
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Informatik 8 (Computer Vision)
Fakultät für Mathematik, Informatik und Naturwissenschaften

Prof. Dr. Bastian Leibe

Master Thesis

3D Instance Semantic Segmentation on
Point Clouds

vorgelegt von

Cathrin Elich
Matrikelnummer: 317928

2019-12-11

Erstgutachter: Prof. Dr. Bastian Leibe
Zweitgutachter: Prof. Dr. Leif Kobbelt

Eidesstattliche Versicherung

Cathrin Elich 317928
Name Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem
Titel

3D Instance Semantic Segmentation on Point Clouds

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit
zusätzlich auf einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche
und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in gleicher
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Aachen, 2019-12-11
Ort, Datum Unterschrift

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zustständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften
des § 158 Abs. 2 und 3 gelten dementsprechend.

Die vorstehende Belehrung habe ich zur Kentnis genommen:

Aachen, 2019-12-11
Ort, Datum Unterschrift

iii

Contents

1 Introduction 1

2 Related Work 3
2.1 Semantic Segmentation . 3

2.1.1 2D Images . 3
2.1.2 RGB-D Data . 4
2.1.3 3D Data . 4

2.2 Object Detection . 7
2.3 Instance Segmentation . 7

2.3.1 Proposal-Based Methods 7
2.3.2 Proposal-Free Methods . 8

3 Preliminaries 11
3.1 Problem Formulation . 11

3.1.1 Semantic Segmentation . 12
3.1.2 Instance Segmentation . 13

3.2 Semantic Segmentation on 3D Point Clouds 17
3.2.1 PointNet . 18
3.2.2 PointNet++ . 20
3.2.3 Dynamic Graph CNN (DGCNN) 23

3.3 Similarity Group Proposal Network (SGPN) 26
3.3.1 Network Architecture . 27
3.3.2 Group Merging . 30
3.3.3 Block Merging . 32
3.3.4 Drawbacks . 34

4 3D-BEVIS 37
4.1 Global Instance Features from Bird’s-Eye View 39
4.2 Propagation of BEV Features to the Point Cloud 43
4.3 Instance Grouping . 45

5 Experiments 49
5.1 Datasets . 49
5.2 Evaluation Metrics . 53
5.3 SGPN . 56

v

Contents Contents

5.3.1 Implementation Details . 56
5.4 3D-BEVIS . 60

5.4.1 2D BEV-FN . 60
5.4.2 3D P-FN . 62
5.4.3 Clustering . 63

5.5 Results . 64
5.5.1 S3DIS . 64
5.5.2 ScanNet . 67
5.5.3 Discussion . 70

6 Conclusion 75

Bibliography 77

vi

1
Introduction

In this thesis, we explore a novel approach for instance semantic segmentation on
3D point clouds by leveraging recent deep learning approaches for point clouds
and a novel mechanism to incorporate global context information.

Scene understanding has become one of the most popular research fields in
computer vision. Starting from self-driving vehicles [GLU12, NBG+17] over mo-
bile robots [RMB+08] to the usage in medicine [RFB15] and augmented real-
ity [PLW08], this topic offers a broad field of applications.
Depending on the respective demands of each challenge, one normally concen-
trates on a more specialized subtask of the extensive problem of scene analysis.
For instance, much work has been done in the fields of object detection [RHGS15]
and semantic segmentation [SLD15] for 2D image data. The task of instance
semantic segmentation describes the combination of these [HGDG17, CHP+17].
Here, we aim to segment single objects and infer their category. Compared to
plain semantic segmentation, additionally differentiating between instances of the
same class makes this problem noticeable more difficult. Reasons for this are the
unknown number of objects and the arbitrary indexing order. As a result, a sim-
ple transfer of semantic segmentation approaches is not possible.

Since the introduction of convolutional neural networks (CNNs), deep learn-
ing methods showed dominant performance for the named scene understanding
tasks for 2D image data. In comparison to this, the analysis of 3D data has been
studied relatively little. Two major reasons can be named for this.
First, contrary to the large range of 2D datasets (e.g. [LMB+14, COR+15]) the
amount of publicly available 3D was rather limited for a long time. However, as
measuring devices like LIDAR sensors, Microsoft Kinect, or stereo sensors have
become more easily accessible lately, the number of suitable large-scale datasets
has experienced a strong growth (e.g. [ASZ+16,DCS+17]).
The second reason is correlated with the issue of data representation. Whereas
the choice is simple for 2D data to use regular pixel grids as input, there are sev-

1

Chapter 1. Introduction

eral possibilities to represent 3D data like point clouds [QSMG17a], volumetric
grids [MS15] or multiple 2D views [DN18]. Each of these structures has its own
advantages and disadvantages. Point clouds are obtained from the raw output of
most 3D sensors. It is thus attractive to use them as no prior data formation is
required. This also ensures relatively small memory requirements compared to
the available information. However, due to the characteristic of point clouds to
be unordered, a direct transfer of successful approaches in 2D is not possible as
these require highly structured data.
Leveraging 3D data to examine the surrounding environment is nonetheless de-
sirable as this kind of data includes much more information of the real setting
compared to 2D images. This presently motivates a lot of research work in this
field. However, there is still a lot of potential to improve the performance of
current methods.

Our work is mainly motivated by the recently proposed SGPN model for 3D
instance semantic segmentation on point clouds by Wang et al. [WYHN18]. The
main idea of the named approach is to learn a point-wise feature representa-
tion that can be used to group points belonging to the same instance. However,
due to the proceeding of most current deep learning models on point clouds like
the applied PointNet [QSMG17a], these features are only valid within a small
sub-block of the complete scene. Thus, Wang et al. further present a heuristic
merging algorithm to receive a segmentation of the full point cloud.
In this thesis, we aim to learn globally consistent features relevant to instance
segmentation. By doing this, we eliminate the necessity of an additional post-
merging procedure. As a result of our work, we present a new framework 3D-
BEVIS which combines information from fine-detailed 3D point clouds with the
global context received from a bird’s-eye view representation. We utilize methods
for 2D instance segmentation to learn a suitable feature encoding for the subset
of points that were projected into the bird’s-eye view. The inferred features are
subsequently transferred to the complete point cloud. Following this, we can use
any off-the-shelf clustering method to find the single objects within a scene. We
evaluate our method on the popular 3D indoor datasets S3DIS [ASZ+16] and
ScanNet [DCS+17] and compare our results to those received from SGPN.

The thesis is structured as follows: We first present related work in Chapter 2.
In particular, we take a closer look on semantic segmentation methods on 3D data
and instance segmentation approaches for 2D images. Afterwards, the problems
of semantic and instance segmentation are described in more detail (Chapter 3).
Furthermore, we explain current semantic segmentation models for point clouds
as well as the SGPN framework. Following this, we present our own model 3D-
BEVIS in Chapter 4. We conclude with an experimental evaluation in Chapter 5.

2

2
Related Work

In this chapter, we will survey previous work related to the topic of this thesis.
First, we will have a look on the progress that has been achieved for the related
tasks of semantic segmentation and object detection with a major focus on meth-
ods for 3D data. Afterwards, different approaches tackling the actual problem of
instance segmentation are listed.
The surpassing achievements of deep learning methods in several computer vision
tasks lead to a promising outlook for future work using such techniques. Thus,
we will not consider traditional methods here but focus on those approaches only.

2.1 Semantic Segmentation

Semantic segmentation represents a task from the field of scene understanding
where a class label prediction is made for each pixel or point of the examined
scene. Hence, a partition of the scene with respect to the various classes is
obtained.
Earlier successes were achieved mainly for 2D images. The growing availability
of 3D datasets during the last few years motivated increased research on these
more recently.

2.1.1 2D Images

A major breakthrough for semantic segmentation by applying deep learning
techniques was achieved using the Fully Convolutional Network by Long et al.
[SLD15]. They successfully integrate CNNs from existing classification approaches
(e.g. VGG [SZ14]) for hierarchical feature learning. Then, the features are up-
sampled using deconvolutional layers and skip connections into heatmaps for the
distinct categories. From these, a dense pixel-wise prediction from inputs of ar-
bitrary size is obtained.
Afterwards, many enhanced deep learning techniques based on this encoder-

3

Chapter 2. Related Work 2.1. Semantic Segmentation

decoder architecture were proposed, e.g., SegNet [BKC15] altered the decoder
to transfer max-pooling indices from the respective stage of the encoder for up-
sampling. Improved dense prediction were achieved using dilated convolutions
which increase the receptive field without lowering the resolution [YK15,CPK+16,
CPSA17]. Another noteworthy proposed network is U-Net [RFB15], which had
been presented together with a training strategy based on strong usage of data
augmentation to learn from a relatively small dataset.
A survey of several deep learning methods for semantic segmentation was pro-
vided by Garcia et al. [GOO+17]. Another overview can be found in [Chi17].

2.1.2 RGB-D Data

Image data with an additional depth map provide further knowledge about the
geometric structure of the real-world scene. The question remains how to use this
new information.
Qi et al. [QLJ+17] construct a k-nearest neighbor graph based on pixels’ coordi-
nates and depth. Pixel features are initially obtained by considering only their
RGB values and then iteratively updated from messages of corresponding neigh-
bors from the graph. An alternative approach using adapted CNN operators was
proposed by Wang et al. [WN18]. They weight the contribution of neighboring
pixels with respect to their depth similarity during both convolution and pooling
operations.

2.1.3 3D Data

Working with 3D data proved to be more challenging compared to the handling
of planar views. Here, differences between various methods arise regarding the
used data representation. While the data is commonly received as a raw point
cloud from the sensors, it is often pre-processed into an intermediate representa-
tion which allows an easier adaptions of existing algorithms for images.
In the following, we review different options for 3D data representation and cor-
responding approaches.

Voxelized Volumes

To apply traditional convolutional operators, a highly structured data format is
required. For 2D images, a pixel-grid structure is used to satisfy this condition.
The equivalent of this in the 3D space are voxelized grids. The conversion is done
by carrying out a quantization on the original point cloud.
This proceeding enables an easy transfer of approaches from 2D to 3D data.
However, there are several disadvantages using this data format. They mainly
result from the sparsity of point clouds. After the transformation, most voxels are
not occupied due to the empty spaces in the scene. This results in an inefficient
format where a huge amount of memory is wasted, as the empty voxels are still

4

2.1. Semantic Segmentation Chapter 2. Related Work

part of the representation. An important parameter is the resolution of the grid
which determines the voxel size and thus the total number of resulting voxels.
Therefore, it determines the trade-off between capturing fine details in the scene
and a computationally efficient handling of the data structure due to its cubic
complexity.

Nevertheless, voxelized volumes have been used repeatedly. Several approaches
came up with different ideas to deal with the previous named limitations: Tchapmi
et al. [TCA+17] refined their coarse prediction on the subsampled voxel grid to
the original resolution on a point-wise level. For this, the 3D convolutions are fol-
lowed by trilinear interpolation and conditional markov random fields. The scan
completion approach by Dai et al. [DRB+18], which also yields a semantic label-
ing, is likewise based on voxel grids. Instead of an occupancy state, they store
a TSDF value in each voxel which encodes the distance to the nearest surface.
Moreover, their framework is designed in a multi-resolution hierarchical struc-
ture that allows for the processing of large-scale scenes more efficiently. Other
approaches benefit from an improved hierarchical structure like octrees [RUG16].
These require less memory with regard to the provided resolution.
Besides the work on semantic segmentation, voxel grids have often been used for
object recognition tasks (e.g. [MS15,WSK+15]). As only a single object needs to
be represented, the required scale is much smaller compared to a complete scene
for our task.

Multi-View Renderings

Another way to profit from CNNs is to project the 3D point cloud data into a set
of images depicting the scenes from different perspectives. Resulting pixel-wise
features or labels for the single renderings can later be aggregated into a common
point. This kind of approach requires less computational costs compared to work
on the previous presented volumetric structure. However, this data representa-
tion does not consider the underlying 3D geometric structure.

One of the earlier approaches apply Bayesian updates and dense pairwise 3D
Conditional Random Fields to transfer semantic labels predicted from 2D images
to 3D reconstructed point clouds [HFL14]. This method works directly on RGB-D
data received from a sensor. In contrast to this, Boulch et al. [BGLSA17] gen-
erate 2D snapshots from a point cloud on which they apply a CNN for semantic
segmentation. Hence, inferred labels can be easily back projected as pixel-point
correspondences are known. Another promising usage of 2D data has been pre-
sented in [DN18]. Here, features extracted from multiple views are combined with
geometric features received from a voxel grid within a joint end-to-end framework.

5

Chapter 2. Related Work 2.1. Semantic Segmentation

Point Clouds

It is preferable to work on point clouds for several reasons: First, this kind of
data format is the raw output of 3D data sensors. Therefore, there is no need
to generate an intermediate representation, which might result in loss of details.
Nevertheless, there is one major difficulty: As a point cloud presents a set of
points and is hence by definition invariant to permutation, this data format is
unstructured. Due to this irregular format, reliable convolutional methods for 2D
data cannot be applied directly.

A pioneering deep learning approach for several scene understanding tasks was
proposed by Qi et al. [QSMG17a]. The presented PointNet learns a symmetric
function over all points in the cloud to achieve input order invariance. For this,
a local feature is computed for each point independently. Afterwards, a com-
mon global signature is received from a simple pooling function to encode global
context. The concatenation of local and global features is then used to predict
point-wise labels.
A downside of this approach is that no local structure of nearby points is taken
into account when determining a point’s feature. Later methods were built
up on the general idea and aimed to improve it by modeling local dependen-
cies. In [QYSG17a], a hierarchical network architecture is presented, which uses
PointNet recursively on nested partitions. Similarly, feature learning and aggre-
gation in [ZG17] is also done hierarchically by applying a k-d structure on the
points. Two alternative mechanisms to get larger-scale spatial context are pro-
posed in [EKHL17]. Here, local context is obtained by considering either point
blocks of different scale or neighboring blocks simultaneously.
Alternatively, several operators were presented which aimed to be equivalent to
convolutions and were usable on point clouds. The approach in [HTY18] applies
a kernel function over neighboring points. In [LBSC18], an additional transfor-
mation is discussed that guarantees invariance with respect to the neighboring
points.Wang et al. [WSL+18] introduce a novel EdgeConv operator, which first
builds up a k-nearest neighbor graph based on the points’ features and then learns
edge features. From these, the point features are obtained.
All the previous mentioned approaches require the point cloud to be split up in
smaller blocks due to memory limitations. These blocks are processed indepen-
dently and are subsequently merged into a common output point cloud.

A number of other approaches works on the complete point cloud. Landrieu
et al. [LS18] determine a set of superpoints based on handcrafted features which
form geometrical homogenous elements. From these, a graph is generated and
a contextual segmentation is received via graph convolutions. Another method
transforms the point cloud into an ordered sequence of features corresponding to
slices [HWN18]. Recurrent neural networks are then applied on these sequences.
In [TPKZ18], convolutions are performed on virtual tangent planes.

6

2.2. Object Detection Chapter 2. Related Work

2.2 Object Detection

When performing object detection, we aim to predict oriented bounding boxes
around all objects existing in the scene. Furthermore, the found objects are cat-
egorized.
As we are mainly interested in working on 3D data, we will concentrate on such
methods in the following.

So far, most approaches relied on either multiple 2D views or a discretized
voxel representation of the scene.
The voxelized format is for example used in [Li16], where a FCN for object
detection is extended to 3D, and more recently in [ZT18]. In the latter, a voxel
is not described by statistical values like the mean over all points it contains, but
results from learned features of these points.
In contrast, using 2D image representations allows the application of 2D CNN
object detectors as done in [QLW+17]. Here, the resulting 2D proposals are
subsequently lifted into 3D. The inferred amodal bounding box encloses the entire
object even though only parts of it are visible in the image. Frequently, the used
views are limited to a single bird’s-eye view (BEV) rendering [SMAG18,YLU18].
Their common aim is to achieve real-time efficiency to make the models usable for
autonomous driving. The framework in [LYU18] additionally deals with tracking
and motion forecasting. In [CMW+16], object proposals received from the BEV
are combined with features learned on multiple RGB images.

2.3 Instance Segmentation

Instance segmentation can be seen as the intersection of semantic segmentation
and object detection. Here, the task is to determine a labeling which differenti-
ates between the single objects of the same category on a pixel- or point-level.
So far, approaches have been merely performed on 2D images. In general, there
are two main basic concepts to tackle the problem. Proposal-based methods look
for interesting regions first and then segment the main object in the detected pro-
posal. Alternatively, proposal-free approaches learn a feature embedding space
for the pixels within the image. The pixels are subsequently grouped according
to their feature vector. In the following, we will present models from both.

2.3.1 Proposal-Based Methods

This type of method first follows the idea of object detection. This means, a
set of region proposals in form of bounding boxes is predicted which are likely to
contain objects. Afterwards, the primary found object is classified and segmented

7

Chapter 2. Related Work 2.3. Instance Segmentation

to split the foreground object from the background.

Several approaches focused on finding appropriate instance candidates [PCD15,
DHL+16]. One of the first successful end-to-end frameworks for the whole task
of instance segmentation was proposed in [DHS16]. The proposed network has
a cascaded structure build up of branches that correspond to the sub-tasks of
detecting instances, segmenting a mask, and classifying the object. The branches
depend on each other regarding both their input and output as well as their
respective losses. In [HGDG17], the efficient Faster-RCNN network for object
proposal detection [RHGS15] is extended by an additional branch. Thus, not
only a class label is predicted as in the original network, but also an segmen-
tation mask. Similarly, the approach in [CHP+17] also relies on Faster-RCNN.
In addition to this, they learn semantic and direction predictions which they
combine to obtain a segmentation of the proposed window. More recently, the
propagation of features along the different levels was proposed in [LQQ+18].

Although many state-of-the-art methods for instance segmentation follow this
procedure, there are some drawbacks which gain in significance for instance seg-
mentation on 3D data. As segmentation is only performed on the detected pro-
posal regions, this type of method heavily relies on getting good proposals. This
does not only mean that for each object a proposal needs to be found, but also,
that the received bounding boxes are a good approximation of the respective
shapes. This works well for compact objects but leads to difficulties for elon-
gated or entangled instances. However, in 3D space, the latter case becomes
more likely, which leads to an increased probability that bounding boxes of two
different objects overlap. This also means that more than one object is present in
the proposal box, which possibly affects the following segmentation process. Be-
cause of this difficulty, we decided against a proposal-based approach for our work.

2.3.2 Proposal-Free Methods

An alternative to the previous instance segmentation approaches are proposal-
free methods. The idea is to learn an embedding for all the pixels which can be
used directly for instance segmentation. For most recent approaches, the learned
feature vectors are supposed to be similar for pixels belonging to the same object
but lie far apart in the feature space for a pair of pixels from different instances.
Thus, in a post-processing step, pixels can be clustered with respect to their fea-
ture representation into instance groups.

First approaches that followed the idea of learning instance-relevant features
aimed to learn specific information like the location of the object to which a pixel
belongs [LWS+15] or the direction towards the center of the object [UCFB16].

8

2.3. Instance Segmentation Chapter 2. Related Work

Later on, features were more commonly learned based on a similarity measure
between pairs of pixels by applying a semantic segmentation network. One ex-
ample for such a similiarity measure is the discriminative loss function proposed
in [BNG17]. This loss draws all feature vectors of points from the same in-
stance close together in the embedding space but pushes the means according to
the individual instances away from each other. Newell et al. [ND16] use a one-
dimensional feature to distinguish between objects within a predicted segmented
mask corresponding to all objects of a common class. In [FWR+17], additional
seed points are learned. Starting from these, groups are build up by associating
the remaining pixels to one of the seeds based on their similarity in the feature
space. Whereas previous methods based their similarity metric mainly on the
L2-norm, another option is the cosine distance which results in hyper-spherical
embedding space [KF17,PSN+18]. One of the advantages of this function is that
it forces the model to learn feature vectors with different orientations instead of
focusing only on the magnitude. In [KF17], a differentiable mean shift operation
is repeatedly applied to help the model to focus on aspects which are later hard
to be segmented in the post-processing clustering. Payer et al. [PSN+18] inte-
grate a recurrent network into their segmentation architecture to not only apply
instance segmentation but also tracking over time. Instead of learning features,
Hsu et al. [HXKH18] aim to directly predict an instance index for each pixel.
They deal with the problem of an unknown number of objects by considering
a fixed number and regarding the assignment task as a graph coloring problem.
Thus, only nearby instances are required to be labeled differently.

Recently, a first framework was proposed for instance segmentation on 3D point
clouds [WYHN18]. The introduced framework SGPN learns point-wise features
according to a similarity metric. From this, a proposal is received for each point.
These proposals are afterwards merged into final objects following a heuristic
procedure. More specifically, following the idea of non-maximum suppression,
two proposals are merged if their overlap exceeds some threshold.

9

3
Preliminaries

In this chapter, background knowledge about the general problem formulation is
stated and a selection of specific deep learning approaches for segmentation on
point clouds is presented. We will start by defining the problems of semantic
segmentation as well as instance segmentation (Section 3.1). Following this, we
will present several successful deep learning frameworks for semantic segmentation
on 3D point cloud data in Section 3.2. Afterwards, a recently proposed framework
for instance segmentation in 3D space is explained (Section 3.3). The last named
approach will be used as the baseline for this thesis.

3.1 Problem Formulation

The general challenge of scene understanding can be subdivided into more dis-
tinct tasks (Figure 3.1). Classification predicts the category of an object. This
can be extended to a list of inferred labels in the case of several present objects.
As a next stage, when performing Object Detection, we not only want to name
all seen objects but also locate them within the scene by predicting centroids
or surrounding bounding boxes. Semantic Segmentation yields an even denser
prediction: For each point of a scene, a class label is predicted to describes the ob-
ject’s category to which the point belongs. For the task of Instance Segmentation,
a point-wise labeling is performed to assign it to both a class and an instance.
A further variant of semantic segmentation is Part-Based Segmentation where a
single object is split up into separate components.

In this section, we will review the scene analysis tasks semantic segmentation
and instance segmentation. The problem description considers 2D data but can
easily be transferred to a higher dimensional space.

11

Chapter 3. Preliminaries 3.1. Problem Formulation

(a) Classification (b) Object
Detection

(c) Semantic
Segmentation

(d) Instance
Segmentation

Figure 3.1: Different vision tasks for scene understanding. Figure ex-
tracted from [GOO+17].

3.1.1 Semantic Segmentation

Semantic segmentation is the high-level task of partitioning an image into mean-
ingful, distinct regions that correspond to a certain category. For this, a class
label is assigned to every pixel within the picture. Formally, given an image
with W × H = N pixels, each pixel pi, i = 1, ..., N , is assigned a label `i from
Lsem = {1, ..., K}. Each label corresponds to one of the K ∈ N classes.

The common way of deep learning approaches for semantic segmentation is the
estimation of pixel-wise feature vectors. These encodings are used to predict a
probability distribution over all classes. This is typically realized with an encoder-
decoder architecture [SLD15].
The standart loss function for the semantic segmentation task is the pixel-wise
multi-class cross-entropy loss

L(ŷ, y) = − 1

N

N∑
i=1

K∑
c=1

yi,c log ŷi,c (3.1)

for predicted class scores ŷi with
∑K

c=0 ŷi,c = 1 and k-dimensional one-hot encoded
ground truth labels yi for a point pi. Additionally, weights wc can be applied with
respect to every class. This helps to balance their contributions to the loss in case
of having overrepresented categories.
By the design of this loss function, a pixel’s embedding feature is pushed towards
the unit vector corresponding to its class. Thus, for the final result, the predicted
class label `i is determined as

`i = argmax
c

ŷi,c. (3.2)

For an overview about several existing deep learning methods we refer the
reader to Section 2.1.

12

3.1. Problem Formulation Chapter 3. Preliminaries

3.1.2 Instance Segmentation

Instance segmentation expands the pixel labeling problem of semantic segmenta-
tion. Besides distinguishing between classes, we also aim to identify single objects
belonging to the same category and predict a seperate segmentation mask for each
of these instances.
There are several aspects of this problem which require special consideration.
First, the maximum number of instances within a scene is unknown and might
vary a lot within a dataset. Even more, the number of images containing a high
number of instances is expected to be rather small. Thus, higher indices have only
a small number of corresponding training data. Second, the order of the instance
labels can be permuted arbitrary. Therefore, there are no fixed target indices to
associate the pixels with specific objects. Instead, the relationship between pixel
is known, i.e., whether two pixels belong to the same instance.

Given an image, we let C denote the number of instance clusters. Furthermore,
for each instance c = 1, ..., C, Nc is the number of pixels belonging to the object
group c.
Similar to the problem formulation for semantic segmentation, a label `i from
Linst = {1, ..., C} is selected for each pixel pi, i = 1, ..., N such that

`i = `j if pi, pj belong to the same object,

`i 6= `j if pi, pj belong to different objects.
(3.3)

Especially, swapping the indices of all points from any two instance groups still
yields a valid solution. Thus, the predicted instance labels do not need to be
the same as stated in the ground truth. Instead, they only have to satisfy the
relationship stated in Equation 3.3.
For this reason, it is not possible to simply transfer basic semantic segmentation
methods which aim to learn fixed categories from a known limited set of possible
classes.

Another aspect that needs to be considered is that computing the loss for all
pairs of pixels would be computationally infeasible. A common way to handle
this problem is to consider only a subset of points S =

⋃C
c=1 Sc. A set Sc contains

M points that are randomly sampled from an instance c. The loss function is
then evaluated only on pixel pairs from this subset.

Among the different categories of instance segmentation approaches presented
in Section 2.3, in this thesis, we will focus on the idea of proposal-free methods.
They rely on learning a representation xi for each pixel and perform a clustering
of the pixels with respect to a feature embedding space.
In the following part, we will present different options for objective functions
to learn an appropriate embedding. Afterwards, we will outline the clustering
method Mean Shift for the final assignment of instance labels.

13

Chapter 3. Preliminaries 3.1. Problem Formulation

Loss Functions

The main idea for this problem is to learn an embedding space such that pixels
from the same instance are embedded closely together whereas the respective
feature vectors from pixels belonging to different instances are far apart. This
leads to the general loss function:

L = Lvar + Ldist + Lreg. (3.4)

The variance loss Lvar pulls embeddings from pixels assigned to the same group
together. In contrast, embeddings from pixels with different instance labels are
pushed apart by the distance loss Ldist. A regularization term Lreg can optionally
be added to prevent the model from overfitting.

The named loss terms depend on the pairwise distance between the embedded
points. There are different possible metrics to evaluate the similarity si,j of fea-
tures xi, xj corresponding to two pixels.
Most commonly, the L2 norm is applied (e.g. [ND16,FWR+17,WYHN18]). Straight-
forward, this results in

si,j = ‖xi − xj‖2 (3.5)

This can be combined with the loss terms

Lvar =
C∑
c=1

∑
xi,xj∈Sc

si,j, Ldist =
C∑

c,c′=1
c 6=c′

∑
xi∈Sc
xj∈Sc′

[δdist − si,j]+ (3.6)

for some constant margin δdist. [x]+ denotes the hinge max(0, x).

In [FWR+17], Fathi et al. modify the similarity measure by using an exponen-
tial function:

si,j =
2

1 + exp(‖xi − xj‖2
2)

(3.7)

The resulting similarity values si,j are within the range [0, 1] with scores close to
1 indicating similar features. Thus, the loss terms can be changed to

Lvar = −
C∑
c=1

∑
xi,xj∈Sc

log(si,j), Ldist = −
C∑

c,c′=1
c 6=c′

∑
xi∈Sc
xj∈Sc′

log(1− si,j). (3.8)

Notably, these do not depend on the choice of the hyper-parameter δdist any more.

An alternative to the Euclidean distance is the cosine similarity as used by
Kong et al. [KF17]:

si,j =
1

2

(
1 +

xTi xj
‖xi‖2‖xj‖2

)
(3.9)

14

3.1. Problem Formulation Chapter 3. Preliminaries

Here, the distance between two points correlates to the angle between their vec-
tors. Due to scaling and the addition of an offset, this again yields values between
0 and 1. They use this metric for

Lvar = −
C∑
c=1

∑
xi,xj∈Sc

1− si,j, Ldist = −
C∑

c,c′=1
c 6=c′

∑
xi∈Sc
xj∈Sc′

[si,j − α]+. (3.10)

The hyper-parameter α controls the minimum angular distance between points
belonging to different groups. Kong et al. argue in favor for the cosine measure
that it is invariant to the scale of the feature vectors and, hence, make the usage
of the regularization loss insignificant.

Furthermore, it is possible to add weights wi,j depending on the pixels’ in-
stance combination. For example, instance pairs that get assigned different class
labels can be weighted differently compared to objects belonging to the same
category [WYHN18].

De Brabandere et al. propose another variation of the stated loss terms [BNG17].
Instead of performing pairwise comparison, they consider the current mean µc of
all features associated with an instance c. For the variance loss, they penalize all
features that are not within a margin δvar of the corresponding instance mean.
To distinguish between instances, means of distinct groups are pushed away from
each other up to a certain distance δdist. Formally, this yields

Lvar =
1

C

C∑
c=1

1

Nc

Nc∑
i=1

[‖µc − xi‖ − δvar]2+,

Ldist =
1

C(C − 1)

C∑
cA,cB=1

cA 6=cB

[δdist − ‖µcA − µcB‖]2+,

Lreg =
1

C

C∑
c=1

‖µc‖.

(3.11)

Contrary to the previous functions, all points are considered instead of only a
subset.

Clustering Methods

Having learned an embedding, the subsequent step involves a clustering algorithm
to group the pixels regarding their feature representation.
There are some aspects that restrain the choice for a suitable algorithm: Firstly,
the number of instances is unknown and varies for different images. Therefore,
it is preferable to not depend on a hyper-parameter which specifies the number

15

Chapter 3. Preliminaries 3.1. Problem Formulation

of clusters. This makes several methods like k-Means unfavorable for this task.
Secondly, the algorithm needs to be scalable as we have a high number of pixels.
Lastly, the size of the clusters might vary making it necessary to detect point
groups of different scales. This is important in case that the objects in the scene
significantly differ in their size.

One possible clustering algorithm that meets the demands is Mean Shift [CMM02].
Thus, this technique has alreaday been utilized for several instance segmentation
proceedings (e.g. [BNG17,KF17]). We will describe the basic operating principle
in the following.
For a set of points embedded in some feature space, Mean Shift looks for positions
with a high density of points. This is done in an iterative process where a cur-
rent location is updated according to the points being situated in a surrounding
area. The found positions correspond to cluster centers. Each point is eventually
associated to one of these centroids.

Starting with some randomly sampled point x0
i , its position is step-wise shifted

towards the direction of increasing density of nearby present points. For an iter-
ation step t, the neighborhood N(xti) of current candidate position xti is regarded
to determine the shift. In general, the neighborhood N(x) is composed of points
within a certain distance from x. This distance is set by the bandwidth parameter
of the algorithm. The direction towards the area with high density within this
neighborhood is computed by the mean shift vector

m(x) =

∑
xj∈N(x)K(xj − x)xj∑
xj∈N(x)K(xj − x)

(3.12)

where K(·) denotes some kernel function.
The updating step of xj results from

xt+1
i = xti +m(xti) (3.13)

where the new position xt+1
i is equivalent to the mean of the points within the

neighborhood N(xti). The iteration stops when xti converges at some location.

There are different possibilities to assign the points to the single clusters. Ide-
ally, the iteration process is run for every point individually. Each point is then
assigned to the outcome of the procedure. The resulting set is subsequently
pruned for local maximums. However, this is not reasonable for a large set of
points. Considering N points and K iteration steps, the resulting runtime com-
plexity is O(KN2). A faster version is to either assign points that occur in some
window along the way of an iteration run to the resulting cluster center or assign
each point in a final processing step to the respective closest centroid.

16

3.2. Semantic Segmentation on 3D Point Clouds Chapter 3. Preliminaries

In conclusion, the Mean Shift algorithm proposes a useful grouping algorithm
for finding clusters within an embedding space. It only depends on the bandwidth
parameter that describes the window size according to which the mean shift step
is computed. Therefore, this clustering method is suitable for the task of instance
segmentation based on point features.

3.2 Semantic Segmentation on 3D Point Clouds

The recent increment of publicly available 3D datasets (e.g. [ASZ+16,DCS+17])
has increased the demand to perform scene analysis tasks in the spatial space as
well. In contrast to the treatment of 2D images, the best way of structuring the
data is not clear here. In Section 2.1.3, different options for 3D data represen-
tation together with their respective advantages and drawbacks were named. In
this thesis, we will focus on approaches that work on raw point clouds directly.
Recent achievements for this kind of data promise capabilities for further work
(e.g. [QSMG17a,QYSG17a,WSL+18]).
Working directly on a point set received from a sensor is preferable compared to
converting the data into some other format as volumetric grids or multiple views.
By using the original data, we neither rapidly increase the complexity nor loose
details about the geometrical structure.

By definition, a point cloud P = {pi | i = 1, ..., N} ∈ RF is an unordered set of
N points. Each point pi is given by a tuple of F features consisting of the point’s
coordinates (xi, yi, zi) and optional additional information like RGB color values.
A network that receives such a point cloud as input needs to be invariant to any
permutation of the points.
However, most of previous successful deep learning approaches for 2D image tasks
like convolutional networks require structured data as input like, for example,
pixel grids. Thus, the question how point clouds could be handled for neural
networks has been unexplored until recently.
One novel approach to deal with this problem was presented by Qi et al. [QSMG17a].
In contrast to conventional methods, it does not rely on any ordering of the points
as it first treats all points independently before aggregating them all by applying
a symmetric function. With their method, they achieved state-of-the-art results
and motivated others to use and expand their idea (e.g. [QYSG17a,WSL+18]).

In the following part, we will first explain the structure of PointNet. After-
wards, we will present the two extensions PointNet++ and Dynamic Graph CNN
(DGCNN) that aim to deal with the drawbacks of PointNet and achieved im-
proved performance.

17

Chapter 3. Preliminaries 3.2. Semantic Segmentation on 3D Point Clouds

3.2.1 PointNet

Recently, Qi et al. presented a new neural network architecture they named
PointNet [QSMG17a]. Their pioneering framework is able to work directly with
an unordered set of data points. The authors applied their proposed network for
several 3D analysis tasks like object recognition, part segmentation of an object
and semantic segmentation of a scene. In the following, we will focus on the
network model that was applied for semantic segmentation.
The key idea is to learn a high dimensional representation for each point. For
this, each point is considered independently. The resulting features are subse-
quently aggregated into a common global feature. The class label for a point is
afterwards determined from the combination of its individual representation and
the global feature.

The network architecture is depicted in Figure 3.2. As input, PointNet receives
a list of N points and corresponding Fin features. The order of the points in this
(N,Fin) matrix is arbitrary. The output of the network is a (N,K) matrix with
K denoting the number of semantic classes. Each entry of this matrix denotes a
score that indicates how likely a point belongs to a certain class.
The whole pipeline can be subdivided into two parts:
In the first part, the feature encodings of the distinct points are learned by a multi-
layer perceptron (MLP). The weights of these layers are shared along all points.
Starting with a relatively low number of input features, the feature dimension of
a point is highly increased by this.
They also propose in their paper to add joint alignment networks (T-net). The
idea is to predict a transformation matrix that aligns the input points’ coordinates
as well as their predicted features into a canonical space. Doing this ensures
that the learned features are invariant to any affine transformation applied to
the input point cloud. However, this extension is only used for the point cloud
classification and the part segmentation task as it did not show improvements for
semantic segmentation. Hence, we will ignore it from now on.
In the second part, the individual point features are aggregated into a global
feature. This global feature takes some kind of interaction between all points into
account and hence, holds information about the whole input set. The received
input points are subject to a random permutation. Any possible aggregation
function therefore is required to be invariant to the input order. One option is
the usage of a simple symmetric function. Examples for this are the operators
+, ∗, and max. The authors argue that by combining such a symmetric function
with the output of a MLP, they are technically able to learn any potentially more
complicated symmetric function regarding the original input point set. In their
proposed network, they use a max pooling function.
The resulting global feature is concatenated to each of the previous point features.
Another MLP predicts the final classification score for each point.

18

3.2. Semantic Segmentation on 3D Point Clouds Chapter 3. Preliminaries

in
p

u
t

p
oi

n
ts

point features

ou
tp

u
t

sc
or

es

max
pool

shared shared

shared

nx
3

nx
3

nx
64

nx
64 nx1024

1024

n x 1088

nx
12

8

mlp (64,64) mlp (64,128,1024)input
transform

feature
transform

global feature

mlp (512,256,128)

shared

mlp (128,m)

nx
m

Figure 3.2: PointNet architecture. Given an input set of points, feature repre-
sentations are determined independently for each point using a MLP.
These are subsequently aggregated into a global feature. After con-
catenating the global feature to each point’s feature representation,
class labels are predicted for the point set using another MLP with
shared weight along all points. Figure adapted from [QSMG17a].

A limitation of this approach is the high memory requirement resulting from
the high dimensional features computed for every point. Thus, it is often not
possible to process the whole point cloud at once. To deal with this, the full
scene is subdivided into blocks which are processed separately. The individual
results are subsequently merged to receive a segmentation for the whole scene. A
fixed number N of points is sampled from each block.

For their experiments on the S3DIS dataset [ASZ+16], Qi et al. split each room
into blocks with an area (1m×1m) along the ground. Each point is described by
a tuple (x, y, z, r, g, b, x̂, ŷ, ẑ). x, y, z represent the point’s coordinates, r, g, b its
color and x̂, ŷ, ẑ the normalized position of the point with respect to the room
size.

A fundamental problem of PointNet, however, is the weakness in processing
local geometric structure. For the main part, each point is handled separately
without having any local context at all. The only time the interaction among the
points is considered, is the application of the aggregation function. That means,
we receive only global context information regarding all points within an input
block. This prevents us from gaining any knowledge about both the geometric
structure of the whole scene and finer details indicated by nearby points.

19

Chapter 3. Preliminaries 3.2. Semantic Segmentation on 3D Point Clouds

3.2.2 PointNet++

Following the success PointNet had achieved for deep learning on unstructured
point sets, several methods were proposed that build on top of this idea. Espe-
cially the aspect of exploiting local structure at different scales has been shown
to be essential [EKSL18].

One improved network was proposed by Qi et al. themselves [QYSG17a]. Their
presented PointNet++ uses a hierarchical structure to learn features recursively
at different scales from a nested partitioning of the input point set.
Starting with small regions, low-level features are extracted from these. These
features hold information about fine geometric structures. Following this, several
regions and their corresponding features are grouped together to form higher level
features. By doing this, the receptive field is enlarged to handle more complex
structures.

Qi et al. [QYSG17a] propose the concept of a local feature learner. The pur-
pose is to both determine features for the small neighborhoods and aggregate
low-level features to higher ones when grouping regions. PointNet was chosen for
this task.
Another main contribution of their work is the generation of an appropriate par-
tition of a point set. The demand for such a partition is to have overlapping
regions that distribute the point set evenly. Each region can be defined by their
centroid and scale. The associated points are chosen with respect to the under-
lying Euclidean metric space of the point set.

The hierarchical structure of PointNet++ is depicted in Figure 3.3. It can
be split up into two phases. In the first phase, point set features are learned
for varying hierarchical levels. In the second stage, the features from before are
upsampled respective to the hierarchical levels to provide per-pixel scores for se-
mantic segmentation.

The first phase consists of a series of set abstraction levels. Each such level
receives a set of points with corresponding feature vectors as input. Then, it
determines a subsampled set of points with new features corresponding to the
next higher scale.
For this, a subset of points is sampled at first and specified as the centroids for
the new regions (Sampling Layer). Next, the remaining points are grouped with
respect to these centroids (Grouping Layer). Finally, a lighter version of Point-
Net computes the feature encoding for each region (PointNet Layer). The single
phases of the abstraction layer are explained in more detail in the following:
The input for the Sampling Layer is a (N, (d + C)) matrix with N points and
corresponding features. A point feature consist of the d-dimensional coordinates
and further C feature channel. For the first abstraction layer, these are the points

20

3.2. Semantic Segmentation on 3D Point Clouds Chapter 3. Preliminaries

sampling &
grouping

sampling &
grouping

pointnet

set abstraction

pointnet

set abstraction

(N
,d+C)

(N
1,K

,d+C)

(N
1,d

+C1)

(N
2,K

,d+C1)

(N
2,d

+C2)

feature propagation feature propagation

interpolate interpolateunit
pointnet

unit
pointnet

per-
point

sco
res

(N
1,d

+C2+
C1)

(N
1,d

+C3)

(N
,d+C3+

C)
(N

,k)

skip link concatenation

SegmentationHierarchical point set feature learning

Figure 3.3: PointNet++ architecture. The pipeline can be split into two
parts: In the phase for hierarchical feature learning, high dimensional
point representations are learned by a sequence of set abstractions.
Each set abstraction level first samples a subset of points from its in-
put as centroids and then groups the remaining points towards these
centroids. Subsequently, PointNet is applied to each group to deter-
mine a feature for the whole group. The group features and the cen-
troids are then passed to the next level. In the segmentation phase,
centroid features are upsampled to all corresponding points in the
group. Skip link connections are used to consider features from all
levels. Figure adapted from [QYSG17a].

from the original input point cloud. Afterwards, the output of the previous ab-
straction layer is passed forward to the successive layer. From this input point set,
a subset of N ′ points is sampled to be used as centroids. To ensure a consistent
allocation of the resulting regions, iterative farthest point sampling is applied.
The points derived from this method should optimally be those that have the
largest distance from each other.
The Grouping Layer receives both the (N, (d + C)) point matrix from before as
well as the (N ′, d) matrix containing the sampled centroid candidates and their
position. In this stage, K neighbor points are determined for each centroid. Thus,
the output of this stage is a N ′, K, (d+ C) matrix describing N ′ overlapping re-
gions.
Using ball query, all points within a radius are detected. From these, K points
are selected. This method guarantees a fixed region scale along the current level.
In the PointNet Layer, the N ′ local regions of shape (K, d+C) are encoded in an
abstract feature representation of the respective neighborhood. The result from
this is a (N ′, d + C ′) matrix that consists of the centroid points with respective
coordinates as well as the new region feature of dimension C ′.
PointNet is used to abstract the local information from the sampled points within
a region. For this, the coordinates of the points within a region are translated

21

Chapter 3. Preliminaries 3.2. Semantic Segmentation on 3D Point Clouds

such that the corresponding centroid is at the origin. The resulting normalized
coordinates are then used together with the C-dimensional feature vectors of the
points as input for PointNet.

Another difficulty that has not been considered so far is that point clouds have
no uniform density in general. That means that some areas within the point
cloud are likely to have far more points than others. This leads to the problem
that we either miss fine structures in dense region in case the used scale is to
large or receive unreliable results for sparse areas when choosing a scale that is
to small.
Qi et al. propose two proceedings to deal with this. The general idea is to exe-
cute the grouping and feature extraction process not only on a single but multiple
scales. Features from different scales are combined adaptively to the density of
the current region into a single representation.
The first variant is called Multi-scale grouping (Figure 3.4 (a)). Several features
are extracted separately for different scales. The network is trained to learn how
to combine these features. During training, variation of the sparsity and unifor-
mity among the point clouds is achieved by randomly dropping out input points.
A computationally cheaper method is Multi-resolution grouping. Here, only two
part vectors are computed as shown in Figure 3.4 (b). For the first vector, the
abstract features from the subregions of the previous level are considered. Given
a dense point set as input, this vector is able to catch fine geometrical details as it
leverages the results from higher resolutions. However, for sparse point sets, the
abstract features from the subsets are likely not very reliably as they are based on
even less points. The second vector results from regarding all raw points within
the local region. It is therefore able to also handle sparse input. On the other
hand, it does not detect the same amount of detail in dense point sets as the first
vector.
Depending on the density of the point set, one of these vectors is weighted higher.

For semantic segmentation, an output score needs to be predicted for every
point of the original input set. The single features from the different hierarchical
levels of the previous stage therefore need to be upsampled and combined. As a
result, each point gets an individual feature representation holding information
about fine structures in the small local neighborhood as well as the geometry on
a larger scale. These features can then be used to predict scores for the semantic
classes.
The upsampling process is done by feature propagation layers. Each such layer
receives as input an (N, d + C) matrix which holds the feature information of
the N points corresponding to the centroids of the l-th layer of the feature ex-
traction stage. From this, Nl−1 features are computed for the next upper level.
The features are first upsampled via distance based interpolation: The k nearest
neighbors of a point are sampled and a weighted average of their features is com-

22

3.2. Semantic Segmentation on 3D Point Clouds Chapter 3. Preliminaries

concat

(a) (b)

concat

Figure 3.4: Grouping Variations (a) Multi-scale grouping: Features are deter-
mined for various scales. (b) Multi-resolution grouping: Both raw
points within a small region and subregion features computed in the
previous level are considered to extract a respective feature. Figure
extracted from [QYSG17a].

puted. The weights for this are based on the inverse distance between the current
point and the sampled subset. Next, the features resulting from the hierarchical
layer at the same scale are concatenated to the respective interpolated features
by using skip link connections. The resulting features are then refined for each
point separately by a MLP with shared weights among the points (unit pointnet).

With their new architecture, Qi et al. achieve state-of-the-art results on var-
ious 3D analysis challenges. It is notable that they accomplish this by using
only the coordinates as input features. In contrast, PointNet also utilized color
information as well as a normalized position of a point. They do not, however,
present semantic segmentation results on the S3DIS dataset for comparison with
PointNet.

3.2.3 Dynamic Graph CNN (DGCNN)

Another extension of PointNet is Dynamic Graph CNN (DGCNN) by Wang et
al. [WSL+18]. The key component of their network is the operator EdgeConv.
This module takes the local neighborhood of a point into account instead of pro-
cessing the point independently from the others. By doing this, the geometric
structure of a point’s local surrounding contributes to its established feature rep-
resentation. An advantage of this module is the possibility to integrate it into an
existing network architecture. Wang et al. chose PointNet as basic network and
showed improved performance on classification and semantic segmentation tasks.

The idea of the EdgeConv operator is to first construct a local k-nearest neigh-
bors graph based on the feature space and then generate edge features for a point
and each of its neighbor. Such a feature represent the relationship between a pair
of points. Edge features corresponding to a point are subsequently aggregated

23

Chapter 3. Preliminaries 3.2. Semantic Segmentation on 3D Point Clouds

Figure 3.5: Idea of EdgeConv. Given a point xi, edge features are determinded
for each of its neighbors. These are then aggregated into a single point
representation x′i. Figure extracted from [WSL+18].

into a feature representation of this point (Figure 3.5). The name EdgeConv is
derived from edge convolutions due to its performing of convolution-like opera-
tions.

For the full DGCNN segmentation model by Wang et al., several of these mod-
ules are stacked together (Figure 3.6, top row). The network’s name results from
the property of the EdgeConv operator to dynamically construct a new neighbor-
hood graph G(l) = (V(l), E (l)) based on the points’ feature representation at the
current layer l. By doing this, the receptive field of a point is broadened not pri-
mary over spatial space but the predicted feature space of the proceeding layers.
Hence, in deeper EdgeConv modules, points with similar properties according to
the previous part of the network will be the contributing neighbors instead of
those that only lie close together in the original 3D input space. A visualization
for the distance development in feature space along a series of edge convolutions
is provided in Figure 3.7.

Each EdgeConv operator (Figure 3.6, bottom row) at some level l receives as
input an F (l)-dimensional point cloud P (l) consisting of N points and yields a
new F (l+1)-dimensional representation for each point. The input point features
are provided by the previous layer l − 1. For the first layer, these correspond to
the input features, namely the spatial coordinates of the points. Based on these
features, it constructs a k-nearest neighbor graph G(l) = (V(l), E (l)) with vertices

V = {1, ..., N} and edges E ⊆ V × V . For a point p
(l)
i with corresponding closest

points p
(l)
ji1
, ..., p

(l)
jik

, this yields the directed edges (i, ji1), ..., (i, jik).

A non-linear function h
(l)
Θ : RF (l) × RF (l) → RF (l+1)

is applied to determine the
edge features

eij = h
(l)
Θ (p

(l)
i , p

(l)
j). (3.14)

Θ denotes the set of learnable parameters for this function. The parameters are
shared within a layer l.

24

3.2. Semantic Segmentation on 3D Point Clouds Chapter 3. Preliminaries

Figure 3.6: DGCNN architecture: The input point cloud is passed through a
sequence of EdgeConv operators. Thereafter, a max pooling operation
is applied to compute a global descriptor. For each point, the global
descriptor and all intermediate features from the EdgeConv layers are
concatenated. The final output scores for the semantic segmentation
prediction result from a MLP.
EdgeConv: The edge convolution operator receives a matrix of shape
(N,F) with points and corresponding features as input and deter-
mines new feature points (N,F ′) regarding the neighbor relation-
ship between the points. Regarding some point, edge features are
computed for all its neighbors separately using a MLP with shared
weights. The number of neurons in each of the n layers in the MLP
are denoted as {a1, a2, ..., ann}. Hence, the MLP yields a (N, k, an)
matrix containing the edge features of the k neighbors of a point. The
edge features associated to a point are subsequently aggregated into a
single feature by applying max pooling. This results in new features
for each point in form of a (N, an) matrix.
Figure adapted from [WSL+18].

The resulting edge features eij associated with the i-th point are then aggregated
into its new feature representation

p
(l+1)
i = �

j:(i,j)∈E(l)
h

(l)
Θ (p

(l)
i , p

(l)
j). (3.15)

� indicates any channel-wise symmetric aggregation function. For their imple-
mentation, the authors decided for the max operation.

By applying the EdgeConv subsequently, the neighborhood of the points changes
with respect to the learned features. Thus, semantically similar points are taken
into account to refine a point’s features. This idea of enlarging the receptive field
to obtain geometric information is the major difference compared to the previous
presented models PointNet and PointNet++.
Wang et al. showed that their DGCNN model outperforms PointNet significantly.

25

Chapter 3. Preliminaries 3.3. Similarity Group Proposal Network (SGPN)

Figure 3.7: Alteration of feature space resulting from concatenated
EdgeConv layers. The shown features were learned for the part
segmentation task. For each EdgeConv layer, the distance between
some point (red) and all other points is presented. The points’ colors
depict the distance, ranging from yellow (nearby point) to blue (dis-
tant point). It is noteworthy that, for deeper layers, points belonging
to semantically similar parts (e.g. wings, turbines) obtain features
that are close in feature space even if the points themselves are not
close in the original spatial space. Figure extracted from [WSL+18].

3.3 Similarity Group Proposal Network (SGPN):
Instance Segmentation in 3D

Recently, Wang et al. proposed a framework to approach the task of instance-
aware semantic segmentation on point clouds [WYHN18]. Inspired by the usage
of the popular PointNet for semantic segmentation on point clouds [QSMG17a]
as well as present impressive results for instance segmentation on 2D images
(e.g. [DHS16, HGDG17]), they examined the combined task. As a result, they
presented SGPN (Similarity Group Proposal Network) which is the first deep
learning end-to-end trainable framework that can be applied for instance seg-
mentation on point clouds.
Their basic idea for the task of instance segmentation follows the strategy of clus-
tering the points in a feature embedding space. They use PointNet to learn an
appropriate point representation. Additional to the original task of receiving class
information for each point, the learned feature vectors for points corresponding
to the same object should be more similar as opposed to the ones of points from
different instances. From this embedding the authors aim to find group proposal
matching the object instances.
Analogously to the proceeding of semantic segmentation with PointNet, blocks of
points are considered separately instead of processing the complete point cloud
at once. Therefore, the whole process can be split up into two phases: Initially,

26

3.3. Similarity Group Proposal Network (SGPN) Chapter 3. Preliminaries

P
oi

nt
N

et

Features P
ai

rw
is

e
D

is
ta

nc
e

(N, N)

Similarity Matrix

Confidence Map
(N, 1) Pruning

Group Proposals

Group classSGPN

Group
Merging

Instance SegmentationInput Points: (P, F)in

Semantic Prediction
(N, K)

Figure 3.8: Framework of the Similarity Group Proposal Network. Figure
adapted from [WYHN18]

they look for group proposals within each block of points independently. For
the subsequent combining of the partial outcomes, the authors present a block
merging algorithm.

In the following part of this section we will describe the proposed method in
more detail regarding the network architecture, the clustering procedure, and
the block merging method. Moreover, we will use this approach as a baseline to
compare with our own results. Details about our implementation as well as the
results from experiments can be found in later chapters.

3.3.1 Network Architecture

Given a point cloud as input, the SGPN infers three different outputs: First, we
get a similarity matrix measuring the affinity between each pair of points and
thus indicating how likely they belong to the same group. More specifically, each
row of the matrix can be considered as a group proposal belonging to a specific
point. Second, each point obtains a confidence value implying the quality of
the point’s proposal. These scores are later used for pruning the set of group
proposals. Finally, we also receive class labels for the points in the form of a
segmentation map.

The complete pipeline is depicted in Figure 3.8. At the beginning, a feature
vector is computed for every point of the input point cloud P of size N by using
the basic PointNet architecture reduced by the last two layers. The resulting
feature matrix F is then passed to the three branches each corresponding to one
of the subtasks. In each branch, the point features are refined for the specific task
using an additional PointNet layer. This yields the new feature matrices Xsim,
Xcf and Xsem with shape (N,Fout) respectively.
For each of the branches we get a separate loss function. The total loss is defined
as the sum of these losses L = Lsim + Lcf + Lsem.

Similarity Matrix

Resulting from the first branch, the proposed similarity matrix S of shape (N,N)
represents a set of N group proposals. Each proposal corresponds to a point of

27

Chapter 3. Preliminaries 3.3. Similarity Group Proposal Network (SGPN)

similarity

(a) (b) (c) (d) (e) (f)

Figure 3.9: Visualization of similarity measure. For a pointcloud (a) with
ground truth semantic (b) and instance (c) labels, we compute sim-
ilarity scores for each pair of points (d-f). For a fixed point (green)
the distance to every other point is displayed by color. The block
presents the corner of a room with two chairs.

the input cloud. The associated potential instance can be obtained by applying
a threshold to the proposal.
The objective is to have points from the same instance lie close together in the
task specific feature space whereas two points belonging to different point groups
should be further apart. The similarity Si,j between each pair of points (pi, pj)
with i, j ∈ [N] is given by the L2 distance in the task specific feature space, i.e.
Si,j = ‖Xsimi

−Xsimj
‖2. Hence, a small value Si,j implicates a strong similarity,

indicating that these points presumably belong to the same object. Figure 3.9
visualize some own example results of this similarity measurement.

For the similarity loss Lsim, a double hinge loss is defined. Each pair of points
(pi, pj) is assigned to one of the following categories:

1. (pi, pj) belong to the same object

2. (pi, pj) are associated with the same class but correspond to different in-
stances

3. (pi, pj) have different semantic labels

The assignment of a pixel pair to one of theses categories is denoted as Ci,j. The
loss function is then defined as

Lsim =
N∑
i

N∑
j

l(i, j)

l(i, j) =


‖Xsimi

−Xsimj
‖2 Ci,j = 1

αmax(0, K1 − ‖Xsimi
−Xsimj

‖2) Ci,j = 2

max(0, K2 − ‖Xsimi
−Xsimj

‖2) Ci,j = 3

(3.16)

The constants K1 and K2 are chosen such that K2 > K1. By doing so, we allow
points from the same class but different instances to be more similar compared to

28

3.3. Similarity Group Proposal Network (SGPN) Chapter 3. Preliminaries

 (a) (b)

confidence

Figure 3.10: Visualization of confidence scores. For a pointcloud with
ground truth instance labels (a), a confidence score is computed for
every point (b). A high value implies that the associated proposal
of that point likely is a good instance candidate.

points from different classes. Thus, the network is supported in learning mean-
ingful features corresponding to the semantic segmentation task. To make sure
that we can still distinguish between instances from the same class, the weight
parameter α > 1 is used. Therefore, even if feature point pairs from this category
do not lie as far apart, it is penalized more strongly if they are too close.

The resulting similarity matrix is used to indicate relationships between points.
We get S ′ from S by using a category dependent threshold ThSc such that S ′i,j = 1
if Si,j ≤ ThSc where c is the predicted class of point pi.

Confidence Map

The second branch of the network outputs a confidence map CM that indicates
the expectation about the quality of each point’s proposal. Specifically, we get a
(N, 1) vector which provides a confidence score for each point. These scores are
learned from the features Xcf with an additional PointNet layer.
An example for such a resulting confidence map is depicted in Figure 3.10. It
can be seen that the network is certain about the proposals of most points along
the ceiling and floor. This is expectable as nearly all rooms have a single ceiling
and floor object respectively. Thus, the network can merely focus on classifying
these points directly instead of also learning to distinguish between instances. It
becomes more interesting for the wall instances. Here, we see that the proposals of
the points in the middle of the wall are probably better than those at the corners.
This is also preferable as the assignment of a point at the border between two
instances of the same class is more difficult compared to a point at the center
of an object. However, it can also be seen that for more difficult objects (e.g.
chairs), the confidence scores decrease in general.

For computing the loss Lcf , meaningful confidence values are required that can
be learned to be regressed. For estimating such values, the predicted similarity

29

Chapter 3. Preliminaries 3.3. Similarity Group Proposal Network (SGPN)

matrix is compared to the ground truth groups. For this, a binary group matrix
G of shape (N,N) is generated with Gi,j = 1 if points pi, pj belong to the
same instance. Furthermore, the binarized similarity matrix S ′ is taken into
account. For each point pi, we compute the intersection over union between the
corresponding rows Gi and S ′i. The resulting value represents the quality of the
similarity prediction for a point and is used as the expected confidence score.
The L2 loss between the described expected confidence map and the inferred
result is the loss of this branch.

Semantic Segmentation Map

The third branch yields class label predictions in the form of a (N,K) matrix
Msem. Similar as it is done for the confidence map, an additional PointNet layer
with K output channels is appended to the branch specific feature layer. K
corresponds to the number of classes and depends on the used data. Each en-
try Msemi,c

expresses the probability that point pi should be labeled with class
c. From this, the final class label prediction for a point pi can be obtained by
`semi

= argmaxcMsemi
.

A weighted cross entropy loss function Lsem is used for this branch. For the
weights, we first compute the frequency for each class c as freq(c) = Nc/Ncp

where Nc is the number of points of class c along all given point clouds and Ncp

is the number of point clouds where points from class c appear. The weight for
each class c is set to wc = median(freq)/freqc.
The combination of this branch and the common feature network actually matches
the complete PointNet architecture.

3.3.2 Group Merging

Given the partial outputs presented in the previous section, Wang et al. present
a method to group the points of the current block into instance proposals. The
output from the network consisting of the similarity matrix S, the confidence map
CM , and the semantic segmentation map Msem are the inputs for Algorithm 1.
As a result, we receive an instance segmentation PL for the current block where
a group label is assigned to each point.
The following explanation is based on the description in [WYHN18]. We will
discuss variations in the available code by the authors thereafter [Wan18a].

To start with, we get N group proposals from the similarity matrix S. Ideally,
points from the same instance yield the same proposal and there is no overlap
between proposals from points belonging to different objects. Obviously, there
will be noise in the data as well as inaccuracy in the learned features. This results
in the need of a process for pruning and merging the proposals.
As a first requirement, we only consider those proposals for which the confidence

30

3.3. Similarity Group Proposal Network (SGPN) Chapter 3. Preliminaries

Algorithm 1 Group Merging Algorithm (based on [WYHN18,Wan18a]

Input S,CM,Msem for point block P
Output Instance segmentation PL for block P

procedure Group Merging(S,CM,Msem)
for every class c do

proposals, Pvalidc ← []
for point index i in P do

S ′i ← apply class specific threshold ThSc on Si,
remove points from S ′i with diff. predicted class label

if argmaxcMsemi
= c, CMi ≥ Thc, and size(S ′i) ≥ ThMnum then

append i to Pvalidc .

if len(Pvalidc) = 0 then
proposals← single proposal of all points with class label c

else . Non-Maximum Suppression
for proposal idx i in Pvalidc and respective S ′i do

for S ′j in proposals do
if IoU(S ′i, S

′
j) > ThMiou

or Subset(S ′i, S
′
j) > ThMsub

then
if size(S ′i) > size(S ′j) then

replace Sj in proposals by S ′i
mark S ′i as merged
continue

if S ′i was not merged then
append S ′i to proposals

for S ′j in proposals do
PLi ← new instance label I for all points pi in S ′j

for every instance I do
if number of points assigned to I < ThMnum then

PLi ← unlabeled, where PLi = I
remove I

for every point pi without instance label do
PLi ← instance that appears most often in own proposal S ′i

return PL

score of the corresponding point is above some threshold Thc. Moreover, the
number of points in the proposed group needs to be higher than another thresh-
old ThMnum .
Afterwards, a Non-Maximum Suppression procedure is applied on the remaining
set of valid proposals. For this, we compute the Intersection over Union (IoU)
for pairs of proposals. In case the resulting value is higher than some threshold
ThMiou

, the proposal with the lower cardinality is discarded. This yields the final
set of instance proposals. However, there might still be some points which are

31

Chapter 3. Preliminaries 3.3. Similarity Group Proposal Network (SGPN)

assigned to several proposals. The authors expect the proportion of these to be
rather low and propose to assign them randomly to one of the associated pro-
posals. Finally, for each instance we select the most common class label from all
corresponding points regarding the semantic prediction from Msem.

The authors also published their code [Wan18a]. There are some minor differ-
ences and expansions compared to the proposed explanation in the paper. These
changes were probably done to reduce the computational effort and improve the
reliability of the result.
First, the predicted class labels are already used for a pre-segmentation of the
points. In case the confidence score is to low for all points within a class, all
points are assigned to a single instance.
Instead of comparing all pairs of valid proposals, for a current instance candidate,
we only consider the previous proceeded, kept proposals. Furthermore, not only
is the IoU computed but it is also checked whether a large part of the current
proposal is a subset of a previous proposal.
The case that a point appears in several proposals is merely ignored in the au-
thors’ code. By simply iterating over all proposals and labeling all associated
points with a new instance label, each point gets assigned to the instance of the
last proposal where it appears. By doing this, it might happen that the number of
points within an instance decreases below the minimum required number Thmin.
In this case, the instance proposal is subsequently removed.
Finally, there are still some points that were not assigned to any instance so far.
For these, their corresponding binary proposal is considered. From all points
within this proposal, the instance label that appears most often is selected. It is
possible that a point now gets assigned to a group corresponding to a different
class label. However, due to noise in the semantic prediction, this is reasonable
and sometimes even helps to smooth both the semantic and instance segmenta-
tion.
We will present more details regarding among others the choice of the threshold
later in Section 5.3.1.

3.3.3 Block Merging

The group merging algorithm yields a final instance labeling for a single block.
Thus, a merging of these block results is required to get the instance segmenta-
tion of the complete point cloud.
For this, the authors discretize a scene into a grid V of fixed size. While iterating
over the blocks, instance labels are determined for the cells Vk of the grid. After-
wards, all points that lie in a cell are assigned the corresponding label.

The main reason for requiring a separate merging algorithm for the predicted
blocks is that we have labeled the instances independently of their appearance

32

3.3. Similarity Group Proposal Network (SGPN) Chapter 3. Preliminaries

in different blocks. That means, an object that appears in more than one block
might get assigned different instance labels. Moreover, different objects from two
blocks might have the same instance label. It should be noted that overlapping
blocks are used during testing.
Expectedly, there will be noise in the instance prediction. On the one hand, in-
stance parts in different blocks belonging to the same object might not fully match
in the overlapping sections between blocks. Hence, these need to be merged. On
the other hand, there might be overlap between predicted instance parts that
belong to different objects which thus need to be differentiated.

Algorithm 2 Block Merging (based on [WYHN18])

Input Instance segmentation PLb for every block P b of point cloud P ,
merged semantic segmentation Lsem for P

Output Instance prediction L and refined semantic labels L′sem for P

procedure Block Merging([PLb], [P b])
V ← unlabeled voxelgrid of size (400, 400, 400)
InstCount← 0
for every block P b with predicted instance labels PLb do

for every instance Ij that is present in PLb do
VIj ← Vki for all ki where PLbi = Ij,

ki defines the cell where point pbi is located
Vt ← all cells in Vki that were already assigned a label
Im ← mode(Vt)
if number of cells in Vt with value Im > ThG then

VIj ← Im
else

VIj ← InstCount
InstCount← InstCount+ 1

for every point pi in P do
Li ← Vki , ki defines the cell where pi is located

for every instance I in L do
l← mode of semantic prediction Lsem for points in instance I
L′semi

← l for all i where Li = I

return L,L′sem

Algorithm 2 describes the block merging procedure from [WYHN18].
It receives a sequence of block predictions from the grouping algorithm as input
and returns a final instance segmentation L of the full point cloud. The single
blocks are processed in a snake pattern as shown in Figure 3.11. This always
yields the currently highest possible overlap to the previous handled blocks.

33

Chapter 3. Preliminaries 3.3. Similarity Group Proposal Network (SGPN)

Figure 3.11: Order in which point blocks are processed. Figure extracted from
[WYHN18]

For a block P b and predicted instance labels PLb, the discretized cell positions
ki are computed for all points pi in P b. Next, we iterate over all instances that
were detected in the current block. For each instance Ij, VIj is the set of voxel cells
in which the points from this instance are located. Furthermore, Vt is determined
as the subset of VIj containing all cells that already got a label assigned from a
previous block. These are the cells that require a merging with the new proposed
instance Ij. There are two options: Either the cells VIj are associated with an
already existing instance from Vt or VIj gets assigned a new instance label. The
choice depends on the frequency regarding the mode of the instance labels in
Vt. If some instance Im is highly present in the overlapping region, all points of
the new proposal obtain the existing group label. Otherwise, a new instance is
defined by all cells in VIj .
Finally, a category is assigned to each instance by taking the mode of the predicted
semantic labels from the associated points. The algorithm therefore additionally
yields a refined semantic segmentation L′sem.

3.3.4 Drawbacks

There is one major limitation of the proposed SGPN framework. As the instance
segmentation is determined on subblocks of the point cloud independently, an
additional merging algorithm is required. This involves the estimation and fine-
tuning of several threshold parameters.
Moreover, instance features Xsim computed in the similarity branch are not ex-
pected to be consistent over several blocks. This means, that a point which
appears in multiple overlapping blocks might get assigned completely different
instance embedding vectors. The reason for this is that, during training, the
network only learns to comply with the pairwise relationship within a small area
corresponding to a single block but not for the whole point cloud. Hence, a

34

3.3. Similarity Group Proposal Network (SGPN) Chapter 3. Preliminaries

transfer of these features into a common point cloud as done for the semantic
segmentation task is not possible. Distinct instances that do not appear in at
least one common block might get assigned similar feature vectors. Therefore, if
these features are considered in a global view, the corresponding points would get
assigned to the same instance group. Another problem results from the fact that
there is no restriction that a single point obtains the same feature vector within
the context of different blocks.
Besides this problem, the usage of the similarity matrix which is quadratic in the
number of considered points results in relatively high computational effort and
memory requirement. This negatively affects both training and inference time.

35

4
3D Bird’s Eye View Instance Segmentation

(3D-BEVIS)

As the main contribution of this thesis, we present 3D-BEVIS (3D Bird’s Eye
View Instance Segmentation) for instance segmentation on point clouds.
Similar to what was done in the SGPN framework (Section 3.3), we want to learn
point-wise features according to which we are able to identify instances. How-
ever, our method differs from the existing approach in that the learned feature
embedding space is globally coherent. This means we are able to perform clus-
tering within a complete scene instead of single blocks. Hence, we do not rely on
a heuristic merging algorithm.

We achieve this by utilizing additional 2D input data. Inspired by [LYU18],
we make use of bird’s-eye views (BEV) from the entire scene. Applying a simple
2D instance segmentation architecture, we learn an instance feature embedding
space for the subset of points that is visible in the BEV images (Section 4.1).
These representations can be considered as global feature representations as they
were predicted with respect to the whole scene.
Given a set of predicted global instance features, we transfer these to the respec-
tive 3D points in the point cloud (Section 4.2). As many points are not seen in
the BEV rendering, not all points get an instance feature assigned. Hence, we
apply the architecture of a point cloud feature extraction network (Section 3.2)
to propagate the learned global instance features to the points that were not con-
sidered before.
The resulting features for the individual blocks can be merged into a common
point cloud. The points of the whole scene are subsequently grouped according
to a clustering algorithm into instance proposals (Section 4.3). After a post-
processing step where instances with an inconsistent semantic labeling are split
up, the method yields the final instance segmentation.

37

Chapter 4. 3D-BEVIS

Input:
3D Point Cloud P

P: (N, F)P

pr
oj

ec
tio

n
fo

rw
ar

di
ng

X :(W, H,F)

B: (W, H, 4)

2D BEV-FN

Bird's-Eye View Instance Features

T: (N, F)inst

Target Feature Vectors

P instP':(N, F + F)

3D
 P

-F
N

(D
G

C
N

N
)

(I) BEV Feature Learning

(II) Feature Propagation

X' : (N, F)inst

P: (N, F)P

X :(N, F)inst inst

(III) Clustering

Instance Segmentation

Semantic Segmentation

X :(N, K)sem

x

y

z

x

y

B inst

B

semL

instL

z

x

y

 Propagated
Instance Features

Figure 4.1: Pipeline of the 3D-BEVIS Network. The framework comprises
three stages: (I) Given an input point cloud P which consists of N
points described by FP dimensional features, a BEV image B is ren-
dered. A 2D feature extraction network (2D BEV-FN) is applied
to learn global instance features XB (Section 4.1). (II) The instance
features are propagated to the whole point cloud. For this, the pre-
dicted features are used as additional input channels XP besides the
original point cloud data P . By applying a 3D feature network (3D
P-FN), we simultaneously learn to transfer the partially present in-
stance features to all points (Xinst) of the point cloud and to predict
semantic logits Xsem. During training, fixed target features T are
specified. These result for each instance by averaging over all cor-
responding pixels in XB (Section 4.2). (III) While we can directly
transfer a semantic segmentation from the semantic features, an ad-
ditional clustering method needs to be applied to obtain an instance
segmentation (Section 4.3). For visualization, instance features are
embedded into RGB space by applying PCA. Dashed lines represent
the transitions between the single stages.

The complete framework is depicted in Figure 4.1. Overall, for an input point
cloud P , both semantic and instance point-wise labels are predicted.
In the following part of this section, we will have a look on the single components
of the proposed framework in more detail.

38

4.1. Global Instance Features from Bird’s-Eye View Chapter 4. 3D-BEVIS

(a) (b)

y

x

z

x
y

Figure 4.2: Bird’s-Eye View renderings from a point cloud. (a) Original
3D point cloud (b) BEV, Left to Right: Color values, depth map,
ground truth semantic segmentation and instance segmentation

4.1 Global Instance Features from Bird’s-Eye View

We aim to learn globally consistent instance features with respect to the complete
point cloud. This enables a grouping of the points by regarding the overall context
of the scene.

In the first phase of our pipeline for 2D BEV Feature Learning, we learn a glob-
ally consistent embedding space for the entire scene (Figure 4.1, Phase (I)). For
this, we leverage an additional, intermediate representation of the point cloud
to process the entire scene at once. In particular, the entire scene is regarded
from a BEV perspective (Figure 4.2). This involves the following advancements:
Firstly, the resulting regular structure of the data allows the application of CNNs
to learn instance features (see Section 2.3.2). Secondly, the number of points
that is considered at once is decreased as not all points are projected into the
image due to occlusion. The limited number results in a reduced computational
complexity.

Given a 3D point cloud P , we generate a BEV rendering B from this input.
This image is passed through a 2D BEV-Feature Network (2D BEV-FN) which
yields pixel-wise instance features XB.
The BEV image B is described by a (W,H,FB,in) matrix where W,H denote its
shape resulting from the discretized maximum position values of the points along
the x- and y-axis respectively. FB,in is the number of input feature channels for
each pixel.
For generating the BEV image, the points are projected onto a grid on the ground
plane. If several points fall into the same cell, only the highest point above the
ground plane is taken into account. We denote the subset of points that are

39

Chapter 4. 3D-BEVIS 4.1. Global Instance Features from Bird’s-Eye View

128 256 g2F

instF

X

K

gF gF gF gF

W
xH

W
xH

W
xH

Input:
BEV image

Output:
instance features X

semantic scores X

gF gF gF gF gFg2F g2F g2F

g

B, inst

B, sem

in
st

an
ce

 f
ea

tu
re

s
se

m
an

tic
 p

re
di

ct
io

n

Linst

Lsem

4 32 6416

conv 3x3, ReLU
max pool, 2x2
up-conv, 2x2
skip connection

Figure 4.3: Instance feature learning from bird’s eye view renderings.
The BEV image is passed through a simple encoder-decoder architec-
ture to receive point-wise features Xg. Using additional convolutional
layer respective, task specific features for instance and semantic seg-
mentation are obtained. The network is trained regarding the losses
for each of the named tasks. However, only the set of instance features
is utilized for the subsequent phase of the pipeline.

projected onto the image as PB ⊂ P . The resolution is chosen such that the
finest possible detail is retained but also a high proportion of the cells is occupied.
For this work, each pixel occupies an area of 3× 3cm. Besides the original color
value of a point, we also keep its height above the ground within an additional
depth channel. Thus, we get a RGBD feature for every occupied pixel. During
the training of the 2D BEV-FN, the ground truth semantic and instance labels
of the projected points are required. To allow for a later back mapping of the
estimated feature vector, point indices are saved as well.

For the input BEV imageB, the 2D BEV-FN yields featuresXB = (W,H,Finst)
(Figure 4.3). These encodings differentiate between pixels belonging to distinct
object instances. Besides this, the network is encouraged to also take semantic
relevant aspects into account. For this, the model first learns general features
Xg = (W,H,Fg) which are afterwards passed through two separate branches. In
the upper branch, the general features are refined for the instance segmentation

40

4.1. Global Instance Features from Bird’s-Eye View Chapter 4. 3D-BEVIS

task (XB,inst) whereas the lower branch is used to predict class labels (XB,sem).

We utilize a simple encoder-decoder architecture in the style of FCN [SLD15]
to learn a feature encoding for each pixel of the BEV rendering. A learned em-
bedding resulting from this kind of network has already been succesfully applied
for instance segmentation on 2D data in previous work like [HXKH18, BNG17,
FWR+17]. Our network architecture as depicted in Figure 4.3 was mainly in-
spired by the works in [RFB15,HXKH18].
However, due to the kind of input data, we need to consider some additional
factors. First of all, our BEV images differs a lot from photographs that are com-
monly regarded for the instance segmentation task. For this reason, the usual
approach of adopting the weights of a pretrained feature extractor network like
ResNet [HZRS16] seemed inappropriate in our case. Furthermore, the available
amount of input data is rather limited even after involving data augmentation.
Therefore, we prefer to limit the number of convolutional layers and hence the
trainable parameters to prevent our model from overfitting.

Our network consists of a sequence of convolutional and deconvolutional blocks
in correlation with skip connections.
A convolutional block is composed of two convolutional layers with kernel size (3,
3) followed by the ReLU non-linear activation function. Afterwards, a pooling
layer with a (2, 2) window and stride size 2 is applied. The number of feature
channels is doubled within the first convolutional layer of a block. This means
a block on the lth level of the network receives the input B

(l)
enc = (W l, H l, F l).

From this, we first receive B
′(l)
enc = (W l, H l, 2F l) following the convolutions and

B
(l+1)
enc = (W

l

2
, W

l

2
, 2F l) after applying the pooling layer. An exception is made for

the first block where we start with a feature dimension of 16.
Subsequently, we add the same number of deconvolutional blocks. Each of these
receives the output of the previous block from the lower level B

(l)
dec = (W l, H l, Fg)

as input and computes upsampled features for the next higher level B
(l−1)
dec =

(2W l, 2H l, Fg). Similar to the network architecture used in [HXKH18], we keep
the number of feature channels constant for the deconvolutional part of the net-
work. Moreover, batch normalization is applied after each convolution layer in
the decoder. Within each block, we first apply a transposed convolutional layer
to the output of the block from the previous layer B

(l)
dec to obtain the spatial

dimensions of the next upper level. In addition, skip-connections are inserted
between the encoder and decoder. For this, another convolution is applied on the
output of the respective level of the encoder part B

′(l−1)
enc . The outcome is con-

catenated to the current decoder feature. The combined feature is then passed
through another convolution layer to obtain the general encoding Xg with the
feature dimension Fg.
Next, the network is split into two branches: one for refining the current en-
codings into features relevant for instance segmentation and one for learning a

41

Chapter 4. 3D-BEVIS 4.1. Global Instance Features from Bird’s-Eye View

Figure 4.4: Visualization of an instance embedding. Left to Right: Input
BEV B, ground truth semantic segmentation and instance segmenta-
tion, instance features XB with color labeling regarding either seman-
tic or instance annotation. The dimension of the instance features was
reduced to two by applying PCA. We can clearly distinguish groups
of points belonging to different instances. Especially, we are inter-
ested in being able to differ between clusters of points corresponding
to different instances but the same class as point groups from different
classes can also be seperated by their semantic prediction.

semantic segmentation. Each branch thus receives a (W,H,Fg) matrix as input
and applies one additional convolutional layer. Within the instance branch, we
get an output tensor XB,inst of dimension (W,H,Finst) where Finst denotes the
dimension of the global feature instance space that we aim to learn (Figure 4.4).
The second branch estimates semantic scores XB,sem with a (W,H,K) matrix for
K different classes.

Both instance and semantic features contribute to the objective loss function,
but only the instance features XB,inst are passed on to the next stage of the
pipeline. The applied loss function is therefore composed of

L = Linst + Lsem. (4.1)

As stated in Section 3.2, we apply the multi-class cross-entropy loss function for
the semantic loss Lsem. It should also be noted that only those pixels that are
occupied by a point contribute to this loss.
The instance loss Linst is based on a similarity measure (Section 3.1.2). This
ensures feature vectors of points belonging to the same object to be similar while
encouraging a large distance in the feature space between features correspond-
ing to different instances. Following the result regarding the usage of different
loss functions in our ablation study (Section 5.4.1), we decided for the L2 loss
described in Section 3.1.2:

Lvar =
C∑
c=1

∑
xi,xj∈Sc

si,j, Ldist =
C∑

c,c′=1
c 6=c′

∑
xi∈Sc
xj∈Sc′

[δdist − si,j]+ (4.2)

42

4.2. Propagation of BEV Features to the Point Cloud Chapter 4. 3D-BEVIS

 RGB Input Feature Space Instance Segmentation

Figure 4.5: Sampling strategy for evaluating Linst. A fixed number M of
pixels is sampled per instance for computing the instance loss. The
corresponding features are either pulled towards each other if belong-
ing to the same instance or pushed apart otherwise. For visualization,
we choose M = 3 and only display embeddings for three objects.

To compute the instance loss, we use the same sampling strategy as applied
in [FWR+17,ND16]. Instead of comparing all pairs of feature vectors, we sample
a subset Sc containing M pixels for each instance c (Figure 4.5).

Summarizing, we obtain instance features corresponding to a subset of points
distributed over the whole scene. These features are globally consistent and can
thus be used as a basis for later grouping.

4.2 Propagation of Bird’s-Eye View Features to the
Point Cloud

From the 2D Feature Learning phase, we obtain instance featuresXB = (NB, Finst)
for those points that are projected into the BEV image B. These features can
be considered to be globally consistent across a scene as they were trained to
distinguish between every pair of objects within the whole scene. We want to
propagate these features to obtain representations Xinst = (N,Finst) for all points
of the point cloud. These features can later be used for instance segmentation by
applying a clustering algorithm globally.

The main idea is to use the learned features XB as additional input channels for
a point cloud feature network from Section 3.2. This network is trained such that
it propagates the predicted encodings to all points for which we have no feature
from XB. Thus, a point pi /∈ PB that has not been considered so far should obtain
a similar feature vector as a point pi ∈ PB from the same instance. Due to this us-
age, we will refer to this network as 3D Propagation Feature Network (3D P-FN).

43

Chapter 4. 3D-BEVIS 4.2. Propagation of BEV Features to the Point Cloud

Figure 4.6: Target features T for instance feature propagation. For each
instance, the mean of all predicted BEV features that belong to the
respective group is computed. The specific target feature for a point
is chosen according to the point’s instance.

This process is depicted in the second stage for Feature Propagation in Figure 4.1.

The new input point features P ′ consist of extended point features P with
dimension (N,FP + Finst). For every point that was projected into the BEV
image, pi ∈ PB, we obtained a predicted instance feature xi,B. This feature
is stacked to the original point cloud feature xi,P yielding x′i = [

xi,P
xi,B]. For the

remaining points, zero-padding is applied.
From here, we want to predict the final point-wise instance features Xinst. In
contrast to the 2D BEV-FN of the pipeline, the 3D P-FN is not free to learn
an arbitrary instance embedding under the consideration of a pairwise similarity
based loss function. Instead, target features T = (N,Finst) are specified for all
points (Figure 4.6). These target features are determined based on the prediction
from the BEV feature extraction phase. Target features might differ slightly
compared to the direct BEV prediction XP . We use the higher amount of details
in the point cloud compared to the 2D BEV projection to obtain an improved
prediction regarding both smoothness within an instance and distinction between
objects.

The target feature vectors that the network aims to learn are determined as
follows: For each instance I ∈ I, I ⊂ P we consider all points PB,I that belong
to this object and were projected into the BEV image. For these, we got the
estimated features XB,I . The ground truth feature tI ∈ RFinst is set to the mean
of these:

tI =
1

|I|
∑

xi∈XB,I

xi. (4.3)

44

4.3. Instance Grouping Chapter 4. 3D-BEVIS

As in Section 4.1, we not only want to predict an instance feature but also
infer a semantic class label for each point. Therefore, both a feature vector
xi,inst ∈ RFinst and semantic class scores xi,sem ∈ RK are predicted for each point
pi.
Equal to Equation 4.1, the losses Linst and Lsem are summed up for the overall
loss function. The computation of Linst differs from the presented instance loss
functions in Section 3.1.2 as there are specific target feature vectors. We apply
the mean squared error function

Linst =
1

N

N∑
i=0

(xi,inst − tI(i))2. (4.4)

As before, Lsem is the cross entropy loss.

We use the DGCNN model for semantic segmentation from [WSL+18] for our
3D P-FN. The model is taken up to the second last layer as the base network to
learn a meaningful feature embedding for point clouds. As done for the 2D BEV-
FN, this yields a general encoding which is passed to two distinct branches where
it is refined with another PointNet layer. In the first one, the network learns the
transfer of the pre-estimated instance features to the complete set of points Xinst,
whereas characteristics relevant for semantic segmentation are extracted in the
second branch (Xsem).
Due to the proceeding of DGCNN, the point cloud is split up into blocks which
are handled separately. However, although the instance features are determined
for each block individually, the learned representations are still globally applica-
ble for instance segmentation of the complete scene. This results from the use of
the global target feature vectors. Therefore, the inferred feature vectors of the
single blocks can be merged into a common point cloud. For a point that received
multiple feature prediction, the mean of these is used as it is already done for the
semantic segmentation scores.

This results in the final output of this part of the framework: globally valid
instance features Xinst = (N,Finst) as well as semantic category scores Xsem =
(N,K).

4.3 Instance Grouping

After obtaining point-wise feature instances Xinst and semantic scores Xsem for
the whole scene, these are used to segment the set of points into the individ-
ual instance groups. We apply the Mean Shift algorithm to cluster the points
with respect to the learned instance feature representation. As described in Sec-
tion 3.1.2, this method does not require the total number of clusters as input and
is thus suited for the instance segmentation task.

45

Chapter 4. 3D-BEVIS 4.3. Instance Grouping

 (c) (d)

 (a) (b)

Figure 4.7: Mean Shift Clustering. For an input point cloud (a) with predicted
point-wise instance features (b), the point cloud is partitioned into
instance proposals by utilizing the Mean Shift clustering algorithm
(c). Ground truth instance annotations are shown in (d).

An example is shown in Figure 4.7. The learned instance features provide a good
basis for segmenting objects that are well viewable from a bird’s-eye perspective
like chairs or tables. However, difficulties occur for thin objects along the wall
like boards.

To deal with the problem that some objects are hardly identified from the
bird’s-eye view, we also take the semantic prediction into account. From the ob-
tained scores Xsem of the previous stage, the final class label `i of pi corresponds
to the category with highest value in Xsem,i.
For each proposed instance I, the semantic labels of all points belonging to this
proposal are considered. In case that more than one class is strongly represented,
the instance is split up (Figure 4.8). More specifically, we obtain a new instance
Ic for every class c if at least Thmin,c points in I have predicted semantic label c.
Thmin,c is chosen to be proportional to the average number of points per instance
of the respective class, Thmin,c = cN inst,c, c < 1. Points from I whose predicted
class label does not correspond to any of the new sub-instances are afterwards
assigned to an instance by regarding the k-nearest neighbors among the labeled
points.

46

4.3. Instance Grouping Chapter 4. 3D-BEVIS

 (c) (d) (e)

(a) (b) (c)

Figure 4.8: Post-processing of clustered scene. For an input point cloud (a),
the predicted semantic segmentation (b) is used to refine the initial
instance segmentation obtained after applying Mean Shift (c). This
yields the final instance segmentation (d). Interesting areas are out-
lined here. For comparison, the ground truth instance segmentation
is shown as well (e).

47

5
Experiments

In this chapter, we present evaluation results for 3D-BEVIS on 3D instance
segmentation. Furthermore, we compare our method to SGPN by Wang et
al. [WYHN18] which is currently the only other approach for the named task
that works directly on point clouds. We examine the performance on the two
datasets S3DIS and ScanNet which are described in Section 5.1 in more detail.
The underlying evaluation metric that is used for the comparison is outlined
subsequently in Section 5.2. We then describe training settings for both SGPN
(Section 5.3) and 3D-BEVIS (Section 5.4). Considering our own method, we also
explore alternative settings to justify our design choices. Afterwards, we compare
quantitative and qualitative evaluation results of both methods (Section 5.5).

5.1 Datasets

Our presented framework 3D-BEVIS as well as SGPN can be applied for instance
segmentation on large point cloud scenes. Although the number of 3D datasets
for semantic segmentation has largely increased recently, the fraction of those
with required instance annotations is still relatively small.
For this thesis, we focus on the large scale indoor datasets S3DIS [ASZ+16] and
ScanNet [DCS+17]. Both of them were also considered in the work of Wang et
al., thus allowing a fair comparison.

Stanford 3D Indoor Semantics Dataset (S3DIS) This indoor 3D dataset
consists of point cloud scans for six indoor areas from three different build-
ings [ASZ+16]. A total number of 272 rooms is included which can be asso-
ciated to certain room types like offices, conference rooms, hallways, or open
spaces. An example of such a room is depicted in Figure 5.1. The scans were
retrieved from Matterport cameras which yield relatively dense point cloud repre-
sentations. Both semantic and instance annotations are provided for each point.
Overall, there are 13 different categories that can be distinguished into structural

49

Chapter 5. Experiments 5.1. Datasets

(a) (b)

Figure 5.1: Stanford 3D Indoor Semantics Dataset (S3DIS). (a) The com-
plete area 6 of the S3DIS dataset composed of 48 rooms. (b) A point
cloud scan of a single room with rgb information (left), semantic (mid-
dle), and instance (right) label annotations. Points belonging to the
ceiling were removed to enable a better visualization.

Figure 5.2: ScanNet. An example scan of a scene with rgb information (left),
semantic (middle), and instance (right) label annotations. Points be-
longing to the ceiling were removed to enable a better visualization.

building elements (ceiling, floor, wall, beam, column, window, and door) and
furniture classes (table, chair, sofa, bookcase, and board). Furthermore, objects
that cannot be identified as any of these are labeled as ’clutter’.
As it is commonly done for segmentation evaluation on this dataset, we regard a
6-fold cross validation over the 6 areas and average the single results [QSMG17a].

ScanNet Equivalent to S3DIS, the dataset ScanNet also contains 3D recon-
structed scans from indoor scenes [DCS+17]. The original version includes 1513
rooms in total based on approximately 2.5M RGB-D images. An official split
of 1201 for training and 312 for testing is proposed. The dataset has recently
been extended by 100 additional scans which hold as test set for the new Scan-
Net Benchmark Challenge. In this thesis, we will follow the original split in our
evaluation to enable a valid comparison to [WYHN18].

Semantic annotations are provided with respect to the 40 labels used in the
NYU Depth V2 dataset [NSF12]. Usually, though, only a subset of 20 labels is

50

5.1. Datasets Chapter 5. Experiments

Figure 5.3: BEV for scene from VKitti dataset. Left to right: RGB, depth,
ground truth semantic segmentation, ground truth instance segmen-
tation for vehicle objects.

considered which is listed in Table 5.9. The classes ’floor’ and ’wall’ are not taken
into account for the instance segmentation task. In contrast to S3DIS, there are
regions that remain unannotated.
The dataset is provided by surface mesh files for which we utilize the code used
by [QYSG17a] to retrieve the required point cloud format. Furthermore, we also
transform the single scenes to axis alignment by making use of the respective
matrices that were released in the latest version.

Although we also intended to test our model on an outdoor dataset, we rejected
this plan due to lack of appropriate data. To the best of our knowledge, the only
potential dataset that offers at least partly object differentiating labels is Virtual
Kitti [GWCV16]. However, instance annotations are solely provided for objects
of the category ’car’ and ’van’ which only represent a minor part of the whole
point cloud. Furthermore, the density of the points within the whole scene varies
significantly. This also heavily influences the bird’s eye view rendering as depicted
in Figure 5.3. We therefore think that this dataset is not applicable for the current
version of our model.

Furthermore, we did not evaluate on NYU Depth V2 [NSF12] as it was done
for SGPN. This dataset consists of single RGBD images. These views can be
lifted into the 3D space, yielding partial 3D scans. However, this only produces
point clouds that model a rather small area. Thus, it does not appear to be of
that significance for our approach where we especially want to show that large
scale context can be leveraged for instance segmentation on point clouds.

51

Chapter 5. Experiments 5.1. Datasets

Data Pre-Processing

For our experiments, we consider several steps of pre-processing. Both 2D BEV-
FN and 3D P-FN of our pipeline pose certain requirements for the input data. For
the 3D feature networks like PointNet [QSMG17a] and DGCNN [WSL+18], we
deal with single blocks of points from a scene. This network structure is applied
in both SGPN and the second stage of 3D-BEVIS (P-FN). For the 2D instance
feature extraction network (BEV-FN) in our approach, we feed pre-rendered BEV
images into the pipeline.

Due to the immense number of points within a point cloud, we only consider
sampled subsets of points for each scene. Final predictions for these smaller point
clouds can be easily expanded to the original scenes by applying a k-nearest neigh-
bor proceeding. We generate an adequate subsampling by laying a grid over a
whole scene and determining a representative point for each occupied cell. For
each cell, we compute the mean of the x, y, z-position as well as the r, g, b-values
of all points that are placed within this cell. The semantic and instance labels
are set to the combined majority vote. We choose a cell size of 3cm for our ex-
periments.

Regarding the 3D feature network models, we handle the input data similar to
the proceeding in [QSMG17a]. Each point cloud corresponding to a room is split
up into blocks of fixed area. This is done by using a sliding window that moves
along the groundplane. In contrast to the training procedure of Qi et al., we
generate new blocks each epoch which vary slightly due to small random shifts
of the centroid position. By doing this, we get additional data augmentation.
Moreover, we consider cylindrical blocks. We choose the base area such that it
surrounds a square with a side length of 1m for S3DIS and 1.5m for ScanNet.
Within each block, a fixed number of points is uniformly sampled. Each point is
represented as a 9-dimensional feature vector, including x, y, z-coordinates, r, g, b-
color values as well as normalized spatial coordinates x′, y′, z′. As it is sufficient
during training, we only predict the labels for the sampled subset of points and
consider the result for each block individually. For testing, we derive labels from
neglected points by applying a voting among the k nearest points that obtained a
prediction. Moreover, we need to merge the results within overlapping areas. For
the semantic segmentation scores, this can simply be done by averaging over the
softmax score predictions corresponding to a point. We also apply this technique
to our approach for merging a point’s instance feature. However, as the similarity
features from SGPN are highly block dependent, it is not possible to proceed with
them in the same way. Thus, a special block merging algorithm was proposed
which we presented in Section 3.3.3.

We refer the reader to Section 4.1 for a general description of generating bird’s-
eye views from point clouds. The resolution is chosen to be 3cm for the S3DIS
dataset and 5cm for ScanNet scenes. Particular attention needs to be paid to

52

5.2. Evaluation Metrics Chapter 5. Experiments

the ceiling of the rooms. Regarding the S3DIS dataset, we have a full ceiling
for every room. As this is clearly meaningless in the BEV image, we ignore the
highest points within a range of 2.5cm for each cell during the rendering process.
By doing this, we are able to deal with noisy points along the ceiling as well as
several ceiling elements at different heights in a single room. The scenes from
ScanNet are more irregular concerning this aspect. Only some of the rooms con-
tain ceiling components and the represented ceiling is not always complete. We
therefore decided to remove all points that are within the highest ten percent of
each room. Another problem occurs from the fact that the rooms vary a lot in
their size. This leads to different sizes along the BEV images as well. However,
for the training, fixed size input data is required. We therefore choose the dimen-
sions regarding the mean of the height and width along the training pictures. For
an in-between evaluation on the testing data as well as the final instance feature
prediction for the subsequent stage of the pipeline, the whole BEV images are
taken into account. During training, we add data augmentation by randomly
scaling the image within a small range and flipping it along either of the axes.
To obtain images of fixed size, we either randomly crop a fitting section or place
the view in an otherwise empty image.

5.2 Evaluation Metrics

The task of instance segmentation on point clouds is largely unexplored so far.
Therefore, there is no generally established metric for evaluation yet. To the best
of our knowledge, the only other approach on instance segmentation on point
clouds is SGPN [WYHN18]. As we want to compare our method with the results
achieved by Wang et al., we will follow their used evaluation scheme to allow a fair
comparison. However, we also look into shortcomings and possible alternatives.
In the following, we present the criterion used for our baseline approach. More-
over, we will later provide an outlook at the evaluation scheme used in the recently
published ScanNet Benchmark Challenge [DCS+17].

Wang et al. first decide for each detected instance whether it has a valid
counterpart in the ground truth segmentation and thus, labeling it as TPinst (true
positiv) or FPinst (false positive) on the instance level. An instance proposal is
marked as TPinst if it has an high overlap with any ground truth object. To
formalize this, the intersection over union (IoU) is computed between a predicted
instance proposal and each ground truth group. In general, the IoU is defined as

IoU =
TPpxl

TPpxl + FPpxl + FNpxl

. (5.1)

Here, TPpxl, FPpxl, and FNpxl are defined on the pixel-level. TPpxl indicates
the number of pixels which lie in the overlapping section of both point groups,

53

Chapter 5. Experiments 5.2. Evaluation Metrics

whereas FPpxl, FNpxl count those points that only belong to either the predicted
or the ground truth instance. In case that the IoU to any ground truth object
is greater than a threshold τ , the predicted instance is considered to be a true
positive. An additional restriction which matters for threshold smaller than 0.5
is that each ground truth instance can only be associated to a single predicted
proposal. Possible other predicted objects that would get assigned to the same
ground truth instance are regarded as false positive.
From this, we can determine the precision and recall for a specific threshold τ
with:

Precτ =
TP τ

inst

TP τ
inst + FP τ

inst

Recτ =
TP τ

inst

TP τ
inst + FN τ

inst

(5.2)

Wang et al. propose to calculate the average precision (AP) for measuring
the performance of their method. They do not make it clear how exactly they
define this score. In general, the AP is the average over precision scores for
a ranked output and can be interpreted as the area under the precision-recall
curve [HAGM14]. In our case, however, there is no ranked output as we get a
single instance id for every pixel and final scores are regarded for different IoU
thresholds independently. Thus, a direct transfer to our problem is not obvious.
We therefore decide to interpret the stated term ’AP’ as the average over preci-
sion scores for the different categories.

Class associations are set to each predicted instance with respect to a majority
voting of the predicted semantic labels among the corresponding pixels. It should
be further noted that, in this setting, instance predictions with a sufficient IoU to
a ground truth object are always counted as true positives even if their inferred
semantic label differs from the correct category.
Wang et al. present detailed category-wise results for the AP based on IoU with
a threshold of 0.5. Besides this, they also report the mean AP for the thresholds
0.25 and 0.75. Predicted instances classified as ’clutter’ are ignored when com-
puting the mean AP. We will follow this setting in our evaluation.

We could observe several shortcomings when using the proposed metric in our
experiments.
To start with, the way the semantic prediction influences the result leaves room
for discussion. Firstly, an object might be labeled as true positive, even if its
predicted class is not correct. Secondly, objects affect the AP of the category
they were assigned to with respect to the prediction. This means our prediction
might add a bias to the final mean over all classes. Thirdly, disproportionately
large object instances might absorb smaller objects without a negative effect on
the AP score.
Regarding the first aspect, this does not seem unreasonable to us. Both SGPN

54

5.2. Evaluation Metrics Chapter 5. Experiments

as well as our 3D-BEVIS depend on a strong backbone point cloud network for
inferring semantic labels. Hence, the main focus of both approaches is not to
improve the learned semantic features. One could now think of a well segmented
object that is wrongly categorized, for example, as a chair instead of a sofa. We
think it is meaningful to concentrate on the instance segmentation aspect only.
Thus, we will follow the setting by Wang et al.
It is woth to consider, however, whether the obtained instance segmentation can
be used to improve the semantic prediction. For this, each point gets assigned
the label that is associated with the object it belongs to. We will evaluate on
both the original semantic predictions as well as the segmentation resulting after
taking instance correspondences into account. For the evaluation of the semantic
segmentation, we follow the evaluation in [QSMG17a] and report the mean IoU
(mIoU) over all classes as well as the overall accuracy (oA).
The second problem is actually caused by the setting that a wrong semantic pre-
diction is accepted. This makes the assignment to a category during evaluation
ambiguous. In the proposed evaluation scheme, an inferred instance increases
the number of true or false positives of its predicted class and thus affects the
final score of this category. Referring to the previous stated example, one can
think of a model that is able to perfectly segment chair objects but is weak for
sofa instances. However, while labeling chairs correctly, some sofas are wrongly
predicted to be chairs as well. This results in a misleading decrease of the AP
score for the chairs category. A possible alternative would be, to use the majority
vote based on the ground truth labels of the points within a predicted instance.
This would also help to detect the categories where our model is weak.
Finally, the third problem shows that our AP metric might not be very informa-
tive by its own as it is biased by methods that mainly segment large objects. This
affects the case where the whole point cloud is segmented into a small number
of instances. Each segment corresponds to a big object in a scene but besides
the correct points, it also contains points from smaller objects. For example,
all points belonging to a big table might be grouped together but points from a
small table next to it are also incorrectly included. Depending on the threshold
for the IoU criterion, the large object might still be considered as correct whereas
missing small objects have no negative effect on the score. We therefore propose
to also take the averaged recall into account. This measures the ratio of found
correct instances respective to the total number of objects. To get valid results,
we categorize instances according to the ground truth based majority vote.

The evaluation scheme used in the recently published ScanNet Benchmark
Challenge [DCS+17] differs in several aspects. Contrary to our approach, where
each point is assigned to exactly one object, a list of instance proposals that
are detected in the scene is expected. Each of this proposals is determined by
the points that belong to it, the predicted class of the object and a confidence
score. This means in particular that a single point might be associated to several

55

Chapter 5. Experiments 5.3. SGPN

proposals. As the given instances can be ranked according to the confidence score,
they are able to determine the AP in its original meaning from the precision-
recall curve. Furthermore, only those instance proposals are marked as true
positives whose matching ground truth object’s label is equal to the predicted
class. All in all, it is more related to the evaluation criteria used in popular 2D
instance segmentation tasks like PascalVOC [EVGW+10], COCO [LMB+14], and
CityScape [COR+15] which are based on common metrics for object detection.
This evaluation scheme is not directly transferable to our setting as we do not aim
to get several probably overlapping proposal groups. Instead, we get a complete
partition of the point cloud which makes our approach more related to the task of
semantic segmentation. Deciding for confidence scores does not seem reasonable.
However, we will follow the proceeding in [DCS+17] regarding the ’floor’ and ’wall’
category in the ScanNet dataset and exclude them from our averaged score.

5.3 SGPN

We consider SGPN from [WYHN18] as our baseline. As described in Section 3.3,
this approach aims to partition a point cloud into the individual present objects.
Their outcome format matches the result of our own framework and is therefore
an obvious choice for our baseline. An implementation of SGPN was published
recently by Wang [Wan18a]. However, we decided to put our own version into
practice. For one reason, the code was not available when we started this thesis.
Another intention was to check how easily the results presented in the paper could
be reproduced. Furthermore, we tested the influence of the superior 3D feature
extraction networks PointCloud++ [QYSG17a] and DGCNN [WSL+18] which we
applied as an alternative to PointNet [QSMG17a] as used in the publication. We
implemented our own version of SGPN with Tensorflow following the description
in [WYHN18].
In this section, we will outline the implementation setting, including the training
proceeding, used hyper-parameters, and the derivation of the various required
thresholds.

5.3.1 Implementation Details

As described in Section 3.3, the SGPN framework from [WYHN18] is arranged
to have a point cloud embedding network at the beginning whose resulting point
features are then used for the three subtasks of similarity measuring, confidence
estimation and semantic labeling. We evaluate on three different variants of
the SGPN framework which differ in the used point cloud feature networks.
The examined networks are PointNet [QSMG17a], PointNet++ [QYSG17a] and
DGCNN [WSL+18]. For our implementation, we consider the network architec-
ture of the respective semantic segmentation model up to the second last layer.
Independently from the chosen model variant, the resulting features are passed to

56

5.3. SGPN Chapter 5. Experiments

each of the three branches where they are forwarded through a single PointNet-
layer.

The general training setting when applying PointNet as the 3D feature extrac-
tion network is merely adapted from [QSMG17a]. Each point of the input point
cloud is characterized by 9 feature channels and a point cloud is split into blocks
as described in Section 5.1. We sample 4096 points in each block both at train
and test time. During testing, we apply k-nearest neighbor on all points that
were not sampled.
As stated in [Wan18a], we pretrain the PointNet-based feature extraction model
with a large batch size. More precisely, we choose a batch size of 32 and use the
same learning rate as described before. This training is performed for 50 epochs.
Afterwards, the training of the complete SGPN model is started using only LSIM
for the first 5 epochs. The batch size is decreased to 4 which is in our opinion
due to the highly increased memory usage resulting from the similarity matrix.
The model is trained for 250 epochs.
Both PointNet and SGPN are trained using the ADAM optimizer [KB15]. At the
beginning, the learning rate is set to 0.0005 and divided by 2 every 20 epochs.
Regarding the batch normalization, the decay rate is initialized with 0.5 and in-
crementally increased to 0.99.
According to [WYHN18], the partial loss functions Lsim, Lcf , Lsem are summed
up without any weighting. However, we applied a weighting factor of 10 for both
Lcf , Lsem to have the single loss values within a similar magnitude.
Wang et al. provide the specific value for several of their hyper-parameters. For
the similarity loss function from Equation 3.16, the constants K1, K2 are set to 10
and 80 respectively. The value for α is initially set to 2 and increased by 2 every
5 epochs. By doing this, we force the network over time to concentrate more on
separating features of different instances but equal classes. The threshold for the
confidence map Thc is set to 0.1, the minimum number of points in a proposed
group Thnum is set to 200, and proposals are merged if they have an IoU of at
least Thiou = 0.6.
We also tested the training with slightly different parameter settings for the
weighting of the loss functions, the number of epochs where only Lsim is used
and the constant K1. However, as we could not notice a significant improvement
of the results and the training process, we remained with the proposed values.

There is a number of thresholds which are estimated based on a validation set.
As Wang et al. did not specify how they chose this subset from the training set,
we simply sampled a small number of rooms from the training data. We ensured
that each class is present across these scenes and took at least one room from
each training area.

57

Chapter 5. Experiments 5.3. SGPN

We use the same setting for training the DGCNN model as it was done in
[WSL+18]. However, following [QYSG17a] for PointNet++, we only use the
points’ coordinates as input. Our implementation adapts available code for Point-
Net [QSMG17b], PointNet++ [QYSG17b], and DGCNN [Wan18b].

Thresholds

There is a number of threshold parameters for which the authors do not provide
any fixed values. On the one hand, we need to determine ThSc to get point-wise
proposals from the similarity matrix. On the other hand, category depending
thresholds Thnumc are used during a post-processing step to eliminate proposals
that are too small. Both kinds of parameters are estimated for each category
separately based on the validation set.

Wang et al. state that they use ’per-category histogram thresholding’ [WYHN18].
Hence, we computed category-wise histograms based on the pairwise similarity
between points and their correlation as depicted in Figure 5.4. We let hcn denote
the number of point pairs from the same object of class c whose similarity Si,j
falls into the n-th bin. Analogously, hcn describes the histogram for point pairs
related to different instances. As no further information was available, we decided
for two distinct criteria to determine suitable thresholds.
First, we considered the F-measure which is the weighted harmonic mean of pre-
cision and recall:

Fβ = (1 + β2)· Prec ·Rec
β2·Prec+Rec

(5.3)

where β is used for prioritizing either precision or recall. In the context of our
task, for a class c, different thresholds τ and corresponding F τ

βc
, we set

ThS,βc = argmax
τ

F τ
βc . (5.4)

We compute thresholds ThS,βc for each class c and β = {1.0, 0.75, 0.5}.

The second option that we take into account is the intersection of h and h.
That means

ThS,intersect = argmax
n

hn, where hi < hi. (5.5)

Based on experimental results presented in Table 5.1 we decided for threshold
ThS,β=0.5 for the successive part of the evaluation.

The second set of threshold Thnumc is used for validating the results from
the proposal merging step of Algorithm 1 based on the number of points within
a proposal. The thresholds are related to the mean number of points over all
instances from a class:

Thnumc = r· 1

| Ic |
∑
I∈Ic

[number of points in I] (5.6)

58

5.3. SGPN Chapter 5. Experiments

 Th ThS, b=1.0 S, intersect

 ThS, b=0.5

Figure 5.4: Estimation of similarity thresholds ThS based on class-wise
histograms. The depicted histogram corresponds to points of chair
objects from the S3DIS dataset. For each point belonging to a chair,
the distance in the feature space to points of the same object as well
as all other points is regarded. The different resulting thresholds
ThS,intersect, ThS,β=1.0, and ThS,β=1.0 are shown as well.

Table 5.1: Evaluation results for different similarity thresholds ThS used
in the Group Merging algorithm (Section 3.3.2). Experiments
where performed using the basic SGPN implementation with Point-
Net on area 6 of the S3DIS dataset. Whereas the AP is relatively
consistent, we notice an increase of the AR score when enhancing on
precision for the F-measure. However, smaller β showed significantly
worse results.

AP0.5 AR0,5

SGPN, PointNet Ths,β=1 40.51 37.56
Ths,β=0,75 41.12 41.65
Ths,β=0.5 41.16 45.45
Ths,intersect 40.94 42.47

with r � 1. For our experiments, we set r = 0.25. As before, we use the
validation set to estimate Thnumc .

Notes about the original code [Wan18a] There is a number of aspects that
we noted when we had a closer look on the implementation by Wang and compare

59

Chapter 5. Experiments 5.4. 3D-BEVIS

it to our solution. First of all, they still do not provide any information about
the choice of the validation set. Moreover, even as they make a pretrained model
available, they do not state for which test area they trained it. Furthermore, we
were not able to understand their functions about determining thresholds ThS
and computing the evaluation scores. Lastly, their computation of the IoU for
the semantic segmentation evaluation differs slightly from the calculation of Qi et
al. [QSMG17b] to which they compare their scores. Whereas Qi et al. compute
the number of true positive, false positive and false negative point predictions
over all rooms before computing the IoU, Wang computed the IoU score for each
room separately before averaging over all rooms. We tested both versions in our
3D-BEVIS, PointNet implementation and measured discrepancies of up to 9.4%
(27.84% using PointNet evaluation scheme, 37.24% for the scheme used by Wang
on area 2) on single areas in favor for the proceeding of Wang.

5.4 3D-BEVIS

In this section, we present an ablation study to justify the design of the net-
work architectures as well as the choices of parameters for the separate parts
of our 3D-BEVIS network. Furthermore, we provide further details about our
implementation. For this, we sequentially regard the three different parts of the
framework, namely BEV-FN, P-FN, and the final clustering stage.

5.4.1 2D BEV-FN

As stated previously, we were motivated to keep the number of trainable parame-
ters in our network limited due to the small set of training data. For this reason,
we took inspiration from U-Net [RFB15] which was designed for learning from a
small amount of data for the task of 2D semantic segmentation.

The basic network architecture is described in Section 4.1. In our primary
version, we consider a sequence of four convolutional blocks followed by two ad-
ditional convolutional layers. This results in an intermediate representation where
the spatial size is decreased to an eighth of the input dimension and the number
of feature channels equals 128.
Regarding the instance loss, we use the L2 loss from Equation 3.6 for our basic
BEV-FN version with margin δdist = 10. The influence of the exponential loss
variant from Equation 3.8 and the cosine similiarity (α = 0.8) measurement in-
troduced in Equation 3.9 are discussed in the following ablation study.

We tested several variations of the proposed network architecture. The effects
of these settings are tested on area six of the S3DIS dataset. Training was ex-
ecuted for 2000 epochs. We measure the performance considering the AP and
AR with respect to a threshold of 0.5 for the intersection over union. To obtain

60

5.4. 3D-BEVIS Chapter 5. Experiments

Table 5.2: Ablation study for BEV-FN. We evaluate different versions of our
2D instance feature network on the sixth area of the S3DIS dataset.
We compare their performance regarding the AP and AR with an
IoU threshold of 0.5, the semantic IoU and two control loss functions.
Unless otherwise stated, we set Fg = 32 and use the L2 loss. The
setting used for further evaluation are marked in bold letters.

AP0.5 AR0.5 IoU (Sem.) ldiscr,var ldiscr,dist

BEV-FN Finst = 4 43.78 37.68 34.63 0.67 5.94
Finst = 8 40.93 36.3 38.65 0.62 5.59
Finst = 16 43.22 35.6 36.16 0.6 5.93
Finst = 32, Fg = 64 40.63 37.46 35.84 0.67 5.6

BEV-FN, without Lsem Finst = 8 20.08 34.64 0.69 5.6
Finst = 16 27.86 36.86 0.64 5.4

BEV-FN, Fg = 128 Finst = 8 35.31 41.94 32.38 0.59 5.18
Finst = 16 43.53 38.86 40.96 0.62 5.57

BEV-FN, deep Finst = 8 46,08 41.25 35.7 0.61 5.35
Finst = 16 45.91 40.18 36.12 0.56 5.36

BEV-FN, deep, Fg = 128 Finst = 8 42.24 41.48 31.41 0.59 5,14
Finst = 16 48.59 43.26 41.01 0.61 4.69

BEV-FN, cos-loss Finst = 16 29.92 35.17 39.12 0.17 71.44
BEV-FN, exp-loss Finst = 16 41.17 30.59 35.58 0.57 9.3

instances which are required for calculating these scores, we apply Mean Shift as
this method is also used for the final output later. However, these scores have to
be treated with caution since they depend on an additional clustering algorithm.
Thus, we also have a look on the semantic IoU and the outcomes of the alternative
discriminative loss functions from Equation 3.11. Detailed results can be found
in Table 5.2. We found that for some configurations there were high variances
regarding the results from several training runs with the same setting. Thus, we
focused on the settings which proved to be more consistent even if scores were a
little bit lower.

Firstly, we compared the impact of different feature dimensions. Following the
assessment in [ND16], we decided to use a selection of small features numbers
Finst ∈ {4, 8, 16, 32}. We set Fg = 32 for Finst = 4, 8, 16. As Fg contains infor-
mation for both the instance and semantic segmentation task, we expect that Fg
should reasonably be higher than Finst. Thus, for Finst = 32 we set Fg = 64.
The resulting scores are around the same magnitude. However, the network for
Finst = 32 showed a much faster tendency to overfit. The usage of Finst = 4
showed most variations over several training procedures. Thus, we limit poten-
tial number of feature dimensions to 8 and 16.
Next, we tested the usefulness of the semantic segmentation branch by training
the network without Lsem. The strong decrease of the AP scores justifies the

61

Chapter 5. Experiments 5.4. 3D-BEVIS

integration of the semantic labeling.
Furthermore, we tested the impacts of a high dimension for the general features
with Fg = 128, a deeper version using an additional convolution block, and the
combination of both. Again, we needed to make a trade-off between good scores
and stable training. The most promising variant to us seemed to be the deeper
version of the network with Finst = 8. We did not test for an even deeper network
as previous evaluation had shown how easily the training results became unstable
for an increase of parameters.
Finally, we also tested alternative loss functions on the basic BEV-FN. Here, we
only got useful results for Finst = 16. We get a relatively low AP score when
using the cosine loss function. This might be due as the applied clustering al-
gorithm is based on the Euclidean distance. Although the scores resulting from
the usage of the exponential similarity measure are not overwhelming, we take
this loss function in consideration in the next step to explore whether it might
be more useful in the later steps.

We decided for a subset of four configurations based on which we make further
studies for the P-FN in the second part of our framework. The chosen settings
are marked in the table with bold letters. By doing this, we want to ensure that
the learned features from BEV-FN are suitable for being transferred to the point
cloud.

A fixed dimension for the input images is required during training. We choose
a multiple of the total down-scaling factor of the encoder network. Thus, we
avoid the problem of inconsistent sizes during the upsampling.
During testing, we only consider the output of the instance feature branch. The
resulting matrix (W,H,Finst) is used for the input of the following P-FN.

5.4.2 3D P-FN

The second stage for transferring the instance features from the BEV to the point
cloud consists of a 3D feature extractor network. This is partly comparable to
the usage of PointNet in SGPN which is used to learn the similarity relationships
between points. However, in contrast to this approach, we do not aim to learn
a new feature embedding. Instead, we want to learn point-wise representations
which match to those retrieved from the bird’s-eye view.

We decided for DGCNN as our main point cloud feature extractor. This model
looks most promising for our intentions as we do not only regard each point on
its own to extract a local descriptor but take neighbors with respect to the cur-
rent stage of the feature space into account. We expect that this makes it easier
for points that were projected to the BEV to delegate their inferred features to

62

5.4. 3D-BEVIS Chapter 5. Experiments

Table 5.3: Confimation of BEV-FN architecture based on results of the
following P-FN. We compare the capability of promising BEV-FN
settings from the previous section. As before, we use AP0.5, AR0.5 and
semantic IoU for comparing the performance.

AP0.5 AR0.5 IoU (Sem.)

BEV-FN Finst = 8 66.02 38.82 76.46
Finst = 16 65.54 36.08 76.32

BEV-FN, deep Finst = 8 70.78 45.34 76.01
BEV-FN, exp-loss Finst = 16 65.81 34.13 75.92

unregarded points of the same object. Nevertheless, we also present results from
a version which utilizes PointNet for this task for comparison.
Similar as was done in SGPN, we apply the respective network until the second
last layer. The resulting point features are then passed again to a semantic and
an instance feature branch.
We use the same training setting as descripted for SGPN as these have proven to
be appropriate for this kind of network.

We trained the model with the outcome of successful settings from the previous
section. We report results in Table 5.3. As before, we consider the AP, AR and
semantic IoU.

It can be seen that the deeper version of BEV-FN outperforms the other mod-
els by a large margin. In the following part of this thesis, we will keep this
architecture and refer to it as BEV-FN.

5.4.3 Clustering

We use a Mean Shift clustering algorithm for grouping the points according to the
learned instance features. For our implementation, we utilized the Mean Shift
function from scikit-package [PVG+11]. The algorithm requires only a single
parameter which determines the bandwidth (see Section 3.1.2). Scikit provides
a function for estimating this parameter depending on the current point cloud.
However, we found out that we get better results using a constant bandwidth of
1.0 along our test set.

In the following part, we examine two aspects for the clustering part of our
network.
First, we execute Mean Shift on different feature settings. Besides the actual
instance features Pinst = (N,Finst), we also considered using only the semantic
logits Psem.logits = (N,K) to show that Pinst hold additional useful information

63

Chapter 5. Experiments 5.5. Results

Table 5.4: Different settings for clustering points into instances. We com-
pare results when using different features as well as the impact of the
proposed post-processing step.

AP0.5 AR0.5

inst 71.25 50.27
inst, post-process 79.87 62.17
inst+sem.logits 65.05 59.03
inst+sem.logits, post-process 80.82 65.05
sem.logits 33.78 44.75

for instance segmentation. Moreover, we tested whether a point-wise concate-
nated feature vector Pinst+sem.logits = (N,Finst + K) could lead to improvement.
This was motivated by the fact that nearby objects often got a relatively similar
instance feature. Nevertheless, when considering the category dependent scores
instead of the final class labels only, we also take into account that the semantic
prediction of some points might be rather uncertain.
Furthermore, we tested the influence of our post-processing step where we split
up those instances, in which more than one class is highly represented.

We show results for different configurations in Table 5.4. It can be seen that
applying the post-processing split-up boosts the performance of our method sig-
nificantly for both the AP and the AR measure. Regarding the choice of fea-
tures, we see superior performance regarding the AP score when considering the
instance features only. However, for the combination of instance features and
semantic logits, we observed a large improvement for the achieved recall. Over-
all, the combination of features and a subsequent post-processing of the received
segmentation promises the best results.

5.5 Results

We present quantitative and qualitative results for our proposed 3D-BEVIS frame-
work on the popular datasets S3DIS and ScanNet. Furthermore, we compare the
achieved performance to those of our SGPN variations as well as the original
SGPN scores reported in [WYHN18].

5.5.1 S3DIS

We present scores for each category regarding the AP and AR for IoU with
threshold 0.5 in Table 5.5 and Table 5.6 respectively. We will first focus on the
AP scores as these were used in [WYHN18] as well. Besides the mean over all
categories excluding ’clutter’, we also report the mean regarding only the five

64

5.5. Results Chapter 5. Experiments

Table 5.5: Category-wise AP0.5 on S3DIS.
Mean Meanobj ceiling floor wall beam column window door table chair sofa bookcase board

SGPN* [WYHN18] 54.35 39.44 79.44 66.29 88.77 77.98 60.71 66.62 56.75 46.90 40.77 6.38 47.61 11.05

SGPN, PointNet 42.90 36.70 78.15 80.27 48.90 33.65 16.97 49.63 44.48 30.33 52.22 23.12 28.50 28.62
SGPN, PointNet++ 47.44 43.82 68.35 72.23 53.53 49.78 18.62 32.72 43.05 43.07 64.92 54.73 43.48 24.75
SGPN, DGCNN 58.56 53.09 85.85 83.15 61.65 52.82 47.60 55.12 62.22 34.97 66.02 42.50 55.93 54.85

3D-BEVIS, PointNet 51.66 42.78 77.15 93.98 66.23 41.42 41.63 59.75 53.43 41.65 60.52 15.77 42.87 25.48
3D-BEVIS, DGCNN 65.66 61.62 71.00 96.70 79.37 45.10 64.38 64.63 70.15 57.22 74.22 47.92 57.97 59.27

Table 5.6: Category-wise AR0.5 on S3DIS.
Mean Meanobj ceiling floor wall beam column window door table chair sofa bookcase board

SGPN, PointNet 46.37 31.73 74.05 91.17 45.68 43.30 33.08 54.17 51.77 31.22 44.62 22.22 23.95 36.65
SGPN, PointNet++ 52.39 40.41 67.25 85.67 50.85 76.68 42.58 47.38 56.22 46.82 42.02 30.12 37.77 45.33
SGPN, DGCNN 61.45 50.09 75.05 95.17 59.50 50.40 64.40 75.32 67.10 44.85 62.88 38.28 44.48 59.97

3D-BEVIS, PointNet 44.60 33.70 64.52 86.77 49.27 44.07 32.08 48.62 41.42 41.32 45.22 38.13 31.38 12.45
3D-BEVIS, DGCNN 54.74 49.12 65.22 87.50 60.25 47.73 49.05 51.08 50.45 53.13 56.00 44.25 42.23 50.00

furniture object classes (table, chair, sofa, bookcase, board) as we consider these
to be more interesting for later application tasks.

Regarding the results of the SGPN approach, it can be observed that apply-
ing the superior models PointNet++ and DGCNN with respect to the semantic
segmentation task also leads to improved performance for instance segmentation.
However, we miss the reported scores by Wang et al. by a large margin. This
might be due to a bad choice of the various threshold parameters. As we spent
a considerable amount of time on testing several parameter settings, this shows
that the estimation of these thresholds complicates the reproduction of the pro-
posed approach. Nevertheless, we were able to attain slightly better results when
regarding only object categories.
In comparison, our model outperforms SGPN by a large margin. Even when
using the much weaker PointNet for transferring features along the point cloud,
we nearly reach the scores presented by Wang et al. and significantly exceed the
results of our own PointNet-based SGPN model. Considering only the subset
of object classes, we already observe a significant improvement compared to the
reported scores of SGPN for 3D-BEVIS network when using PointNet. Our final
model even nearly doubles the provided scores.

Furthermore, we examined the category-wise AR scores. Here, we can confirm a
superior performance when using better 3D point cloud networks. When compar-
ing SGPN to 3D-BEVIS with respect to the used feature model, our framework
shows weaker outcomes. However, the differences become less significant or even
reverse when considering only real object classes.

We also present AP and AR scores regarding different thresholds for the IoU
in Table 5.7. A general dominance of our 3D-BEVIS model can be observed.
However, we noticed that the scores for different thresholds vary much more for
our implemented models compared to the reported scores by Wang et al.

65

Chapter 5. Experiments 5.5. Results

Table 5.7: Instance segmentation results for S3DIS regarding different
thresholds for IoU. Metrics are AP(%) and AR(%). Moreover, we
present scores for the setting that only semantically correct labeled
instances can be count as true positives.

AP0.25 AP0.5 AP0.75 AP0.5, correct class AR0.25 AR0.5 AR0.75

SGPN* [WYHN18] 59.85 54.35 43.09

SGPN, PointNet 62.47 42.91 23.89 64.03 46.82 25.52
SGPN, PointNet++ 64.27 47.44 27.64 70.05 52.39 30.85
SGPN, DGCNN 70.73 58.56 39.73 68.00 61.45 42.56

3D-BEVIS, PointNet 67,29 51,65 27,36 48.40 60,47 44,61 23,62
3D-BEVIS, DGCNN 78,45 65,66 46,72 62.47 67.12 54.75 38.81

Table 5.8: Semantic segmentation evaluation on S3DIS. Metrics are mean
IoU (%), and overall accuracy (%). As our own experiments were con-
ducted on the downsampled point clouds, small variations compared
to the original reported scores are expected.

Mean IoU (Sem.) oA (Sem.)

SGPN, PointNet 48.27 71.07
3D-BEVIS, PointNet 46,53 76,88

(refinement) 46.01 76.39
PointNet* [QSMG17a] 47.71 78.62

SGPN, PointNet++ 57.68 76.21

SGPN, DGCNN 59.29 80.71
3D-BEVIS, DGCNN 58.37 83.69

(refinement) 58.32 83.19
DGCNN* [WSL+18] 56.1 84.1

In Table 5.8 we present achieved results of the different models when evaluating
the semantic segmentation and compare them to the scores in the corresponding
original papers. Besides the original point-wise inference of class labels, we also
examine a refined version of the segmented point cloud with respect to the pre-
dicted instance segmentation. For this, we assign each point the class label of the
instance it belongs to.
In contrast to what Wang et al. stated in their work [WYHN18], we cannot
observe an overall improvement of the semantic scores. Whereas we see improve-
ment regarding the mean IoU for most cases, the overall accuracy gets worse. No
significant differences can be observed between the original segmentation and the
refined version.

66

5.5. Results Chapter 5. Experiments

Table 5.9: Category-wise AP0.5 on ScanNet.
Mean Mean wall floor cabi- bed chair sofa table door win- book- pic- coun- desk cur- fridge shower toilet sink bath- other

(SGPN) net dow ture ter tain curtain tub furniture

3D-BEVIS 53.80 57.73 70.30 97.00 29.70 78.30 75.60 65.00 68.50 36.80 37.40 65.00 21.30 14.50 37.50 57.80 71.40 56.40 68.10 57.40 88.90 38.80
SGPN* [WYHN18] 31.82 35.09 46.90 79.00 34.10 43.80 63.60 36.80 40.70 0.00 0.00 22.40 0.00 26.90 22.80 61.10 24.50 21.70 60.50 35.80 46.20 -

Table 5.10: Category-wise AR0.5 on ScanNet.
Mean Mean wall floor cabi- bed chair sofa table door win- book- pic- coun- desk cur- fridge shower toilet sink bath- other

(SGPN) net dow ture ter tain curtain tub furniture

3D-BEVIS 51.86 54.75 51.90 92.80 37.40 73.60 64.00 75.30 64.30 37.20 23.80 75.30 5.10 19.20 47.20 44.30 61.40 75.00 82.50 35.70 74.20 38.00

We present qualitative results for both instance and semantic segmentation in
Figure 5.5. Different instances are distinguished by their color. The color of a
predicted object does not necessarily match to the color of the corresponding
instance in the ground truth segmentation. This results from the arbitrary order
of the instance indices. Due to the random color mapping and the limited number
of colors, it might happen that two close objects are assigned the same color.
However, especially for the ground truth representation but also for large objects
correctly labeled with respect to their category, it holds that objects belonging
to different classes are segmented as different objects.

Furthermore, we show intermediate 2D instance feature results for the same
subset of rooms in Figure 5.6.

5.5.2 ScanNet

We also tested 3D-BEVIS on ScanNet. According to previous reported evaluation
for semantic models, this dataset is more challenging compared to S3DIS as it
contains more classes and the data is more noisy [TPKZ18].
We present achieved scores for AP0.5 in Table 5.9. For comparison, we also list
the scores for SGPN from [WYHN18]. For this dataset, Wang et al. applied
PointNet++ for feature learning. As for S3DIS, our model outperforms SGPN
by a large margin. The resulting mean AP score is significantly lower compared
to the one from S3DIS.

For completeness, we again present category-wise results regarding the AR0.5

measure (Table 5.10) as well as mean scores for both AP and AR when using
different thresholds for IoU (Table 5.11).

A selection of qualitative results is shown in Figure 5.7. We present predicted
semantic and instance segmentation as well as a visualization of the predicted
instance features.

We also evaluated 3D-BEVIS on the current ScanNet Benchmark Challenge
[DCS+18]. For this a new test set of 100 scenes was provided. In Table 5.12,

67

Chapter 5. Experiments 5.5. Results

Figure 5.5: 3D-BEVIS results on S3DIS. Left to right: Input RGB point
cloud, semantic segmentation (ground truth, prediction), instance
segmentation (ground truth, prediction). While we have a fixed color
for each class, the color mapping for the single instances is arbitrary.

we report our received scores and compare them to those of the stated baseline
method. The provided baseline approach applies Mask-RCNN on 2D image data
and transfers the results onto the 3D point cloud data. Scores are based on the
metric of the challenge which differs in some points from our own measure. Thus,
a direct comparison to the previous scores is not possible.

68

5.5. Results Chapter 5. Experiments

Figure 5.6: Predicted instance features for 2D BEV. Left to right: Input
RGB and depth images, ground truth semantic and instance segmen-
tation, instance features. Instance features are mapped into RGB
space by applying PCA.

Table 5.11: Instance segmentation results on ScanNet regarding differ-
ent thresholds for IoU. Metrics are AP(%) and AR(%). Only
the subset of categories with respect to the benchmark challenge is
considered.

AP0.25 AP0.5 AP0.75 AP0.5, correct class AR0.25 AR0.5 AR0.75 AR0.5, correct class

3D-BEVIS 69.50 53.80 23.82 47.71 72.69 51.86 22.50 42.07

Table 5.12: Benchmark Challenge ScanNet.
avg ap bathtub bed bookshelf cabinet chair counter curtain desk door otherfurniture picture refrigerator shower curt. sink sofa table toilet window

AP 0.25 3DBEVIS 0.35 0.556 0.641 0.385 0.112 0.528 0.156 0.176 0.309 0.168 0.079 0.065 0.286 0.4 0.337 0.714 0.28 0.807 0.298
baseline 0.227 0.85 0.074 0.002 0.191 0.15 0.221 0.103 0.073 0.131 0.147 0.387 0.197 0.143 0.532 0.356 0.117 0.38 0.03

AP 0.5 3DBEVIS 0.225 0.556 0.53 0.074 0.033 0.368 0.026 0.033 0.096 0.084 0.028 0.023 0.095 0.279 0.119 0.575 0.176 0.807 0.153
baseline 0.053 0.333 0.002 0 0.047 0.002 0.001 0.02 0 0.031 0.021 0.184 0.065 0 0.014 0.107 0.02 0.109 0.004

AP 3DBEVIS 0.11 0.21 0.296 0.02 0.009 0.258 0.006 0.007 0.029 0.033 0.014 0.003 0.035 0.116 0.041 0.37 0.116 0.347 0.063
baseline 0.021 0.185 0 0 0.014 0 0 0.006 0 0.007 0.005 0.087 0.012 0 0.002 0.027 0.004 0.022 0.001

69

Chapter 5. Experiments 5.5. Results

5.5.3 Discussion

The presented results from the previous section demonstrate superior performance
of our 3D-BEVIS model compared to the current state of the art. We showed
that we beat SGPN on both S3DIS and ScanNet with respect to their self-chosen
evaluation metric.

Furthermore, we compared the interference time when applying the basic SGPN
model compared to our 3D-BEVIS model. For this, we measured the total re-
quired test time under equal condition on area six of the S3DIS dataset. It took
44 minutes for SGPN to compute the instance segmentation for the 53 rooms.
A major time-consumption here is the group merging algorithm where, among
other things, an instance proposal is processed for every point and many pairwise
comparing operations are executed. It should be noted that the time for com-
puting threshold values under consideration of the validation set is not included
here although it takes another considerable amount of time.
In contrast, 3D-BEVIS finishes the same evaluation after 10 minutes (BEV-FN:
2 minutes, T-FN: 8 minutes). The most tedious component for our method is the
application of the Mean Shift algorithm for the full point cloud. As the rooms
are split up into a total number of 2210 blocks, this results in a average time of
1.19 seconds per block or 49.81 seconds per room for SGPN and 0.22 or 11.32
seconds respectively for 3D-BEVIS.
We suppose that it is possible to speed up the SGPN procedure by considering
additional heuristic aspects. However, we show that our model in its basic version
is already much faster.

Nevertheless, we also observed some general limitations of our method. Some
of these become clear when regarding the visual results (Figure 5.5, 5.7).
One aspect concerns flat objects like walls. These just cover a relatively small
area in the BEV and are therefore difficult to distinguish regarding both semantic
and instance segmentation. Sometimes, instances do not appear in the rendered
image at all. For example, this often holds for boards. In these cases, it is
often still possible to segment a board instance due to semantic prediction on the
respective point cloud later. However, in case that there are several boards at a
single wall instance, there is no chance to distinguish the boards.
Another point is related to high objects like the ventilation system at the ceiling
of some example rooms. These are removed from the BEV together with the
ceiling. Thus, we never learn instance features for any of the contained points.
Similarly, we do not take the case of distinct ceiling instances into consideration.
Whereas the model relatively well distinguishes between objects that are scattered
around the place, a dense row of similar object leads to difficulties as no boundary
can be recognized in the BEV. This problem repeatedly occurs for chair or shelves
objects.
Furthermore, our model is not able to handle exceptionally elongated rooms like

70

5.5. Results Chapter 5. Experiments

hallways. As can be seen in Figure 5.8, it is nearly impossible for our model to
distinguish between single wall segments. This is probably due to the fact that
these kind of rooms are never seen in full size during training as a fixed image
size is used there.
However, we think that many off the named problems are tolerable regarding
real world applications. One could for example think of a robot which has to
navigate within an indoor environment. There would probably be no benefit for
it in distinguishing different parts of the ceiling. Moreover, in some cases, the
ground truth instance annotation itself is questionable as in the case of distinct
wall elements in hallways.
Overall, this complies with our motivation to put a special focus on the real object
categories.

71

Chapter 5. Experiments 5.5. Results

Figure 5.7: 3D-BEVIS results on ScanNet. Left to right: Input RGB point
cloud, semantic segmentation (ground truth, prediction), instance
segmentation (ground truth, prediction), predicted instance features.

72

5.5. Results Chapter 5. Experiments

(a) (b) (c) (d) (e)

Figure 5.8: Limitations of our approach. 3D-BEVIS shows weaknesses re-
garding long rooms like hallways that have nearly all instances along
the wall. For an input point cloud (a) with ground truth semantic
segmentation (b), the ground truth instance segmentation contains
several wall segments (c). However, the number of points correspond-
ing to these instances which can be seen in the BEV image is relatively
small, thus it is difficult to obtain good instance features for these (d).
As a result, we are able to distinguish between a single left and right
wall but cannot differentiate the single segments (e).

73

6
Conclusion

In this thesis, we presented 3D-BEVIS which is a novel framework for 3D instance
semantic segmentation on point clouds. Our model learns point-wise features,
which are used to obtain an instance segmentation by applying a simple cluster-
ing algorithm.
To overcome the difficulty of many current state-of-the-art 3D deep learning mod-
els for point clouds, which consider only blocks of points separately from each
other, we include global context from a bird’s-eye view rendering of the entire
scene. Regarding this, our model learns a globally consistent feature embedding
relevant for instance segmentation which it propagates to the whole point cloud.

We evaluated our method on the two realistic large-scale indoor datasets S3DIS
and ScanNet and showed that our model outperforms SGPN which is currently
the only other approach for this task. Especially, 3D-BEVIS demonstrates dom-
inant performance when it comes to segmenting instances from real-object cate-
gories.

Our approach leaves room for future work: First, we would like to include mul-
tiple views with respect to varying axes. For example, we think that a rendering
with a projection plane parallel to either the x-z or y-z plane will help to overcome
the difficulty arising from flat instances. Next, we plan to include information of
finer structures from the point cloud to update the instance feature representa-
tion. As the point cloud contains additional information that cannot be observed
in the bird’s-eye view, e.g. due to occlusion, we expect that this will improve
the final instance features. For this, we need to think of ideas for learnable fea-
ture extension that do not violate the global consistency of the original instance
features. Moreover, we would like to integrate our pipeline into an end-to-end
framework, combining the 2D and 3D network.

75

Chapter 6. Conclusion

In conclusion, we are convinced that our proposed approach shows good po-
tential for the considered task and might conduce as a valuable basis for further
extensions.

76

Bibliography

[ASZ+16] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis
Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic parsing
of large-scale indoor spaces. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[BGLSA17] Alexandre Boulch, Joris Guerry, Bertrand Le Saux, and Nicolas
Audebert. Snapnet: 3d point cloud semantic labeling with 2d deep
segmentation networks. Computers & Graphics, 2017.

[BKC15] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Seg-
net: A deep convolutional encoder-decoder architecture for image
segmentation. CoRR, abs/1511.00561, 2015.

[BNG17] Bert De Brabandere, Davy Neven, and Luc Van Gool. Semantic
instance segmentation with a discriminative loss function. CoRR,
abs/1708.02551, 2017.

[CDF+17] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber,
Matthias Niessner, Manolis Savva, Shuran Song, Andy Zeng, and
Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
environments. International Conference on 3D Vision (3DV), 2017.

[Chi17] Sasank Chilamkurthy. A 2017 guide to semantic segmen-
tation with deep learning. http://blog.qure.ai/notes/

semantic-segmentation-deep-learning-review, 2017. [Online;
accessed 7-October-2018].

[CHP+17] Liang-Chieh Chen, Alexander Hermans, George Papandreou, Flo-
rian Schroff, Peng Wang, and Hartwig Adam. Masklab: Instance
segmentation by refining object detection with semantic and direc-
tion features. CoRR, abs/1712.04837, 2017.

77

http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review
http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review

Bibliography Bibliography

[CMM02] Dorin Comaniciu, Peter Meer, and Senior Member. Mean shift: A
robust approach toward feature space analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2002.

[CMW+16] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-
view 3d object detection network for autonomous driving. CoRR,
abs/1611.07759, 2016.

[COR+15] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Scharwächter, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset. In CVPR
Workshop on The Future of Datasets in Vision, 2015.

[CPK+16] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin
Murphy, and Alan L. Yuille. Deeplab: Semantic image segmen-
tation with deep convolutional nets, atrous convolution, and fully
connected crfs. CoRR, abs/1606.00915, 2016.

[CPSA17] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic image
segmentation. CoRR, abs/1706.05587, 2017.

[DCS+17] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017.

[DCS+18] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet benchmark
challenge. http://kaldir.vc.in.tum.de/scannet_benchmark/,
2018. [Online; accessed 17-October-2018].

[DHL+16] Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, and Jian Sun.
Instance-sensitive fully convolutional networks. arXiv preprint
arXiv:1603.08678, 2016.

[DHS16] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic seg-
mentation via multi-task network cascades. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[DN18] Angela Dai and Matthias Nießner. 3dmv: Joint 3d-multi-view pre-
diction for 3d semantic scene segmentation. In Proceedings of the
European Conference on Computer Vision (ECCV), 2018.

[DRB+18] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed, Jürgen
Sturm, and Matthias Nießner. ScanComplete: Large-scale scene
completion and semantic segmentation for 3d scans. In The IEEE

78

http://kaldir.vc.in.tum.de/scannet_benchmark/

Bibliography Bibliography

Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[EKHL17] Francis Engelmann, Theodora Kontogianni, Alexander Hermans,
and Bastian Leibe. Exploring spatial context for 3d semantic seg-
mentation of point clouds. In IEEE International Conference on
Computer Vision, 3DRMS Workshop, ICCV, 2017.

[EKSL18] Francis Engelmann, Theodora Kontogianni, Jonas Schult, and Bas-
tian Leibe. Know what your neighbors do: 3d semantic segmenta-
tion of point clouds. In IEEE European Conference on Computer
Vision, GMDL Workshop, ECCV, 2018.

[EVGW+10] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John
Winn, and Andrew Zisserman. The pascal visual object classes
(voc) challenge. International Journal of Computer Vision, 2010.

[FWR+17] Alireza Fathi, Zbigniew Wojna, Vivek Rathod, Peng Wang,
Hyun Oh Song, Sergio Guadarrama, and Kevin P. Murphy. Se-
mantic instance segmentation via deep metric learning. CoRR,
abs/1703.10277, 2017.

[GLU12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, 2012.

[GOO+17] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Vic-
tor Villena-Martinez, and José Garćıa Rodŕıguez. A review on
deep learning techniques applied to semantic segmentation. CoRR,
abs/1704.06857, 2017.

[GWCV16] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Vir-
tualworlds as proxy for multi-object tracking analysis. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[HAGM14] Bharath Hariharan, Pablo Andrés Arbeláez, Ross B. Girshick, and
Jitendra Malik. Simultaneous detection and segmentation. In Com-
puter Vision - ECCV 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VII, 2014.

[HFL14] Alexander Hermans, Georgios Floros, and Bastian Leibe. Dense
3D Semantic Mapping of Indoor Scenes from RGB-D Images. In
International Conference on Robotics and Automation, 2014.

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick.
Mask R-CNN. CoRR, abs/1703.06870, 2017.

79

Bibliography Bibliography

[HTY18] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Pointwise con-
volutional neural networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[HWN18] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Recur-
rent slice networks for 3d segmentation on point clouds. CoRR,
abs/1802.04402, 2018.

[HXKH18] Yen-Chang Hsu, Zheng Xu, Zsolt Kira, and Jiawei Huang. Learn-
ing to cluster for proposal-free instance segmentation. CoRR,
abs/1803.06459, 2018.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[KB15] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. International Conference on Learning Representa-
tions (ICLR), 2015.

[KF17] Shu Kong and Charless C. Fowlkes. Recurrent pixel embedding for
instance grouping. CoRR, abs/1712.08273, 2017.

[LBSC18] Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen. PointCNN.
CoRR, abs/1801.07791, 2018.

[Li16] Bo Li. 3d fully convolutional network for vehicle detection in point
cloud. CoRR, abs/1611.08069, 2016.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick.
Microsoft coco: Common objects in context. In Computer Vision –
ECCV 2014, 2014.

[LQD+17] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. Fully
convolutional instance-aware semantic segmentation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[LQQ+18] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. CoRR,
abs/1803.01534, 2018.

[LS18] Loic Landrieu and Martin Simonovsky. Large-scale point cloud se-
mantic segmentation with superpoint graphs. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2018.

80

Bibliography Bibliography

[Lux07] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 2007.

[LWS+15] Xiaodan Liang, Yunchao Wei, Xiaohui Shen, Jianchao Yang, Liang
Lin, and Shuicheng Yan. Proposal-free network for instance-level
object segmentation. CoRR, abs/1509.02636, 2015.

[LYU18] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furious: Real
time end-to-end 3d detection, tracking and motion forecasting with
a single convolutional net. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[MS15] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convo-
lutional neural network for real-time object recognition. 2015
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 2015.

[NBG+17] Davy Neven, Bert De Brabandere, Stamatios Georgoulis, Marc
Proesmans, and Luc Van Gool. Fast scene understanding for au-
tonomous driving. CoRR, abs/1708.02550, 2017.

[ND16] Alejandro Newell and Jia Deng. Associative embedding: End-to-end
learning for joint detection and grouping. CoRR, abs/1611.05424,
2016.

[NSF12] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus.
Indoor segmentation and support inference from rgbd images. In
ECCV, 2012.

[PCD15] Pedro O. Pinheiro, Ronan Collobert, and Piotr Dollár. Learning to
segment object candidates. In NIPS, 2015.

[PLW08] Youngmin Park, Vincent Lepetit, and Woontack Woo. Multiple
3d object tracking for augmented reality. 2008 7th IEEE/ACM
International Symposium on Mixed and Augmented Reality, 2008.

[PSN+18] Christian Payer, Darko Stern, Thomas Neff, Horst Bischof, and
Martin Urschler. Instance segmentation and tracking with co-
sine embeddings and recurrent hourglass networks. CoRR,
abs/1806.02070, 2018.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine Learning in Python .
Journal of Machine Learning Research, 2011.

81

Bibliography Bibliography

[QLJ+17] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Ur-
tasun. 3d graph neural networks for rgbd semantic segmentation.
2017 IEEE International Conference on Computer Vision (ICCV),
2017.

[QLW+17] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum pointnets for 3d object detection from rgb-d data.
CoRR, abs/1711.08488, 2017.

[QSMG17a] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Point-
net: Deep learning on point sets for 3d classification and segmen-
tation. Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017.

[QSMG17b] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Point-
net: Deep learning on point sets for 3d classification and segmenta-
tion. https://github.com/charlesq34/pointnet, 2017. [Online;
accessed 27-September-2018].

[QYSG17a] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space.
CoRR, abs/1706.02413, 2017.

[QYSG17b] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space.
https://github.com/charlesq34/pointnet2, 2017. [Online; ac-
cessed 27-September-2018].

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. CoRR,
abs/1505.04597, 2015.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster
r-cnn: Towards real-time object detection with region proposal net-
works. In Advances in Neural Information Processing Systems 28.
Curran Associates, Inc., 2015.

[RMB+08] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai
Dolha, and Michael Beetz. Towards 3d point cloud based object
maps for household environments. Robotics and Autonomous Sys-
tems, 2008.

[RUG16] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Oct-
net: Learning deep 3d representations at high resolutions. CoRR,
abs/1611.05009, 2016.

82

https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2

Bibliography Bibliography

[SLD15] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convo-
lutional networks for semantic segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 2015.

[SMAG18] Martin Simon, Stefan Milz, Karl Amende, and Horst-Michael Gross.
Complex-yolo: Real-time 3d object detection on point clouds.
CoRR, abs/1803.06199, 2018.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, abs/1409.1556,
2014.

[TCA+17] Lyne P. Tchapmi, Christopher B. Choy, Iro Armeni, JunYoung
Gwak, and Silvio Savarese. Segcloud: Semantic segmentation of
3d point clouds. CoRR, abs/1710.07563, 2017.

[TPKZ18] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi
Zhou. Tangent convolutions for dense prediction in 3d. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[UCFB16] Jonas Uhrig, Marius Cordts, Uwe Franke, and Thomas Brox. Pixel-
level encoding and depth layering for instance-level semantic label-
ing. In German Conference on Pattern Recognition (GCPR), 2016.

[Wan18a] Weiyue Wang. Sgpn:similarity group proposal network for 3d point
cloud instance segmentation. https://github.com/laughtervv/

SGPN, 2018. [Online; accessed 27-September-2018].

[Wan18b] Yue Wang. Dynamic graph cnn for learning on point clouds.
https://github.com/WangYueFt/dgcnn, 2018. [Online; accessed
27-September-2018].

[WN18] Weiyue Wang and Ulrich Neumann. Depth-aware CNN for RGB-D
segmentation. CoRR, abs/1803.06791, 2018.

[WSK+15] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xi-
aoou Tang, and J. Xiao. 3d shapenets: A deep representation for
volumetric shapes. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[WSL+18] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M.
Bronstein, and Justin M. Solomon. Dynamic graph cnn for learning
on point clouds. CoRR, abs/1801.07829, 2018.

83

https://github.com/laughtervv/SGPN
https://github.com/laughtervv/SGPN
https://github.com/WangYueFt/dgcnn

Bibliography Bibliography

[WYHN18] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann.
Sgpn: Similarity group proposal network for 3d point cloud instance
segmentation. The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018.

[YK15] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by
dilated convolutions. CoRR, abs/1511.07122, 2015.

[YLU18] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d
object detection from point clouds. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[ZG17] Wei Zeng and Theo Gevers. 3dcontextnet: K-d tree guided hierar-
chical learning of point clouds using local contextual cues. CoRR,
abs/1711.11379, 2017.

[ZT18] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point
cloud based 3d object detection. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018.

84

	Introduction
	Related Work
	Semantic Segmentation
	2D Images
	RGB-D Data
	3D Data

	Object Detection
	Instance Segmentation
	Proposal-Based Methods
	Proposal-Free Methods

	Preliminaries
	Problem Formulation
	Semantic Segmentation
	Instance Segmentation

	Semantic Segmentation on 3D Point Clouds
	PointNet
	PointNet++
	Dynamic Graph CNN (DGCNN)

	Similarity Group Proposal Network (SGPN)
	Network Architecture
	Group Merging
	Block Merging
	Drawbacks

	3D-BEVIS
	Global Instance Features from Bird's-Eye View
	Propagation of BEV Features to the Point Cloud
	Instance Grouping

	Experiments
	Datasets
	Evaluation Metrics
	SGPN
	Implementation Details

	3D-BEVIS
	2D BEV-FN
	3D P-FN
	Clustering

	Results
	S3DIS
	ScanNet
	Discussion

	Conclusion
	Bibliography

