference on Computer
Vision, 2019.

91

Bibliography Bibliography

[dBGA+18] Rodrigo de Bem, Arnab Ghosh, Thalaiyasingam Ajanthan, Ondrej
Miksik, N Siddharth, and Philip Torr. A semi-supervised deep gen-
erative model for human body analysis. In European Conference on
Computer Vision, 2018.

[DLG+18] Haoye Dong, Xiaodan Liang, Ke Gong, Hanjiang Lai, Jia Zhu, and
Jian Yin. Soft-gated warping-gan for pose-guided person image syn-
thesis. In Neural Information Processing Systems, 2018.

[Dom15] Alejandro Domı́nguez. A history of the convolution operation [ret-
rospectroscope]. IEEE Pulse, 2015.

[ESO18] Patrick Esser, Ekaterina Sutter, and Björn Ommer. A variational
u-net for conditional appearance and shape generation. In IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

[FID17] Fide rating regulations. https://handbook.fide.com/chapter/

B02201, 2017. [Online; accessed 08-December-2019].

[GAA+17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Du-
moulin, and Aaron C Courville. Improved training of wasserstein
gans. In Neural Information Processing Systems, 2017.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse
rectifier neural networks. In International Conference on Artificial
Intelligence and Statistics, 2011.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[GEB15] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture
synthesis using convolutional neural networks. In NIPS, 2015.

[GLZ+18] Yixiao Ge, Zhuowan Li, Haiyu Zhao, Guojun Yin, Shuai Yi, Xiao-
gang Wang, et al. Fd-gan: Pose-guided feature distilling gan for
robust person re-identification. In Neural Information Processing
Systems, 2018.

[GMAB17] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Un-
supervised monocular depth estimation with left-right consistency.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 270–279, 2017.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Neural Information Processing Sys-
tems, 2014.

92

https://handbook.fide.com/chapter/B02201
https://handbook.fide.com/chapter/B02201

Bibliography Bibliography

[GSVL19] Artur Grigorev, Artem Sevastopolsky, Alexander Vakhitov, and Vic-
tor Lempitsky. Coordinate-based texture inpainting for pose-guided
human image generation. In IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

[HB17] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time
with adaptive instance normalization. In International Conference
on Computer Vision, 2017.

[HISSI19] Yusuke Horiuchi, Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi
Ishikawa. Spectral normalization and relativistic adversarial train-
ing for conditional pose generation with self-attention. In Machine
Vision & Applications, 2019.

[HMC05] Robert V Hogg, Joseph McKean, and Allen T Craig. Introduction
to mathematical statistics. Pearson Education, 2005.

[HRU+17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. Gans trained by a two time-scale up-
date rule converge to a local nash equilibrium. In Neural Information
Processing Systems, 2017.

[HSM+00] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rod-
ney J Douglas, and H Sebastian Seung. Digital selection and ana-
logue amplification coexist in a cortex-inspired silicon circuit. Na-
ture, 2000.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[IEE08] Ieee standard for floating-point arithmetic. IEEE Std 754-2008,
2008.

[ILLC18] Mohamed Ilyes Lakhal, Oswald Lanz, and Andrea Cavallaro. Pose
guided human image synthesis by view disentanglement and en-
hanced weighting loss. In European Conference on Computer Vision,
2018.

[IPOS13] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Smin-
chisescu. Human3.6m: Large scale datasets and predictive methods
for 3d human sensing in natural environments. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2013.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accel-
erating deep network training by reducing internal covariate shift.
arXiv:1502.03167, 2015.

93

Bibliography Bibliography

[IZZE17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial networks.
In IEEE Conference on Computer Vision and Pattern Recognition,
2017.

[JAFF16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses
for real-time style transfer and super-resolution. In European Con-
ference on Computer Vision, 2016.

[JKK18] Donggyu Joo, Doyeon Kim, and Junmo Kim. Generating a fusion
image: One’s identity and another’s shape. In IEEE Conference on
Computer Vision and Pattern Recognition, 2018.

[JM19] Alexia Jolicoeur-Martineau. The relativistic discriminator: a key
element missing from standard GAN. In International Conference
on Learning Representations, 2019.

[JSZ+15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial
transformer networks. In Neural Information Processing Systems,
2015.

[JXYY12] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional
neural networks for human action recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2012.

[KB15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In International Conference on Learning Representa-
tions, 2015.

[KL51] Solomon Kullback and Richard A Leibler. On information and suf-
ficiency. Annals of Mathematical Statistics, 1951.

[KL16] Terry K Koo and Mae Y Li. A guideline of selecting and reporting
intraclass correlation coefficients for reliability research. Journal of
Chiropractic Medicine, 2016.

[KLY07] Ho-Joon Kim, Joseph S Lee, and Hyun-Seung Yang. Human ac-
tion recognition using a modified convolutional neural network. In
International Symposium on Neural Networks, 2007.

[KSJ+13] Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegel-
baum, and AJ Hudspeth. Principles of neural science. McGraw-hill
New York, 2013.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. In International Conference on Learning Representations,
2013.

94

Bibliography Bibliography

[LAE+16] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot
multibox detector. In European Conference on Computer Vision,
2016.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Back-
propagation applied to handwritten zip code recognition. Neural
computation, 1989.

[LHF+05] Wei-Chung Allen Lee, Hayden Huang, Guoping Feng, Joshua R
Sanes, Emery N Brown, Peter T So, and Elly Nedivi. Dynamic
remodeling of dendritic arbors in gabaergic interneurons of adult
visual cortex. PLOS biology, 2005.

[LLQ+16] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang.
Deepfashion: Powering robust clothes recognition and retrieval with
rich annotations. In IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[LLUZ16] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Under-
standing the effective receptive field in deep convolutional neural
networks. In Neural Information Processing Systems, 2016.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convo-
lutional networks for semantic segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, 2015.

[LSLW16] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo
Larochelle, and Ole Winther. Autoencoding beyond pixels using a
learned similarity metric. In International Conference on Machine
Learning, 2016.

[MHN13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier
nonlinearities improve neural network acoustic models. In ICML
Workshop on Deep Learning for Audio, Speech and Language Pro-
cessing, 2013.

[MJS+17] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars,
and Luc Van Gool. Pose guided person image generation. In Neural
Information Processing Systems, 2017.

[MKKY18] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi
Yoshida. Spectral normalization for generative adversarial networks.
In International Conference on Learning Representations, 2018.

95

Bibliography Bibliography

[MNA+18] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Di-
amos, Erich Elsen, David Garćıa, Boris Ginsburg, Michael Houston,
Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed precision
training. In International Conference on Learning Representations,
2018.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the
ideas immanent in nervous activity. The Bulletin of Mathematical
Biophysics, 1943.

[MRC+17] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr
Sotnychenko, Weipeng Xu, and Christian Theobalt. Monocular 3d
human pose estimation in the wild using improved cnn supervision.
In International Conference on 3D Vision, 2017.

[MSG+18] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc Van Gool, Bernt
Schiele, and Mario Fritz. Disentangled person image generation.
In IEEE Conference on Computer Vision and Pattern Recognition,
2018.

[NAGK18] Natalia Neverova, Riza Alp Guler, and Iasonas Kokkinos. Dense
pose transfer. In European Conference on Computer Vision, 2018.

[NPLT+19] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and
Yong-Liang Yang. Hologan: Unsupervised learning of 3d represen-
tations from natural images. arXiv:1904.01326, 2019.

[PASMN18] Albert Pumarola, Antonio Agudo, Alberto Sanfeliu, and Francesc
Moreno-Noguer. Unsupervised person image synthesis in arbitrary
poses. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018.

[PIT+16] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres,
Mykhaylo Andriluka, Peter V Gehler, and Bernt Schiele. Deepcut:
Joint subset partition and labeling for multi person pose estimation.
In IEEE Conference on Computer Vision and Pattern Recognition,
2016.

[QFX+18] Xuelin Qian, Yanwei Fu, Tao Xiang, Wenxuan Wang, Jie Qiu, Yang
Wu, Yu-Gang Jiang, and Xiangyang Xue. Pose-normalized image
generation for person re-identification. In European Conference on
Computer Vision, 2018.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, et al. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision, 2015.

96

Bibliography Bibliography

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. In Inter-
national Conference on Medical Image Computing and Computer-
Assisted Intervention, 2015.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster
r-cnn: Towards real-time object detection with region proposal net-
works. In Neural Information Processing Systems, 2015.

[RMC16] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised rep-
resentation learning with deep convolutional generative adversarial
networks. In International Conference on Learning Representations,
2016.

[RSF18] Helge Rhodin, Mathieu Salzmann, and Pascal Fua. Unsupervised
geometry-aware representation for 3d human pose estimation. In
European Conference on Computer Vision, 2018.

[SF79] Patrick E Shrout and Joseph L Fleiss. Intraclass correlations: uses
in assessing rater reliability. Psychological Bulletin, 1979.

[SGZ+16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung,
Alec Radford, and Xi Chen. Improved techniques for training gans.
In Neural Information Processing Systems, 2016.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research,
2014.

[SLAL18] István Sárándi, Timm Linder, Kai O Arras, and Bastian Leibe. How
robust is 3d human pose estimation to occlusion? In IROS Work-
shop - Robotic Co-workers 4.0, 2018.

[SSLS18] Aliaksandr Siarohin, Enver Sangineto, Stéphane Lathuilière, and
Nicu Sebe. Deformable gans for pose-based human image generation.
In IEEE Conference on Computer Vision and Pattern Recognition,
2018.

[STIM18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander
Madry. How does batch normalization help optimization? In Neural
Information Processing Systems, 2018.

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for com-
puter vision. In IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

97

Bibliography Bibliography

[SWWT18] Chenyang Si, Wei Wang, Liang Wang, and Tieniu Tan. Multistage
adversarial losses for pose-based human image synthesis. In IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In International Confer-
ence on Learning Representations, 2015.

[UVL16] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast stylization.
arXiv:1607.08022, 2016.

[Wat06] GA Watson. Computing helmert transformations. Journal of Com-
putational and Applied Mathematics, 2006.

[WB09] Zhou Wang and Alan C Bovik. Mean squared error: Love it or leave
it? a new look at signal fidelity measures. IEEE Signal Processing
Magazine, 2009.

[WBS+04] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli,
et al. Image quality assessment: from error visibility to structural
similarity. Transactions on Image Processing, 2004.

[WH18] Yuxin Wu and Kaiming He. Group normalization. In European
Conference on Computer Vision, 2018.

[YK16] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by
dilated convolutions. In International Conference on Learning Rep-
resentations, 2016.

[ZGMO19] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus
Odena. Self-attention generative adversarial networks. In Inter-
national Conference on Machine Learning, 2019.

[ZHS+19] Zhen Zhu, Tengteng Huang, Baoguang Shi, Miao Yu, Bofei Wang,
and Xiang Bai. Progressive pose attention transfer for person image
generation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

[ZPIE17] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Un-
paired image-to-image translation using cycle-consistent adversarial
networks. In IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[ZPZS18] Mihai Zanfir, Alin-Ionut Popa, Andrei Zanfir, and Cristian Smin-
chisescu. Human appearance transfer. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018.

98

Bibliography Bibliography

[ZYY+19] Zhedong Zheng, Xiaodong Yang, Zhiding Yu, Liang Zheng, Yi Yang,
and Jan Kautz. Joint discriminative and generative learning for
person re-identification. In IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

99

	Introduction
	Pose-Conditioned Human Image Synthesis
	Challenges in Evaluation
	Outline

	Foundations
	Artificial Neural Networks
	Multi-Layer Perceptron
	Learning
	Convolutional Neural Networks
	Activation Functions
	Normalization
	Dropout

	Generative Adversarial Networks
	Minimax GAN
	Wasserstein GAN

	Image Generation
	Conditioned Image Generation
	Perception-Based Loss Functions

	Mixed-Precision Training
	Transformations
	2D Transformations
	3D Transformations

	Related Work
	Pose-Guided Person Image Generation
	Image Generation for Re-Identification

	Explicit Transformations
	Keypoint-Based Pose Representation
	Dense Pose Representation
	Transformations in 3D

	Unsupervised Approaches
	Disentangling Appearance and Pose

	Identity Transfer

	Approach
	Data Preprocessing
	2D Baselines
	ResNet with 2D Transformations

	3D Generator
	Network Architecture
	3D Transformation Module
	Dilation Block
	Pose Estimator

	Discriminator Architecture
	Training
	Ablation Models

	Analysis of Evaluation Metrics
	Drawbacks of Metrics
	Structural Similarity
	Inception Score
	Detection Score
	Fréchet Inception Distance
	Crowd workers

	New Evaluation Metrics
	Color Comparison
	Pose Estimator
	Pixel-Wise Comparison

	Elo-Based Evaluation
	Elo-Rating
	Naive Evaluation of Learned Models with Elo
	The Regression Approach

	Experimental setup
	Results

	Experiments
	Datasets
	Experiments on Design Choices
	Avoiding Overfitting
	Wasserstein-GAN
	Mixed Precision
	Advantage of Transformations
	Depth Estimation
	Influence of Offcuts on Images

	Image Generation vs. Pose Estimation
	Final Evaluation
	Comparison with 2D Baselines
	Ablation Study

	Conclusion
	Future Work

	Bibliography

