
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Informatik 8 (Computer Vision)
Fakultät für Mathematik, Informatik und Naturwissenschaften

Prof. Dr. Bastian Leibe

Master Thesis

3D City Reconstruction by Parsing Street
View Images and Map Data

vorgelegt von

Oleg Chernikov
Matrikelnummer: 351016

February 27, 2017

Erstgutachter: Prof. Dr. Bastian Leibe
Zweitgutachter: Prof. Dr. Leif Kobbelt





Eidesstattliche Versicherung

Oleg Chernikov 351016
Name Matrikelnummer

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Masterarbeit mit dem
Titel

3D City Reconstruction by Parsing Street View Images and
Map Data

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit
zusätzlich auf einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche
und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in gleicher
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Aachen, February 27, 2017
Ort, Datum Unterschrift

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zustständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften
des § 158 Abs. 2 und 3 gelten dementsprechend.

Die vorstehende Belehrung habe ich zur Kentnis genommen:

Aachen, February 27, 2017
Ort, Datum Unterschrift

iii





Contents

1 Introduction 1

2 Related work 3
2.1 Disparity methods . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 ELAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 SPS-Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Semantic segmentation . . . . . . . . . . . . . . . . . . . . . . . . 5

3 3D City Reconstruction 7
3.1 Building a 3D Model from OSM . . . . . . . . . . . . . . . . . . . 7

3.1.1 Parsing OSM data . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Parsing trees . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Building parsing . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Road parsing . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.5 Matching with street-view observations . . . . . . . . . . . 11

3.2 Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Truncated signed distance . . . . . . . . . . . . . . . . . . 16
3.2.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Octree interpolation . . . . . . . . . . . . . . . . . . . . . 20
3.2.5 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.6 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.7 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Unary potentials . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Pairwise potentials . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.5 Parameters and limitations . . . . . . . . . . . . . . . . . . 39

3.4 Facade Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Evaluation 49
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



Contents Contents

4.2.1 KITTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Oxford RobotCar . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 Integrated Depth Evaluation . . . . . . . . . . . . . . . . . 51
4.3.2 Facade Separation Evaluation . . . . . . . . . . . . . . . . 53
4.3.3 Building Pose Evaluation . . . . . . . . . . . . . . . . . . . 56

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 65

vi



1
Introduction

In the last decade the interest to the robotics field was constantly growing. Al-
though a lot algorithms are developed for the robots to perform different tasks,
the navigation problem still remains the main challenge. The focus of this Thesis
lies in the enhancement of the outdoor navigation via refinement of the open-
source maps. For this purpose we use OpenStreetMap [osma] as those are one of
the best open-source maps in terms of quality and amount of area covered. Es-
sentially we do 3D reconstruction, although our purpose lies outside mainstream
reconstruction methods. We focus on precise modeling of building’s boundaries,
while keeping the relief of their walls and roofs flat and simple, as the location
and depth of doors, windows and other relief objects are irrelevant to navigation.
First, we extract and parse the OSM map of the region of interest, which we want
to enhance. Then we collect street-view stereo images made along the streets of
this terrain, creating disparity maps and integrating depth in the scene. Based on
integrated depth we move building models from the map to their observed posi-
tions. At the end the buildings with common walls have their facades separated.
Our approach was evaluated on sequences of KITTI dataset [GLSU13] [GLU12],
the ones, that have fulfilled our data requirements, that is having buildings and
GPS information for matching the images with the map.
The novelty of our approach lies in observation-based localization of buildings
on the map, with adjustment of their orientation. Most approaches [MMT+16],
[CWUF16], that require both, maps and images count the maps as ground truth,
while we only use map data as a prior for facade separation and initialization
for localization. The facade separation idea is not new itself, but previously only
the buildings, that face the camera, were considered, while for our method the
building orientation on the image is irrelevant.

1





2
Related work

Our work is similar in spirit to [CWUF16] and [MMT+16]. Both of them present
reconstruction approach, using the map and images to create an appropriate
texture and relief for the model buildings. The first one uses rental shields to
model house’s surface, which limits the applicability of the method. The second
one takes street-view photos and generally does it in large scale, for the whole
city of Aachen, creating building models that closely resemble the real ones in
the shape, but not in position or orientation. We, on the other hand, are more
concerned with building’s precise position and orientation.
The method we developed depends heavily on depth integration techniques or
more specifically octrees. The original idea was taken from [Gar82], but extended
with integration techniques from [UB15], so the octree stores not just the fact
of presence of objects at a location, but the distance to the surface at different
points of space and its reliability. For the integration we use disparity maps and
semantic data.

2.1 Disparity methods

The octree requires multiple depth maps as input, but it is difficult to get depth
directly from a stereo camera setup, so we rely on disparity computation methods
and then, using calibration data, we extract depth maps for future integration.
Different methods yield different results, so we tried to feed different disparity
maps as input.

2.1.1 ELAS

Geiger et. al. developed a disparity estimation method in 2011 called Efficient
Large-Scale Stereo Matching or ELAS [GRU10]. Even today this method is able
to yield competitive performance in terms of speed and precision. The main
idea of this method to first extract support points, that yield reliable matching

3



Chapter 2. Related work 2.1. Disparity methods

in the second image and then optimize the disparity around those points us-
ing maximum a-posteriori estimation, based on observations along the epipolar
lines. They use the L1 distance between concatenated Sobel filter responses, to
determine the support points, as those prove to be both effective and efficient.
Then Delaney triangulation is applied to the set of points, so there are some
means for linear interpolation, which is later applied for mean computation for
Gaussian probability. Then the energy minimization procedure takes place us-
ing maximum a-posteriori estimation for disparity computation, which enforces
smooth disparities. Originally this method was tested on Middlebury dataset,
which contains images of indoor scenes with limited depth, but in outdoor scenes
we observed, that estimations include much more noise and are less reliable, es-
pecially on high ranges. Hence, we tried to find alternatives, that will perform
better in the environments of the outdoor KITTI dataset.

2.1.2 SPS-Stereo

SPS-Stereo algorithm was introduced by Yamaguchi et. al. in [YMU14]. It
is based on assumption, that the scene is piece-wise planar and mostly static,
while the motion is rigid. The key difference from usual stereo methods is that
it uses three images: a stereo pair and an image from one of the cameras at a
later point of time. From the stereo pair a semi-dense disparity map is com-
puted, from motion pair - semi-dense epipolar flow. Both are used to establish
correspondence between flow and disparity via RANSAC. With this information
Semi-global matching (SGM) can be applied with an energy function including a
cost term and a smoothness term. The result is a semi-dense disparity map, which
only exploits very local neighborhood relations. For further improvement the dis-
parity map is split into superpixels and a slanted plane smoothing algorithm is
applied, with a new energy formulation, that includes location, appearance, dis-
parity, complexity, boundary-plane agreement and boundary length terms. An
overview of the algorithm can be found on Fig. 2.1. Although the code was
published only for the stereo part of the method, thus we did not use flow, when
computing disparity maps.

Figure 2.1: Pipeline of [YMU14]. Image courtesy of Yamaguchi et. al.

4



2.2. Semantic segmentation Chapter 2. Related work

(a)

(b)

Figure 2.2: Heat maps based on the output of different disparity methods, on
(a) the output of ELAS is shown and on (b) the result of running
SPS-Stereo.

2.2 Semantic segmentation

In this thesis multiple goals are concerned with building localization or separation.
In order to achieve that goal, we first have to be able to identify the buildings
on the images. We found the results of semantic segmentation, described in
[OHE+16] to be useful. They strive to segment out known background categories,
such as roads, buildings, trees etc., which are of interest for our work. First, the
point clouds are generated via ELAS method. Then VCCS algorithm [PASW13] is
used to partition the point clouds into segments, which refers to over-segmentation
procedure. For each segment a set of features is computer, each of the features
belongs to one of following classes: appearance, density, geometry or location.
The total length of resulting feature vector is 150. Then the Randomized Decision
Forest (RDF) [Bre01] is trained for these features on the images, where the ground
truth is available. Employing trained RDF results in semantic labels for each
segment. As a final step, the labels are smoothed via fully connected Conditional
Random Fields (CRF) [Kol11] defined over the segments’ centers.

5





3
3D City Reconstruction

In this chapter we will describe the pipeline of our approach. We first parse an
OSM map to extract prior locations of buildings as well as their prior 3D models.
Then we use disparity maps of the scene and build an octree with integrated depth
and surface information. Finally we run an energy minimization on building
points and minimize the error of their alignment to the appropriate 3D model.

3.1 Building a 3D Model from OSM

Nowadays 3D Reconstruction is a field, that is popular within, Computer Graph-
ics and Computer Vision communities. There are approaches that focus on quality
reconstruction of smaller objects, coarse recreation of larger scenes or even both
at the same time [UB15]. While we do not pursue high quality of reconstruction,
we still try to keep some reconstruction errors as small as possible. In short, we
omit relief of the buildings and assume all walls to be flat. Under this assumption
error of the alignment of the buildings model to the observations is minimized.

3.1.1 Parsing OSM data

OpenStreetMap files have a great potential, when it comes to the description of
buildings. Different qualities of buildings, such as the roof or the stairs shape,
wheelchair ramp’s availability, height etc., are described with tags. It does not
end there: the tags also include semantic information, what kind of object it is,
the address, whether it is a shop or cafe: the possibilities are limitless, as it is
one of the OpenStreetMap’s policies to use a free tagging system, meaning that
we can introduce our own tags. Although the list of accepted tags can be found
at http://wiki.openstreetmap.org/wiki/Map Features. Thus a good parser, that
will process all the tags correctly might require years of work. There are solutions
though, like osm2world [osmb], that deliver a 3D model, that complies with map

7



Chapter 3. 3D City Reconstruction 3.1. Building a 3D Model from OSM

(a) (b)

Figure 3.1: The comparison of reconstruction tools. On (a) the output of
osm2world is shown. On (b) is our reconstructed model from parsing
the map file

information (see Fig. 3.1a). Unfortunately, in the 3D model all the semantic and
position information is omitted and matching between street-view images and the
map could not be made, which eliminated the possibility to use this tool.

3.1.2 Parsing trees

The aforementioned reason made write a new parser. Since the focus of our work
lies in buildings, this is the first type of the objects we process. We include roads,
because we want to find the facades later and trees, because they are the main
static source of occlusion. Still we cannot fully model the trees, as their shape is
very complex, may involve transparency, changes with seasons and might grow
in size. They are also the easiest to extract from the map. A typical tree is
described with an XML entry like this

1 <node id =”1328472000” l a t =”49.0095565” lon =”8.4222346”
ve r s i on =”3” timestamp=”2015−07−23T17 : 0 4 : 3 3 Z”
changeset =”32831581” uid =”528930” user=”B e n j a f r i e”>

2 <tag k=”denotat ion ” v=”urban”/>
3 <tag k=”natura l ” v=”t r e e ”/>
4 </node>

The header contains a lot of different information, but we only use latitude
lat and longitude lon to retrieve the correspondence between the map and the
poses of the image sequence. The tree is unique in a sense, that it only uses one
node to describe its location, only a tag can give a hint, what kind of object it
is. The rest of map objects, we consider, is represented by ways, structures, that
are similar to polylines and also have possibility of looping, to be able to show
polygons. If the tag tree is omitted, the structure is considered to be a usual

8



3.1. Building a 3D Model from OSM Chapter 3. 3D City Reconstruction

node. Then the field id is added to the information, we want to extract, since we
use that id to reference the nodes from more complex structures, as they do not
store their position information.

(a) (b) (c) (d)

Figure 3.2: An example of tree changing over the seasons. In this case most
obvious changes are transparency and color. Image taken from
http://www.studiomacbeth.com/images/four-seasons-trees.html

3.1.3 Building parsing

Since tree reconstruction is a challenging task, the main focus in modeling is
applied to buildings and roads. To save the workload we do not consider other
objects, because it will increase the amount of work dramatically, while improve-
ment is doubtful. The buildings have more priority, as one of the goals of this
work is to optimize their location. An XML node of the building is shown below

1 <way id =”90426027” ve r s i on =”3”
timestamp=”2015−05−26T15 : 3 8 : 3 0 Z”
changeset =”31476734” uid =”165061” user=”mapper999”>

2 <nd r e f =”1049023258”/>
3 <nd r e f =”1049023264”/>
4 <nd r e f =”1049023298”/>
5 <nd r e f =”1049023220”/>
6 <nd r e f =”1049023258”/>
7 <tag k=”bu i l d ing ” v=”yes”/>
8 <tag k=”shop” v=”k io sk”/>
9 <tag k=”source : geometry” v=”Maps4BW, LGL,

www. l g l−bw. de”/>
10 <tag k=”whee l cha i r ” v=”yes”/>
11 </way>

The only use of the header this time is, that it has way in it and sometimes
id to show uniqueness, the rest of information is irrelevant. nd child nodes are

9



Chapter 3. 3D City Reconstruction 3.1. Building a 3D Model from OSM

just references to the nodes, like in case of a tree, but without such a tag. Those
nodes have the location information, which we use to build a model. But first we
check into tags and search for a line

1 <tag k=”bu i l d i ng ” v=”yes”/>

we can also extract some semantic information from the node, like the fact,
that it is a shop or it has a wheelchair ramp. For the height estimation the most
useful tags would be height or min height. Even though those are rare, they
are extremely helpful, as hypothesis for neighboring buildings. Parsing buildings
is also difficult, because there exists tag building:part

1 <way id =”404026395” v i s i b l e =”true ” ve r s i on =”1”
changeset =”37866310” timestamp=”2016−03−16T09 : 2 9 : 5 8 Z”
user=”Matthias Frank” uid =”287306”>

2 <nd r e f =”4063060551”/>
3 <nd r e f =”4063060550”/>
4 <nd r e f =”4063060547”/>
5 <nd r e f =”4063060549”/>
6 <nd r e f =”271787501”/>
7 <nd r e f =”2938202852”/>
8 <nd r e f =”2938202856”/>
9 <nd r e f =”271787502”/>

10 <nd r e f =”4063060551”/>
11 <tag k=”bu i l d i ng : part ” v=”yes”/>
12 <tag k=”he ight ” v=”40”/>
13 </way>

This is not an actual building, but a part of an other one. That is the reason,
we have to fuse it with its parent and consider it as one during the pose opti-
mization. There is no direct link made between a part and its parent, therefore
we simply pick out a pair, which has the most nodes in common.

3.1.4 Road parsing

The final type of objects is Road. The parsing was also not trivial due to differ-
ent tag values.

10



3.1. Building a 3D Model from OSM Chapter 3. 3D City Reconstruction

1 <way id =”134655454” ve r s i on =”3”
timestamp=”2015−12−21T22 : 1 5 : 5 8 Z”
changeset =”36096014” uid =”2600695” user=”j l c o d”>

2 <nd r e f =”21498581”/>
3 <nd r e f =”21498576”/>
4 <nd r e f =”1480192283”/>
5 <nd r e f =”1255392691”/>
6 <nd r e f =”3903695906”/>
7 <tag k=”highway” v=” r e s i d e n t i a l ”/>
8 <tag k=”maxspeed” v=”30”/>
9 <tag k=”name” v=”Gerwigs t ra s se”/>

10 </way>

The roads are marked with a tag highway, but the value of that tag may vary.
So far we consider these values: motorway, trunk, primary, secondary, ter-
tiary, residential, service, unclassified. These roads may be for pedestrians
or cars, it is not always understandable from tags.
We use Boost’s XML parser to extract the information from OSM file, the full
algorithm is described in Alg. 1.

3.1.5 Matching with street-view observations

What is not described here, but nevertheless is of interest for us, is Transform-
ToWorldCoordinates function. That includes three stages: geo-projection, nor-
malization and transformation. Geo-projection transforms latitudes lat and lon-
gitudes lon into a coordinate system, where meters are used. Noticeable, KITTI
dataset has its own geo-projection with a set of simple equations. First using lat
scale s is defined as

s = cos(lat). (3.1)

Geiger et al. uses Re = 6378137 as the earth’s radius. The coordinates can then
be computed as

x = s · lon ·Re

y = s ·Re · log(tan(
90 + lat

2
))

(3.2)

While it works nice for trajectories, such as car positions of a car in KITTI’s
sequence, we faced some problems by trying to apply it to the buildings. The
main problem was, that the buildings were skewed after applying that projection.
While we do not know an exact cause of this, we suppose, that the procedure
described by Geiger et. al. is just an approximation and works in a limited set
of cases. Therefore we decided to use a different projection, using code snippets
by Eugene Reimer, Peter Dana and Chuck Gantz [ER]. This projection is highly
complex and involves different zones, datums and ellipsoids, therefore the exact
algorithm will be omitted, as it is not the focus of this thesis.

11



Chapter 3. 3D City Reconstruction 3.1. Building a 3D Model from OSM

Algorithm 1 Parse the map

1: procedure ParseOSM
2: for all s ∈ osm.children do
3: if isNode(s) then
4: if isTree(s) then
5: T ← T + {s}
6: else
7: N ← N + {s}
8: end if
9: else

10: if isWay(s) then
11: if isBuilding(s) then
12: B ← B + {s}
13: else
14: if isBuildingPart(s) then
15: Bp← Bp+ {s}
16: else
17: if isRoad(s) then
18: R← R + {s}
19: end if
20: end if
21: end if
22: end if
23: end if
24: end for
25: gatherNodes(B,N)
26: gatherNodes(Bp,N)
27: gatherNodes(R,N)
28: Fuse(B,Bp)
29: TransformToWorldCoordinates(B)
30: TransformToWorldCoordinates(R)
31: TransformToWorldCoordinates(T )
32: return B,R, T
33: end procedure

After we get the x and y coordinates, we have to center it around the position
p = (px, py) of the car in a first frame

x′ = x− px
y′ = y − py
z′ = z = 0

(3.3)

12



3.1. Building a 3D Model from OSM Chapter 3. 3D City Reconstruction

After getting the coordinates, small adjustments are required. The KITTI dataset
and most parts of vision and graphics community use a coordinate format, where
x represents width, y - height and z - depth. After map parsing we have different
convention used, thus the points have to be cast to a different format

x′′

y′′

z′′

1

 =


−x′
z′

y′

1

 =


−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ·

x′

y′

z′

1

 (3.4)

Now, the locations are aligned and position of the car in a map is known. But
the camera orientation is still unknown as the rotation component is missing.
The solution of this task could be very challenging, if we would have only a
single frame. Fortunately, we have a sequence with a lot of additional position
information. There are two ways to extract the necessary rotation, to match the
observation with a map. The first is to consult the data of KITTI dataset itself.
Their machinery is quite advanced, so there is information from the IMU device
available. That means, we have values such as roll, pitch and heading known
in each frame. These three parameters show the difference in angles between
watching direction and the axes defined by the result of geo-projection. The
most interesting for us is a pitch: rotation angle ry around axis Y. The rotation
matrix can then be defined as

Ry =


cos(ry) 0 sin(ry) 0

0 1 0 0
−sin(ry) 0 cos(ry) 0

0 0 0 1

 (3.5)

Usually the pitch differs the most from the original axes. In the general case
though, it is not the parameter that is different from 0. We have to rotate around
X with angle rx and Z with angle rz given by roll and heading respectively. The
matrices are built in the same way as for ry, but for different axes. For rx

Rx =


1 0 0 0
0 cos(rx) −sin(rx) 0
0 sin(rx) cos(rx) 0
0 0 0 1

 (3.6)

and for rz

Rz =


cos(rz) −sin(rz) 0 0
sin(rz) cos(rz) 0 0

0 0 1 0
0 0 0 1

 (3.7)

And the full rotation matrix R is

R = Rx ·Ry ·Rz (3.8)

13



Chapter 3. 3D City Reconstruction 3.1. Building a 3D Model from OSM

There is one part left though, after rotation is ready: the camera is on a ground
level, with height equal to 0 that is, therefore we have to adjust the height with
parameter yc. According to KITTI’s documentation, the camera is 1.73 m above
the ground, so yc = 1.73. In fact yc might be considered redundant, since we
later adjust the lower ends of the buildings by fitting them to the ground plane,
we get from [CKZ+15]. Nevertheless, the final transformation matrix is

T =


0

R yc
0

0 0 0 1

 (3.9)

The problem of this approach is that an IMU device is required. If the data is
used, where no roll, pitch and heading information is provided, we would still
want to be able to run our method with only GPS coordinates. We found out,
that a good approximation would be to take these angles from comparison of
two neighboring positions. Supposing that we have two such positions pi =
(pix, p

i − y, piz) and pi+1 = (pi+1
x , pi+1 − y, pi+1

z ). We first get the differences

4x = pi+1
x − pix

4y = pi+1
y − piy

4z = pi+1
z − piz

(3.10)

Then the angles rx, ry and rz we can get from

rx = atan
4y
4z

ry = atan
4x
4z

rz = atan
4x
4y

(3.11)

and then we can proceed as before. The weakness of this method though is, that
the recording vehicle should be adjusted to its trajectory, which is not a problem
in case of a car, but will be problematic if someone decided to record a dataset
using stereo setup placed on a helmet.

14



3.2. Octree Chapter 3. 3D City Reconstruction

3.2 Octree

For the high quality reconstruction of the scene of this scale we need an efficient
representation, which should also support interpolation. We chose to use an
octree [Gar82], [UB15] for the integration of the surface information inside the
scene and a notion of truncated signed distance to encode the distance to the
surface at any point of the scene. As input we used disparity images generated
by SPS-Stereo [YMU14] and ELAS [GRU10].

3.2.1 Definition

An octree is an efficient structure in terms of memory consumption and access
speed. However it may take a while to construct an octree, since it heavily
depends on the input information. We do not aim for the efficiency, but for the
precision of the end result, hence we use a rather simple hashmap implementation
instead of a pointer-based one. The idea behind the octree approach is quite

Figure 3.3: An example of an octree representation. Image courtesy of Irene
Gargantini [Gar82].

simple: every non-leaf node has 8 children, thus with just one byte we can encode
which child are we using. In our implementation we denote the dimension as I, J
and K, where I represents height, J - width and K - depth. We assign a number
from 0 to 7 based on the location of a child as shown on Fig. 3.3. In other words,
we encode:

• octant NWF with 0

• octant NEF with 1

• octant SWF with 2

15



Chapter 3. 3D City Reconstruction 3.2. Octree

• octant SEF with 3

• octant NWB with 4

• octant NEB with 5

• octant SWB with 6

• octant SEB with 7

where I changes from North (N) to South (S), J from West (W) to East (E) and
K from Forward (F) to Backward (B). When assigning an id to voxel, we start
with an id of an upper level child. For instance, on Fig. 3.3 id ”1” denotes a
voxel consisting out of basic voxels (of size one), where i ∈ {0; 1}, j ∈ {2; 3},
k ∈ {0; 1}. An NWF voxel inside voxel ”1” would have id ”10”. Generally, the
longer the id of a voxel is, the deeper it lies in hierarchy and the smaller its size
is.
The intuition behind the size is, that the voxels of the bigger size represent regions
of the scene, where the information is coarse, while smaller voxels mean, that the
data about this region can be trusted. There is variety of the scene information,
we can fit into the octree: surface distances, normals, semantic labels etc. We
follow [UB15] approach and use normals and depth measurements to construct
the octree.

3.2.2 Truncated signed distance

While usual distance functions show, how far the object is, the signed distance
function (SDF) can additionally determine on which side the object lies. We use
this notion to detect, whether the point of space lies in front or behind the surface.
Furthermore, we employ the truncation for SDF (TSDF): if the distance exceeds
some threshold, we truncate it to this threshold. Thus we limit the influence of
the outliers.

3.2.3 Construction

The construction of the octree is a two step process which involves structure gen-
eration and data aggregation. During the structure generation step we fill the
space with nodes of different scale, but without any data inside. In the second
step we fill them with aggregated normal, TSDF and scale information.

Structure generation

As input we use disparity maps, generated from KITTI sequences [GLSU13],
[GLU12] by SPS-Stereo method [YMU14]. In fact, any reliable 3D data would be

16



3.2. Octree Chapter 3. 3D City Reconstruction

sufficient, although sparsity and outliers both have relatively strong impact on
the performance. Nevertheless it can be reduced by integration of several conse-
quent frames, if the errors are not repeated.
From the disparity maps we generate a 3D point cloud with origin at the camera
position in the first frame. As stereo disparity methods tend to have outliers,
we limit our scene size with some bounding box to cut out the unreliable points.
As soon as the point cloud’s dimension sizes are known we derive a transforma-
tion to the octree space, which is essentially just scaling and translation. This
transformation is not a necessity, we can actually do the computations in world
coordinates, but it won’t be as convenient, since an integer voxel grid allows to
avoid a lot of numerical difficulties and potential bugs. There is one more thing
to note by the transformation: scene specificity. A lot of KITTI sequences are
made by following just one direction. That makes the scene longer in that direc-
tion, while the sizes of the other dimensions are minimal. Thus if we only build
the octree from the point cloud, those dimensions are stretched out to match
the length of the longest dimension. Therefore we pick a possible minimal cube,
containing the cloud and build the octree from that cube. We do that by adding
empty space to the both sides of the intervals of smaller dimensions equally, so
that they match the longest one in length. Since it does not matter for the octree
if we include an empty space, the performance remains unchanged. We also need
normals for each point to be able to extract the surface information. We use
integral image normal estimation [HRD+12] implemented in PCL [RC11] as it
shows performance superior to the other normal estimation methods.

Voxel placement When the point cloud and the transformation are ready we
start to create voxels in the octree. Here we mostly follow [UB15], except for little
details. We define voxel grid’s edge length as L, individual voxel’s edge length as
l, depth level as d and a point scale as σ. σ is a result of multiplication of distance
between camera and the point and a depth constant dc. In our experiments we
used dc = 0.1. Once we have point’s scale, we can directly compute the voxels,
that will be affected by this point. First, we calculate a depth level, at which
voxels will be created. Intuitively, the dependency of voxel size from the depth
can be described as l = L/2d. So, for the voxel of the size l we will take the
points of scale up to l/2, i.e. where 2σ ≤ L/2d. Obviously there might be several
d values, which satisfy this condition, therefore we only take maximal satisfying
d, to limit the influence to a single depth level. Now, we only want to use voxels
close to the point. Thus for each voxel we define a search window Rh, which has
a center at the voxel’s center and a radius h = 3l and point window Wσi with
center at the point position pi and a radius σi as shown at Fig. 3.4. If the point
falls inside Rh, then the point affects this voxel. If the point affects the voxel
we create this voxel, if it does not exist and we later use this point to update
this voxel, if it is still there or update its children. The difficulty here is that the

17



Chapter 3. 3D City Reconstruction 3.2. Octree

algorithm supposes that we iterate through the voxels and for each of those we
gather close points. In reality this approach proves to be very inefficient, since
there are

∑
d=0..log2L

(L/(L/2d))3 =
∑

d=0..log2L
23d voxels and only a small part of

them contains at least some information. Instead we can use scale property of
the point. Considering, that the scale of the point is constant, the depth level
d will be the same for all the affected voxels. That means, that their support
window will have the same radius and we use reverse search: find any voxels, the
center of which fall in a support window Rh based on point location. We add
the voxels that yet do not exist to the octree, regardless of whether there is a
parent-child relation between old and new voxels. For convenience we store a list
of the contributing points in each voxel. As soon as every voxel is in the octree,
we launch the splitting procedure. That is, we split each parent into 8 children,
until there is no parents left. We copy the list of the contributing points as well
as the scale of the parent voxel. Note, that voxel’s scale and size are two separate
things, which may be equal only if the voxel was added directly and not through
splitting procedure. Instant splitting is possible too, but from our experience,
post-splitting works faster and can be ran in parallel.

Figure 3.4: An intersection of a point and the support window Rh. h is a radius
of this window, c is the center of both the voxel and the window,
s(C) = h is a length of the edge of a voxel. ni denotes normal of the
point i, pi denotes its position and σi its support. Image courtesy of
B. Ummenhofer and T. Brox [UB15]

Data aggregation

We move on to this step, when every voxel has been added and there is no parent-
child relation between the nodes of the octree. Here we go over all existing voxels
and aggregate their contributing points. First, for each point we check, that its
center pi lies inside of the support window Rh, i.e. ||c− pi|| ≤ h, because during

18



3.2. Octree Chapter 3. 3D City Reconstruction

splitting procedure, this condition could have been violated. For each point, that
satisfies we want to compute signed distance fi(c), which is equal to

fi(c) =
1

wi

∫
Rh(x− c) Wσi(x− pi) 〈ni, c− x〉 dx (3.12)

The corresponding weight for this distance is:

wi =

∫
Rh(x− c) Wσi(x− pi) dx (3.13)

Unfortunately, the evaluation of the integrals is a computationally expensive prob-
lem, therefore we bound to use the solution from Ummenhofer et. al. We also
approximate support window function as in [UB15]

Rh(r) =

{
315

64πh9
(h2 − ||r2||2)3, if ||r|| ≤ h

0, otherwise
(3.14)

where r denotes the vector between the point pi and the voxel center c. Now we
can compute approximate discrete weights wi and signed distances fi

wi(c) =
4

3
πσ3

iRh(pi − c) (3.15)

fi(c) =
1

wi

4

3
πσ3

iRh(pi − c) 〈ni, c− pi〉 = 〈ni, c− pi〉 (3.16)

Given that every voxel can contain measurements from many points and a single
point can contribute to many voxels, we cannot store every measurement. Instead
we aggregate them into a histogram, for each voxel separately. The histogram
h has 8 bins, each index b of which represents particular signed distance range,
based on the scale of the voxel. Since each measurement is inside the support
window Rh, −h ≤ fi(c) ≤ h holds. Then the bin index can be defined as

b =
fi(c) + h

2h
· 8 (3.17)

However, if we just increment a single bin for each point, this will introduce
quantization effects. To reduce those, we apply a technique, called soft binning,
that is along b-th bin we increment b− 1-th and b+ 1-th by the half of the value,
if those bins are present. Thus, the full formula for the bin value looks like this

hb =
∑

i,b=
fi(c)+h

2h
·8

wi +
∑

i,b=
fi(c)+h

2h
·8−1

wi
2

+
∑

i,b=
fi(c)+h

2h
·8+1

wi
2

(3.18)

In our approach we want to avoid ambiguity, therefore as soon as all the values are
aggregated, we replace histograms by a single value, which represents observed
distance to the surface for the voxel. We apply Gaussian fitting to the histogram

19



Chapter 3. 3D City Reconstruction 3.2. Octree

and take the value of its peak. There is one problem though, with the voxels
that lie close to the intersection of the surfaces, like building corners. In this
case two distributions arise in the histogram and fitting a single Gaussian will
yield unexpected results. This problem has rare occurrence though, it still can be
solved by running Gaussian clustering algorithm with different number of clusters
and taking the result, which has the least error. The simpler alternative to fitting
a Gaussian is to just take the maximal peak value of the histogram, which works
a bit worse, if window size parameter h is not tuned, but is able to yield better
results in comparison to a Gaussian if h is a bit off. For our purpose fitting
Gaussian along with tuning parameter h was sufficient for satisfying results.

3.2.4 Octree interpolation

The main difference between the octree and a regular voxel grid is that the octree
allows to have cells of different sizes and scales in the same structure (Fig. 3.5).
It brings up both, advantages and disadvantages. The regular grid is more conve-
nient to use, things like interpolation or ray tracing are very simple to implement
for this structure at the cost of memory and additional workarounds for low res-
olution regions, where we do not have a lot of surface and normal information,
but still have to maintain a small cell size of a grid. The octree overcomes these
shortcomings, while sacrificing convenience of the use and possibly efficiency.

Figure 3.5: An example of an multiscale quadtree, with scale values given inside
the nodes. Image courtesy of Ummenhofer et al. [UB15]

While it is possible to easily employ linear interpolation for a regular grid, it
may be difficult to do the same in the octree. If we have to interpolate between
nodes of the same scale, then it is the same as for the regular grid. There are
cases though, when linear interpolation won’t do. The simplest non-standard
case is when the point to interpolate lies between nodes of different scale. We
have to differentiate between nodes of bigger and smaller scale. To the best of
our knowledge there is no well known method to apply linear interpolation to
multiple scales case. Therefore we try boil down the problem to a regular grid
case.

20



3.2. Octree Chapter 3. 3D City Reconstruction

(a) (b)

Figure 3.6: On (a) an example of interpolation case of multiscale quadtree is
shown. The red ”x” shows the case of downscaling, when the point
is inside a node of larger scale and nodes of smaller scale have to be
interpolated to create a temporal node of the same size, as the bigger
ones. The blue ”x” shows the opposite case, where we have to create
smaller nodes from bigger ones. On (b) one can see final regions of
interest for points.

Two such cases are pictured on Fig. 3.6a. First we consider the ”red” case,
when we have to create a node of larger scale from the smaller nodes. We apply
linear interpolation of a TSDF value inside those nodes, to get an appropriate
value for a hypothetical bigger node. Since we have the information of higher res-
olution inside the smaller nodes, the downscaling works in similar way as blurring
filters, so we do not lose a lot of information and can safely do so. The ”blue” case
is more complicated, although we do almost the same thing, except we now do it
in reverse: we change the resolution from coarser to finer. For this problem there
is no satisfying solution, that will work in all of cases, because we basically fill in
information that is not there. Anyway, we still do the most straightforward thing
and split the node, copying the information from a parent node and adapting it
to a new scale.
The described methods may not work in general, because of aforementioned rea-
son, that is making up information, which is missing. But if considered in more
detail, that might be not that much of a problem. As the smaller nodes lie near
the bigger ones, we may assume that this is a border case, where the nodes trans-
fer from one scale to an other, which in turn shows, that in reality the nodes are
of similar scale and the difference was caused by discretization artifacts. That
proves, that the information inside the small nodes is almost identical and we can
make up a direct parent for them. It works in the opposite direction as well, due
to the same reasoning. The only problematic case is when one of the nodes was
generated by outlier points, since the TSDF values may differ dramatically in this

21



Chapter 3. 3D City Reconstruction 3.2. Octree

case. Albeit this scenario is also rather unrealistic. The key thought is that the
octree is created via integration over multiple consequent frames, meaning that
every node grabs the points not only from the same frame, but also from the other
ones. So if outliers occur, they should be repeatable to create real disturbance
inside the octree and this is a rather rare occurrence.
Another problem is missing data. If there is a parent or children of the voxel,
we can inter- or extrapolate the missing TSDF value, but if there are neither, we
can only try to lay our best guess or miss it completely. We decided to adhere
to the latter strategy. Our motivation for this particular case was, that we al-
ready integrated all the points, we want to interpolate for, hence the described
case may only happen, when points are leaving the scene due to transformations,
described in 3.3, which we consider improbable. After all, points are expected to
shift in direction of estimated surface, where the octree should have more density.

3.2.5 Algorithms

There are multiple useful algorithms on the octree, described in initial Gargan-
tini’s paper [Gar82], that were also used in our work. In particular those were
encoding, decoding and neighbor search algorithms. We also describe our way of
mapping the data to octree coordinate system.

Encoding

As described in Sec. 3.2.1, each node may be described as set of three indices:
J , I and K. While for some applications these coordinates would be sufficient,
some more efficient algorithms require an octal code of a node to work with.
An octal code is sequence of digits which shows the location of the voxel and
its depth, which is also advantageous, as voxels of different scales may have the
same coordinates, since in our implementation we use the coordinates of the
voxel’s corner, that is the closest to the origin to determine voxel’s location. The
problem with ambiguity of voxel’s coordinates can be avoided though, if voxel’s
centers are used instead. Still this will lead to either usage of floating point
coordinates or extending grid in size to make the minimal node’s size equal to
two, both of which are rather unwanted.
So, we use octal codes mainly, because it allows us to query the nodes efficiently,
as we use a hashmap implementation, and to quickly find the neighboring nodes,
which are of particular interest for the interpolation procedure. As input we get a
point in octree coordinates J , I and K which represent width, height and depth

22



3.2. Octree Chapter 3. 3D City Reconstruction

respectively. The side of a grid L = 2n, thus J , I, K ∈ {0, 1, ..., 2n−1}. We first
convert them to a binary representation

J = cn−1 · 2n−1 + ...+ ct · 2t + ...+ c0 · 20

I = dn−1 · 2n−1 + ...+ dt · 2t + ...+ d0 · 20

K = en−1 · 2n−1 + ...+ et · 2t + ...+ e0 · 20

(3.19)

and the octal representation is

Q = qn−1 · 8n−1 + ...+ qt · 8t + ...+ q0 · 80 (3.20)

The task now is basically to find the dependency between qt and ct, dt, et, which
we define as

ql = et · 22 + dt · 21 + ct · 20 (3.21)

So, if we have for example a voxel with coordinates J = 1, I = 2, K = 3 in an
octree with n = 2 and L = 2n = 22 = 4, then

J = 012 = c1 · 21 + c0 · 20 = 0 · 21 + 1 · 20

I = 102 = d1 · 21 + d0 · 20 = 1 · 21 + 0 · 20

K = 112 = e1 · 21 + e0 · 20 = 1 · 21 + 1 · 20

And coefficients of Q are

q0 = e0 · 22 + d0 · 21 + c0 · 20 = 1 · 22 + 0 · 21 + 1 · 20 = 5

q1 = e1 · 22 + d1 · 21 + c1 · 20 = 1 · 22 + 1 · 21 + 0 · 20 = 6

Thus the final octal code of a node is

Q = q1 · 81 + q0 · 80 = 6 · 81 + 5 · 80 = 658

Decoding

Since each digit in the octal code represents the child’s relative position inside the
parent, we need to iterate through digits of the code, starting from the highest or-
der digit to determine the voxel’s location step by step. Intuitively when iterating
we just reduce possible intervals It = [ia,t, ib,t], Jt = [ja,t, jb,t] and Kt = [ka,t, kb,t]
of the voxel. We are starting with I0 = J0 = K0 = [0, 2n− 1] and halving each of
them in each iteration. Since there are only eight cases, such decomposition for
a single digit may be described with a Tab. 3.1

23



Chapter 3. 3D City Reconstruction 3.2. Octree

Table 3.1: Decoding table of the octal code

Input Output
qn−t Action for It Action for Jt Action for Kt

0 ib,t = ib,t−1 − 2n−t jb,t = jb,t−1 − 2n−t kb,t = kb,t−1 − 2n−t

1 ib,t = ib,t−1 − 2n−t ja,t = ja,t−1 + 2n−t kb,t = kb,t−1 − 2n−t

2 ia,t = ia,t−1 + 2n−t jb,t = jb,t−1 − 2n−t kb,t = kb,t−1 − 2n−t

3 ia,t = ia,t−1 + 2n−t ja,t = ja,t−1 + 2n−t kb,t = kb,t−1 − 2n−t

4 ib,t = ib,t−1 − 2n−t jb,t = jb,t−1 − 2n−t ka,t = ka,t−1 + 2n−t

5 ib,t = ib,t−1 − 2n−t ja,t = ja,t−1 + 2n−t ka,t = ka,t−1 + 2n−t

6 ia,t = ia,t−1 + 2n−t jb,t = jb,t−1 − 2n−t ka,t = ka,t−1 + 2n−t

7 ia,t = ia,t−1 + 2n−t ja,t = ja,t−1 + 2n−t ka,t = ka,t−1 + 2n−t

We start with t = 1, as we have already values for t = 0. This process may seem
complicated, but it also may be thought of as a reverse for encoding process:
take an octal code, get three binary codes from it and convert binary codes to
the decimals.

Neighbor search

The real power of the octree lies in the neighborhood search [Gar82]. Since the
octal codes are hierarchical in a sense, that every next digit narrows the set of
possible voxel’s locations, we can directly compute the codes of the neighbors
and check their existence. We will consider only half of the algorithms: for
finding southern, eastern and back neighbors, since the other half just mirrors
these three. On Fig. 3.7 an example quadtree is shown. The red node is shown

Figure 3.7: An example of quadtree adjacencies, without the height dimension

24



3.2. Octree Chapter 3. 3D City Reconstruction

along its adjacencies, where 3 cases are considered. East and Back adjacencies
correspond to the first case, when the neighbors lie in the direct common parent.
West neighbor is in the higher level common parent. And a forward node does
not exist, which leads to the third case. Since the position of the node is derivable
from the octal code, we can start from the end of the code, that is from the digits,
that represent the location on a deepest level. The basic idea of the algorithm
is, that we traverse the octree from the node through its parents, until searched
neighbor lies in the same parent.

Algorithm 2 Search for eastern Neighbor

1: procedure FindEasternNeighbor
Input: n; q0, q1, ..., qn−1
Output: E(q0), E(q1), ..., E(qn−1)

2: if isEven(q0) then
3: E(q0) = q0 + 1
4: else
5: E(q0) = |q0 + 7|8
6: end if
7: i = j = 1
8: while i 6= n and j 6= n− 1 do
9: if isEven(qi−1) then

10: E(qj) = qj, j = i, i+ 1, ..., n− 1
11: else
12: if isEven(qi) then
13: E(qi) = qi + 1
14: else
15: E(qi) = |qi + 7|8
16: end if
17: i = i+ 1
18: end if
19: end while
20: return E(q0), E(q1), ..., E(qn−1)
21: end procedure

The result E(qi) returned in this algorithm shows the octal code of the neigh-
boring node, even if the algorithm fails to find one. In that case we have to track
the outcome of the ”if” operator. The condition inside the clause should be true
at least once for any valid node, otherwise we deal with a border voxel, i.e. the
one that stays exactly at the border of the cube. We have to be careful when
the clause is true as well, because the existence of the valid octal id does not
guarantee the existence of a node itself.
Coming next is an algorithm for a southern neighbor. The pipeline is the same,
except for the if clause. Instead we check, if the node stays in the upper part of

25



Chapter 3. 3D City Reconstruction 3.2. Octree

direct parent (0, 1, 4, 5 are the nodes, that are in the upper part, check Fig. 3.3
for reference).

Algorithm 3 Search for southern Neighbor

1: procedure FindSouthernNeighbor
Input: n; q0, q1, ..., qn−1
Output: S(q0), S(q1), ..., S(qn−1)

2: if q0 ∈ {0, 1, 4, 5} then
3: S(q0) = |q0 + 2|8
4: else
5: S(q0) = |q0 + 6|8
6: end if
7: i = j = 1
8: while i 6= n and j 6= n− 1 do
9: if qi−1 ∈ {0, 1, 4, 5} then

10: S(qj) = qj, j = i, i+ 1, ..., n− 1
11: else
12: if qi ∈ {0, 1, 4, 5} then
13: S(qi) = qi + 2
14: else
15: S(qi) = |qi + 6|8
16: end if
17: i = i+ 1
18: end if
19: end while
20: return S(q0), S(q1), ..., S(qn−1)
21: end procedure

The case with a back neighbor is a bit more special, since their numbering goes
consequently. Therefore we already know, that the digit will differ by |qi + 4|8,
thus we do not need to add an additional clause, which makes this algorithm
slightly more efficient.

These are the three basic algorithms. Another three are easily achievable from
those by slightly modifying the if clause.

Mapping from world to octree

As one could already notice, an octree requires a cube with a side of the size
2n to work. The real scene won’t usually contain those proportions. Hence the
bounding box of the scene has to be mapped to the octree coordinates properly.

26



3.2. Octree Chapter 3. 3D City Reconstruction

Algorithm 4 Search for back Neighbor

1: procedure FindBackNeighbor
Input: n; q0, q1, ..., qn−1
Output: B(q0), B(q1), ..., B(qn−1)

2: B(q0) = |q0 + 4|8
3: i = j = 1
4: while i 6= n and j 6= n− 1 do
5: if qi−1 ∈ {0, 1, 2, 3} then
6: B(qj) = qj, j = i, i+ 1, ..., n− 1
7: else
8: B(qi) = |qi + 4|8
9: i = i+ 1

10: end if
11: end while
12: return B(q0), B(q1), ..., B(qn−1)
13: end procedure

The first idea that comes to mind is to scale and translate the box. Suppose we
have a box of sizes

X = [xmin, xmax]

Y = [ymin, ymax]

Z = [zmin, zmax]

(3.22)

Then the corresponding transformation for the point p = (x, y, z) is just minmax
normalization and scaling

j =
x− xmin

xmax − xmin
· 2n

i =
y − ymin

ymax − ymin
· 2n

k =
z − zmin

zmax − zmin
· 2n

(3.23)

This will actually work fine under condition that xmax − xmin = ymax − ymin =
zmax − zmin. In real world scenarios height will have much smaller interval, than
width or depth. This results in a scene becoming stretched, so the correct pro-
portions of the objects are lost and our judgements are estimations are not valid
anymore. We developed two solutions for this problem, both using interval arith-
metic and stretching the bounding box. In fact the two ways only differ in how

27



Chapter 3. 3D City Reconstruction 3.2. Octree

the box is stretched. At first we just searched the dimension of the box that had
the most length len and scaled other dimension to match

X = [xmin, xmax] ·
len

xmax − xmin
Y = [ymin, ymax] ·

len

ymax − ymin

Z = [zmin, zmax] ·
len

zmax − zmin

(3.24)

Although the proportions are preserved in this case, the location of 3D point
cloud inside the octree might end up in unpredictable places, as the left and right
endpoints of intervals are scaled unevenly. That, actually did not cause a lot
of problems, but for the sake of standardization we applied a slightly different
method: addition and subtraction of equal values from each side of the intervals

X = [xmin − (len− (xmax − xmin))/2, xmax + (len− (xmax − xmin))/2]

Y = [ymin − (len− (ymax − ymin))/2, ymax + (len− (ymax − ymin))/2]

Z = [zmin − (len− (zmax − zmin))/2, zmax + (len− (zmax − zmin))/2]

(3.25)

This way the longest dimension remains the same, while the other two are placed
in the middle of the octree.

3.2.6 Parameters

There are parameters that could influence the final result, e.g. the quality of
integration or the resolution of the octree. First of all we choose length of the
side of the cube L. Having it fixed will result in highly different resolutions for
different scenes and bounding boxes. We try to set L so that the side of the
smallest possible voxel will be 15-25 cm. In practice L = 2048 is often enough
for a good quality reconstruction, while spending not so much memory. After
choosing L we have to deal with window size H. We use H = 3 ∗ l, as it allows
to capture bigger structures, like buildings we are interested in. For smaller ob-
jects with dense point clouds lesser H is recommended, because it reduces the
number of outliers for a single object and for a single depth level. The sparser
and larger the objects of interest are, the larger H is needed. H should be set
carefully, because it influences an other important parameter, the histogram’s bin
size. The points are picked, with distance to the surface between −H and H, so
the interval [−H,H] is mapped to [0, 8]. The discretization error becomes higher
for larger H values. Also since H depends on cell size, the previously described
problem happens for voxels of larger scale in the same octree. We usually put
less trust in such voxels.

28



3.2. Octree Chapter 3. 3D City Reconstruction

3.2.7 Input

The other side that influences the final octree is the input. Initially an octree
needs the sets of 3D vertices, normals and semantic segmentation from both real
world and backprojected model to run. We replace 3D vertices and normals with
disparity maps, as PCL’s normal computation method from [HRD+12] is capable
of returning decent normal estimation for the scene. We tested the octree against
two disparity methods: ELAS [GRU10] and SPS-Stereo [YMU14]. The SPS-
Stereo method proved to be more precise as ELAS in a single frame, but after
integration of high enough number of frames, the difference in octrees is very small
and can be considered as irrelevant. We believe that the reason for such behavior
is high number of outliers with high errors in ELAS. Although the influence
of outliers is smoothed out in the octree, the faulty points still contribute and
create voxels, where there should not be ones. The results of running ELAS and
SPS-Stereo on an image from sequence are shown on Fig. 3.8c and Fig. 3.8d
respectively. The problem was not only in the methods, but in the scene itself:
lighting and shading conditions were a bit extreme, the left side is dark and the
right side is so bright, it almost does not contain textures, as seen on Fig. 3.8a.
That is also the reason, RGBD semantic segmentation algorithm (see Fig. 3.8b)
fails for some regions, some pixels of a building (green) are recognized as of a
tree (cyan). Supposedly we could reduce this error by training decision forests
on scenes with variety of lighting conditions.

29



Chapter 3. 3D City Reconstruction 3.2. Octree

(a) Image from sequence 2011 09 26 drive 106 sync of raw KITTI dataset [GLSU13].

(b) Semantic segmentation by [OHE+16], with buildings green and road red.

(c) Output of ELAS.

(d) Output of SPS-Stereo.

Figure 3.8: The results of the preparation stage

30



3.3. Inference Chapter 3. 3D City Reconstruction

3.3 Inference

In this step we use the information we gathered so far: the integrated depth
from the octree, the building prior poses parsed from the OpenStreetMap and
their correspondence to our observations. Our task is to optimize the pose of
each building, but we approach this problem differently: we optimize points po-
sition, while leaving building static for implementation reasons. We solve this
problem via minimization of the quadratic error between observed 3D points and
surface of the generated OpenStreetMap model. The tool used for that purpose
is Ceres Solver [AMO], which is widely used for non-linear optimization problems.

3.3.1 Problem formulation

Before the problem can be defined it is necessary to review different parts of the
model. First, we have a model, built from the OpenStreetMap exported XML
file, which is a good prior for building’s pose. Second, we have 3D points of each
frame, used for integration of the octree. As we do not use ground truth depth,
the amount of error in depth estimation for these points is entirely up to stereo
method used, in our case that was mostly SPS Stereo, because it yields more
reliable disparity values. Finally, we have two semantic segmentations [OHE+16]
and the one we generated from backprojecting the OSM model to the camera
space. The first one is used to identify buildings on the image and the second
one tells us, where the building’s borders are, relative to each other.
The position optimization refers to finding an appropriate transformation, which
can be defined as a matrix. Since we are working in 3D space and want to preserve
translation, the matrix’ size has to be 4 × 4, with 6 degrees of freedom (3 rotation
and 3 translation components). But since the map only provides us with latitude
and longitude, the position along the height axis is unknown, as well as rotation
angles around two other axes. That leaves us with only three parameters, the
set of which for building bi we denote as πi. The set of pii is denoted as π. It is
important not to confuse it with the pose, as we only use πi to get the pose

πi = {θi, tik, tij}

where θi denotes rotation of the building, while tik and tij show shifts in directions
z and x respectively, the system is shown on Fig. 3.9. I, J , K notation is used,
since the most of the computations are performed in octree coordinates. We can
apply transformation πi only to the building bi or to the point of that belongs
to the building bi. So for the convenience we will use both π(bi) and pii(bi),
although they refer to the same process. In following sections we will describe
the potentials in more detail.

31



Chapter 3. 3D City Reconstruction 3.3. Inference

With that we now able to define our energy function, using unary φ and pairwise
ψ potentials:

E(π) =
∑
i

φ(π(bi)) +
∑
i,j

ψ(π(bi), π(bj)) (3.26)

3.3.2 Unary potentials

The initial idea is to optimize buildings to their true locations. For that we mini-
mize the error between 3D points’ positions and OSM model’s surface iteratively
via linear optimization. Hence the unary potential can be defined as

πi = argπ min
∑
j

d(πi(p
i
j))

Here pij is a is a point that was initially identified as the one of building i. d
stands for TSDF and denotes the distance to the surface at certain point in 3D
space. The transformation Ti itself is then computed as follows

Ti =


1 0 0 0
0 cos θi − sin θi tij
0 sin θi cos θi tik
0 0 0 1

 (3.27)

We assume the height to be constant for each building, therefore the correspond-
ing term is set to zero, but we still use the rotation around Y- or I-coordinate, if
in the octree system.

Figure 3.9: The parameters of the building transformation.

Thus, each 3D point is first converted into octree coordinates, then transformed
via Ti. The problem here is that the transformed point has different TSDF value,
so it has to be recomputed. For that octree interpolation, described in Sec.
3.2.4, is employed. As a little implementation enhancement, we also compute the
derivatives, during the interpolation, so we do not have to do it twice. We need
those for gradient estimation and for choosing the the direction in which we want
to move the points, that belong to a building. The interpolated point is shown on

32



3.3. Inference Chapter 3. 3D City Reconstruction

Fig. 3.10. It is straightforward for a quadtree case, and we can easily transform
an octree cell of eight nodes to the one of the quadtree with only four nodes by
applying linear interpolation along height dimension I. We have to first compute
the TSDF values of intermediate nodes r and l

d(l) = (1−4k)d(a) +4kd(c)

d(r) = (1−4k)d(b) +4kd(d)
(3.28)

Having those, d(p) is very easy to find

d(p) = (1−4j)d(l) +4d(r) (3.29)

Figure 3.10: Interpolation, shown on the example of the quadtree. The derivatives
are computed by subtracting TSDF values of left or top node from
right or bottom node respectively.

The residuals are assigned interpolated TSDF values, because we want to min-
imize them, since the lesser the distance to the surface is, the closer the points
are to the building. Still we have to consider the cases, when interpolation could
not be done properly. As described in 3.2.4 this problem may be encountered on
the borders of the scene or the objects, where the depth information was missing
in the first place and the node was not created. In that case we count the point
as not reliable and assign the penalty to the residual

rji =

{
d(pji ), if d(pji ) is valid

5 · 2vdmax−vdji , otherwise

We use voxel depth vdji here to determine the penalty, that is scale-based penalty
for each non-reliable point, because the nodes of bigger scale also yield higher
TSDF values.
The whole unary potential computation pipeline is described in Alg. 5

33



Chapter 3. 3D City Reconstruction 3.3. Inference

Algorithm 5 Unary potentials minimization

1: procedure MinimizeUnaryPotentials
2: //Initialization
3: P := {P1, P2,.., Pn}, Pi ← ∅
4: π := {π1, π2,.., πn}, πi ← {0, 0, 0}
5: for all pj ∈ points do
6: for all bi ∈ buildings do
7: if pj ∈ bi then
8: pij ← pj
9: P i := P i + {pij}

10: end if
11: end for
12: end for
13: while notConverged(r,Or) do
14: for all P i ∈ P do
15: for all pij ∈ P i do
16: Ti ← ComposeTransformationMatrix (πi)
17: p← Ti ∗ pij
18: TSDF,OTSDF ← d(p)
19: if isV alid(TSDF ) then
20: updateResidual(TSDF )
21: updateGradient(OTSDF )
22: else
23: updateResidual(5 · 2vdmax−vdj)
24: end if
25: end for
26: end for
27: end while
28: return π
29: end procedure

3.3.3 Pairwise potentials

At first it may seem, that optimization of only unary potentials is sufficient to
solve the task, which may still be true in some cases, for instance when there is
only on building present. Although in the general case a new problem will arise:
as buildings’ positions are optimized independently, at some point they might
collide, which does not seem like a real case scenario. To address this problem we
employ pairwise potentials, which should detect and penalize collisions between
buildings.
Collision detection of 3D objects may be tricky and computationally expensive,
if done incorrectly. To reduce the complexity we limit the number of buildings,
collisions of which we should track. We call those buildings neighbors. For each

34



3.3. Inference Chapter 3. 3D City Reconstruction

building bi we find a set of closest buildings ni and each pair of bi and nji ∈ ni
are neighbors. Note that neighborhood relation is not symmetrical in the general
case, as we only use top k closest buildings for set ni. Still, if there are sym-
metrical pairs in

⋃
i(bi, ni), they are deleted, because a single pair of neighbors

is enough for the method to work and two symmetrical pairs will introduce un-
wanted bias.
After the number of buildings to check collisions on is reduced by neighbor pairs,
collision detection itself is needed to be done. First for each pair of neighbors
the faces f ji ∈ faces(bi) and f ij ∈ faces(n

j
i ), that represent the minimal distance

between these two buildings, are found, along with their normals noji and noij
respectively. As per previous assumption, that the walls are perpendicular to
the ground, the normal’s height component is equal to zero and the 3D collision
problem may be reduced to a 2D case. Here it is sufficient to only check the
distance between line segments and the normals direction. A useful note here is,
that the collision problem has its most relevance in cases where the neighbors are
very close or even sharing the common wall, see Fig. 3.11. Hence we replaced
distance between line segments with two distances: a center cji of the first face to
the second line and a center cij of a second face to the first.

Figure 3.11: A case of buildings sharing a common wall. Image from
http://harlembespoke.blogspot.ru/2015/01/dwell-139-west-136th-
street-townhouse.html

35



Chapter 3. 3D City Reconstruction 3.3. Inference

The residual is assigned zero, if collision is not happened (see eq. 3.30). The
motivation is that we do not want to promote increase of the distance between
buildings, instead we just want to keep them at the same distance, if possible.
Therefore we penalize the collision by assigning the distance between faces to the
residual, weighted by the number of points, that belong to this pair of buildings
and participate in the optimization process

rij =

{
dist · |Pi| · |Pj|, if min(dot(cji − cij, noij), dot(cij − c

j
i , no

j
i )) > 0

0, otherwise
(3.30)

The residual is defined, though to solve it as a linear optimization problem the
derivatives need to be defined, which in this case is not trivial, especially since
there are two sets of parameters present

3.3.4 Derivatives

The part worth mentioning is derivatives computation. We compute them for
both potentials and follow [ZGWG15] on that. The parameter we optimize is
π = {θ, tk, tj}, where θ is a rotation angle and tk and tj are translations along
axes K and J respectively. Ceres solver requires a Jacobian matrix, thus we have
to find derivatives for all the parameters of δd

δπ
. This derivative is not directly

computable, therefore have to apply chain rule

δd

δπ
=

δd

δπ(p)
· δπ(p)

δπ
(3.31)

Now it is fairly easy to extract derivatives for ti and tj as shown in Fig. 3.10.
Given nodes a, b, c, d and the offsets 4j, 4k we can compute TSDF values for
vu, vd, l and r

d(vu) = (1−4j)d(a) +4jd(b)

d(vd) = (1−4j)d(c) +4jd(d)

d(l) = (1−4k)d(a) +4kd(c)

d(r) = (1−4k)d(b) +4kd(d)

(3.32)

Now the derivatives for this particular node are

δj = d(r)− d(l)

δk = d(vd)− d(vu)
(3.33)

The difficult part is δθ. In order to figure out the derivative for θ we have to
recap, how the transformation matrix T looks like:

T =


tx

R ty
tz

0 0 0 1

 (3.34)

36



3.3. Inference Chapter 3. 3D City Reconstruction

Algorithm 6 Binary potentials

1: procedure AddBinaryPotentials
2: //Initialization
3: P := {P1, P2,.., Pn}, Pi ← ∅
4: π := {π1, π2,.., πn}, πi ← {0, 0, 0}
5: for all pj ∈ points do
6: for all bi ∈ buildings do
7: if pj ∈ bi then
8: pij ← pj
9: P i := P i + {pij}

10: end if
11: end for
12: end for
13: while notConverged(r,Or) do
14: for all bi, bj ∈ neighbors do
15: Ti ← ComposeTransformationMatrix (πi)
16: Tj ← ComposeTransformationMatrix (πj)
17: fi ← Ti ∗ f ij
18: fj ← Tj ∗ f ji
19: dist← min(dot(cji − cij, noij), dot(cij − c

j
i , no

j
i ))

20: if dist > 0 then
21: updateResidual(dist · |Pi| · |Pj|)
22: updateGradient()
23: else
24: updateResidual(0)
25: end if
26: end for
27: end while
28: return π
29: end procedure

Since we already laid down an assumption, that buildings do not move along axis
Y , we can set ty to zero. tx and tz correspond to δj and δk respectively. Finally θ
represents the rotation angle around axis Y . We also swap X and Y dimensions.
Hence

T =


1 0 0 0
0 cosθ −sinθ tj
0 sinθ cosθ tk
0 0 0 1



37



Chapter 3. 3D City Reconstruction 3.3. Inference

Given point p = (i, j, k, 1) the transformed point p′ is

π(p) = p′ = Tp =


1 0 0 0
0 cosθ −sinθ tj
0 sinθ cosθ tk
0 0 0 1

 ·

i
j
k
1

 =


i

j cos θ − k sin θ + tj
j sin θ + k cos θ + tk

1

 (3.35)

We truncate the homogeneous dimension for simplicity reasons, so π(p) = p′ =
{i, j cos θ − k sin θ + tj, j sin θ + k cos θ + tk}. We denote

f1 = p′i = i

f2 = p′j = j cos θ − k sin θ + tj

f3 = p′k = j sin θ + k cos θ + tk

(3.36)

Now the matrix, that results from δπ(p)
δπ

can be written down as

δπ(p)

δπ
=


δθ δtj δtk

f1 0 0 0
f2 −j sin θ −

k cos θ
1 0

f3 j cos θ −
k sin θ

0 1

 (3.37)

We also know, that

δd

δπ(p)
=

 0
δj
δk

 (3.38)

Finally from (3.37) and (3.38) we can compute

δd

δπ
=

δd

δπ(p)
· δπ(p)

δπ
=

δj(−j sin θ − k cos θ) + δk(j cos θ − k sin θ)
δj
δk

 (3.39)

So, the derivative of θ is defined through the other derivatives, which are directly
inferable from interpolation of the octree.
The derivatives for pairwise potentials are more complicated case. We have to
optimize two transformations simultaneously. We define a predicate πp(p1, p2),
which arguments now are 2 points of two different buildings. As in (3.31) we have

to apply chain rule again δd
δπp

= δd
δπp(p1,p2)

· δπp(p1,p2)
δπp

Then, the derivative vector
δd

δπp(p1,p2)
could be written as

δd

δπp(p1, p2)
= { δd

δθ1
,
δd

δtj,1
,
δd

δtk,1
,
δd

δθ2
,
δd

δtj,2
,
δd

δtk,2
}T (3.40)

38



3.3. Inference Chapter 3. 3D City Reconstruction

The matrix δπp(p1,p2)

δπp
is similar to the one for unary potential, but with two sets

of parameters, the size of matrix is also doubled along both dimension, with
irrelevant values set to zero

δπ(p)

δπ
=


0 0 0 0 0 0

−j1 sin θ1 − k1 cos θ1 1 0 0 0 0
j1 cos θ1 − k1 sin θ1 0 1 0 0 0

0 0 0 0 0 0
0 0 0 −j2 sin θ2 − k2 cos θ2 1 0
0 0 0 j2 cos θ2 − k2 sin θ2 0 1

 (3.41)

And what is left now is to multiply the vector with a matrix, to get a a vector,
that will be put into Jacobian matrix

δd

δπp
=

δd

δπp(p1, p2)
· δπp(p1, p2)

δπp
=



δd
δtj,1
· δf2
δθ1

+ δf3
δθ1
· δd
δtk,1

δd
δtj,1

δd
δtk,1

δd
δtj,2
· δf5
δθ2

+ δf6
δθ2
· δd
δtk,2

δd
δtj,2

δd
δtk,2


(3.42)

The outcome of the inference process strongly depends on the Jacobians we just
got. Changing weights for different dimension might enhance or deteriorate the
results. In case of the raw sequence we tested our method on, promoting dimen-
sion tj while others were set to zero, was successful. The reason is that the car
trajectory and therefore road and buildings are aligned to axis K with small fluc-
tuations. In general case this should not work, but with small workarounds we
could cast almost any scene to such representation and boil it down to previously
described problem.

3.3.5 Parameters and limitations

The aforementioned process already shows improvements in buildings’ pose rela-
tive to the prior. Although it is possible to tune the parameters of the inference
process to increase the quality of the pose estimation. For each scene these param-
eters may be very specific and very different. The first type of these parameters is
weight of the derivatives we assign to Jacobian matrix. Our idea was to set those
weights proportionally to the size and the other properties of the scene. The
dimensions of the scene are very straightforward to compute, while knowledge
about in which direction to move the houses is not clear. We made an assump-
tion, that the houses are more likely to move along the direction perpendicular to
the road, which is true in most of the cases. Thus the biggest weight is assigned

39



Chapter 3. 3D City Reconstruction 3.3. Inference

to this direction, in some experiments that was the only non-zero weight and still
it has improved the final pose.
The second parameter was Huber loss [Hub77] threshold. This threshold sets the
value after exceeding of which squared loss switches to linear. This part controls
the interaction between unary and pairwise potentials. The number of pairwise
potentials is much less, than that of unary, but their weight is much greater. If
the threshold value is too high, the pairwise potential start to prevail, if too low,
then the unary. This leads to another problem: when unary potentials start to
dominate, the penalty for the collision drops and the houses end up one inside the
other. In case pairwise potentials overwhelm the unary, the penalty of collision
becomes too high to move houses towards each other. This is rather the limita-
tion of our energy function, if at least one house moves in unwanted direction and
generates a penalty for the cost, the whole move is rejected. And if the houses
are optimized separately, the collision will be out of control. In our experiments
we used threshold 100 in uniform weights case and 2 in case of one dominant
weight. In future work we plan to make the energy function more flexible, so the
described situation won’t occur again.
There are other parameters as well, but they do not cause such an impact on
the result. We experimented with changing line search methods, solver type and
number of iterations, but as soon as they are more or less reasonable they cause
neither performance drop nor gain.

40



3.4. Facade Separation Chapter 3. 3D City Reconstruction

3.4 Facade Separation

In Sec. 3.3 we encountered a problem: if buildings share a physical common wall,
it becomes difficult to move them around without violation of constraints. One
solution was to introduce pairwise potentials, to regulate the intersection relation
between buildings. A second proposed solution was to assume such building
as one in context of this thesis and then move the common walls inside that
building. This step is also useful as a postprocessing step for the inference with
both potentials, as due to our visual observations, such walls are misplaced very
often. The overview of the whole facade separation algorithm can be found on
Fig. 3.15

We discussed octree generation and inference so far. This section is also major
part of the work, but somehow more independent, since it does not need the
results of the previous two, although we still indirectly need the OSM model.
Instead we require edges and 2D normals information. There are two possibilities
to solve this challenge: use a homography to transfer the task into a different
domain of camera facing buildings or separate the facades directly in the input
images. The motivation for the first way is, that this task was solved multiple
times for the facades, that face camera [RWL11]. In our case we did not have
camera faced buildings (see Fig. 3.12), so we had to use homography transfor-
mation, to be able to apply those methods. Since the same building appears in
several images we also had to find out which frame to use for the homography.
So for each building we picked a frame, where the fraction of pixels semantically
labeled as building rgbdb in the set of pixels p, that belong to this building osmj,
according to OSM model is maximal

indexj = argmaxi
|p ∈ rgbdb

⋂
p ∈ osmj|

|p ∈ osmj|
(3.43)

Figure 3.12: An image 132 from sequence 2011 09 26 drive 106 sync of raw
KITTI dataset [GLSU13]

We also considered different criteria for picking out the best frame: number of
pixels, that belong to building j, number of pixels, that both, belong to a building
according to RGBD segmentation and to osmj as well, etc. In general they gave

41



Chapter 3. 3D City Reconstruction 3.4. Facade Separation

worse performance, due to multiple reasons, the most important one being, that
the measure has to include as OSM as real semantics terms. If we do not use the
OSM model, we cannot guarantee, that the necessary building is shown. If the
real segmentation is not used, the frame with the biggest number of pixels la-
beled as building j might have an occlusion, a car for instance, which will greatly
reduce our ability to analyze the edges of the building. The divisor is added
due to regularization reasons, as we prefer smaller, not occluded regions to larger
ones, but with obstacles. We also use the same frame for ground estimation of
the building, although we perform averaging with neighboring frames, to reduce
outliers effect.
Our task is to find separation lines between houses. We acquire an edge image

Figure 3.13: Result of running edge detection algorithm described in [DZ14]
[DZ13] [Dol] on image 132 from sequence 2011 09 26 drive 106 sync
of raw KITTI dataset [GLSU13]

from [DZ14], but it is still not possible to decide on edges just from that informa-
tion. On this we follow the idea of [Mat13]: the separation must be vertical and it
should not be intersected by horizontal lines. The second condition is unrealistic
though, therefore we soften it to the state of penalty for each horizontal line inter-
secting a vertical one. But before we can formulate the separation condition, we
need the means to detect vertical and horizontal edges. We can find out that for a
single edge by calculating the angle between ground plane and the edge itself. The
ground plane might be found in different ways. The simplest one is to use pixels,
classified as ’Road’ by semantic segmentation, for constructing a 3D point cloud
and then apply PCA to find the road plane. Although we achieve better results
by applying method from [CKZ+15]. The edge has more options to choose from.
It is possible to build a line from a set of pixels by applying RANSAC [FB81],
but we have to add new constraints to avoid including unwanted points and run
it multiple times, as we have many edges to find, which is quite expensive. We
apply a simpler solution by using short sequence of filters: Gaussian and Sobel.
The method from [DZ14] leaves quite some noise, thus we first smooth it out with
Gaussian filter and then apply Sobel filter to get 2D derivatives (see Fig. 3.14).
We then compute the 2D normal orientation angle α from that information for
each pixel p = (px, py), marked as edge. Using disparity and vertices map we find

42



3.4. Facade Separation Chapter 3. 3D City Reconstruction

(a) Vertical normals

(b) Horizontal normals

Figure 3.14: Normals computed via cascade of Gaussian and Sobel filters on image
130 from sequence 2011 09 26 drive 106 sync of raw KITTI dataset
[GLSU13]

the corresponding 3D points for the 2D pixels with horizontal or vertical normals.
Knowing α we can find a pixel p′, which is as close to the extracted by RANSAC
line model as possible, that is find such k, that following holds

p′x = px − k · cos(α)

p′y = py − k · sin(α)

k = argmink(|p′x − round(p′x)|+ |p′y − round(p′y)|)
(3.44)

Using p and p′ we can extract vertices v and v′, we got from the disparity map
earlier. We construct a 3D normal now

n =
v′ − v
||v′ − v||

(3.45)

and then calculate a dot product between n and ground normal gn

β = acos(n · gn) (3.46)

The angle β is an angle between normals of the ground plane and edge normal,
that means it is also an angle between edge and the ground plane themselves

43



Chapter 3. 3D City Reconstruction 3.4. Facade Separation

as well. The pixels, that have 3D normals close to parallel to the ground are
labeled as vertical, close to perpendicular - as horizontal. Each pixel marked that
way casts a vote into a a 2D voting grid, that is extended over the whole scene.
In each cell of the grid vertical pixels add the probability of a separation, while
horizontal ones decrease it. In fact, we decided to use two separate grid for this
purpose, to preserve more information up to decision step. We omit the height
component in the grid, due to small variability of this parameter. Given the point
p = {px, py, pz}, the projection to the grid is therefore defined as

gx =
px − xmin

sx
(3.47)

gz =
pz − zmin

sz
(3.48)

xmin and zmin are the lower bounds of the scene’s bounding box, described in
Sec. 3.2.5. sx and sz represent a step, a parameter, that defines grid’s resolution.
This parameter has to be balanced and may have critical impact on performance.
Too small steps will result into a grid with finer resolution, so the votes will
be cast into different cells and maxima might end up in a wrong place. The
computation complexity will also increase. Larger steps and coarser resolution
will have blurring effect on a grid. The maxima cell will probably be correct,
but due to a big cell size, the separation might shift from the correct location.
For our experiments we keep both sx and sz around 15 cm. and achieve decent
results.
There is a consequence of excluding height though: because of multiple ground
planes in different frames, the variability of the height might change, which will
lead to creation of regions, where the points will be distributed more sparsely or
densely, than they should be. An alternative would be to project directly on the
ground plane, which will exclude the projection error for one particular frame,
but with adding more frames and more ground planes, the previously described
problem will take place again and impact might be even worse.
We also perform edge thinning via non-maxima suppression procedure, modified
from Canny Edge Detection algorithm. Given edge image and normal map, we
acquired from applying Gaussian and Sobel filter chain we use the same procedure
as we used in Eq. (3.44), but this time with constraint, that p′ falls into 8-
neighborhood of p. We also find a pixel p′′ in reverse direction of the normal,
which is easily derivable from Eq. (3.44)

p′′x = px + k · cos(α) (3.49)

p′′y = py + k · sin(α) (3.50)

So we set p to zero, if either p′ or p′′ has higher intensity. An important note here
is, that we apply the changes to the copy of the image and not in-place, since
it would lead to unpredictable behavior of the algorithm. The thinned image is
used thereafter as an indicator: if the intensity value of the pixel is higher than

44



3.4. Facade Separation Chapter 3. 3D City Reconstruction

user-defined value, the pixel’s vote is taken into account.
After all the frames are integrated, we start to process the voting grid. First we
include the priors: lines, separations that are extracted from the 3D OSM model
by finding the sides of the buildings, that face road and project them onto the
grid. Around each prior inside some window we find k maximal peaks (in our
experiments we used k = 3). The final decision step is to find visual cues for the
separation. We project the peaks back in an image, the frame that we use for
building j is the best frame indexj, that we already picked out before. For each
line we get, the pixels from both sides are gathered. We use color histograms of
each side for that goal

rr =
∑

lu<u<lu+wu

lbv≤v≤ltv

pr(u, v)

nr
·D(u, v)

rl =
∑

lu−wu<u<lu
lbv≤v≤ltv

pr(u, v)

nl
·D(u, v)

(3.51)

where lu, l
b
v, l

t
v are a horizontal location and a lower and upper ends of the line,

pr(u, v) is a red component of the pixel at location (y, v) and wu is an user-defined
horizontal window size to take samples from. nr and nl are the pixel numbers on
different sides, they both roughly equal to wu · (ltv − lbv), but since it only makes
sense to use pixels, that are labeled as buildings, this number might drop. D(u, v)
is a flag function, that tells whether pixel is labeled as building or not

D(u, v) =

{
1, if label(p(u, v) = building

0, otherwise
(3.52)

rr and rl are the red components of the histogram on the right and left side
respectively. gr, gl, br and bl are defined by the same means. We normalize the
results, as the histogram intersection may not work correctly otherwise. We then
compare them with histogram intersection and take the line with the smallest
value

kopt = argmini,0≤i<k(min(ril , r
i
r) +min(gil , g

i
r) +min(bil, b

i
r)) (3.53)

Although color histograms are not a reliable measure on its own, due to previous
filtering steps it shows advantageous results. Still the full method might benefit
from more complex texture analysis. We also experimented with different his-
togram distances, like simple Euclidean or Earth Mover Distance [RTG98], but it
did not show any significant performance gain or loss. More details as well as full
algorithm could be found in Alg. 7 After getting line location inside 2D grid we
want to get its coordinates in 3D world space. Although we omitted the height

45



Chapter 3. 3D City Reconstruction 3.4. Facade Separation

Algorithm 7 Search for back Neighbor

1: procedure SeparateFacades
2: //preparation step
3: for all f ∈ Frames do
4: gn← GetGroundNormal(f)
5: Edges← GetEdges(f)
6: Dx← SobelDx(Gaussian(Edges, Size = 11x11))
7: Dy ← SobelDy(Gaussian(Edges, Size = 11x11))
8: // we only get orientation angle of the 2D normal here
9: Normals2D ← atan(Dy

Dx
)− π

10: for all (p ∈ Pixels do
11: v ← V ertices(p)
12: a← Normals2D(p)
13: pn← GetP ixelInDirection(a)
14: vn← V ertices(pn)
15: n3d← GetNormal(v, vn)
16: diff ← GetAngleBetween(n3d, gn)
17: if |diff |%π < π

6
then

18: CastHorizontalV ote(grid, v)
19: end if
20: if |diff − π|%π < π

6
then

21: CastV erticalV ote(grid, v)
22: end if
23: end for
24: end for
25: for all b ∈ buildings do
26: f ← PickBestFrame(b))
27: N ← GetNeigbors(b))
28: for all n ∈ N do
29: bfacade← GetSideFacingRoad(b)
30: nfacade← GetSideFacingRoad(n)
31: prior ← GetCommonEdge(bfacade, nfacade)
32: Peaks← FindPeaksAround(prior, grid)
33: for all peak ∈ Peaks do
34: line2D ← GetLineInImageSpace(peak)
35: lhist← GetLeftColorHist(line2D)
36: rhist← GetRightColorHist(line2D)
37: D ← D + {GetDistance(lhist, rhist)}
38: end for
39: maxdist←Max(D)
40: separation← GetPeak(Peaks,maxdist)
41: S ← S + separation
42: end for
43: end for
44: return S
45: end procedure
46



3.4. Facade Separation Chapter 3. 3D City Reconstruction

parameter previously, we can still get a decent guess using the ground plane of
the best frame for the separation. We first recover px and pz

px = sx · gx + xmin

px = zmax − sz · gz
(3.54)

Given ground plane representation

Ax+By + Cz +D = 0 (3.55)

the y is directly computable

y =
Apx + Cpz +D

−B
(3.56)

The height determined in such way is almost always correct. Natural exceptions
are incorrect input, such as wrong ground plane or the cases, when the building’s
begin does not coincide with the intersection with the ground plane. We minimize
the effects of the first by averaging the ground plane over multiple neighboring
frames. We do not consider the second, since it is an extremely rare occasion and
was not observed in the testing sequences. In the future work though we may
solve this problem by applying similar texture comparison, as we did for final
decision about building separation line.

47



Chapter 3. 3D City Reconstruction 3.4. Facade Separation

Figure 3.15: Overview of the facade separation pipeline

48



4
Evaluation

For each stage two kinds of evaluation were performed: one on a toy example and
a second one on a real data with the ground truth. Each of the three stages is
discussed below.

4.1 Datasets

This method was calibrated on the sequence 2011 09 26 drive 0106 sync of the
KITTI raw dataset, but also tested on sequences 13 and 19 of the KITTI tracking
dataset as well as on Oxford RobotCar Dataset [MPLN17]. The reason for the
low number of testing material is that a lot of potentially interesting sequences
failed to fulfill at least one of the two conditions:

1. Having embedded GPS coordinates of a car

2. Having buildings

The first one is needed, as we need to align the map and the images, because
the localization problem is not a part of this thesis. The second one’s necessity
is obvious, since the goal of this work is to optimize buildings’ locations. For the
facade separation part we need 2 more conditions:

1. There must be buildings with a common wall

2. The buildings with a common wall should be visually separable

Without buildings with a common wall, the step does not make any sense, the
second part of the condition exists for a simple reason, that we have to generate
the ground truth by labeling different buildings. This can be omitted, if ground
truth is provided, nevertheless the method may fail, since it is texture-based and
might not find the separation (see Fig. 4.1).

49



Chapter 4. Evaluation 4.2. Experimental setup

Figure 4.1: An example of visually inseparable buildings (shown with a red looped
line). The image 88 from sequence 2011 09 26 drive 0106 sync of the
KITTI raw dataset

(a)

(b)

Figure 4.2: On (a) the scheme of the experimental setup in KITTI is shown. On
(b) one can see a fully equipped vehicle

4.2 Experimental setup

4.2.1 KITTI

The KITTI dataset is recorded with always the same setup, which is shown on
Fig. 4.2a. The calibration parameters might slightly differ from sequence to
sequence, but overall the setup stays static. The following elements are used in
this setup

• 1 Inertial Navigation System (GPS/IMU): OXTS RT 3003

• 1 Laserscanner: Velodyne HDL-64E

• 2 Grayscale cameras, 1.4 Megapixels: Point Grey Flea 2 (FL2-14S3M-C)

• 2 Color cameras, 1.4 Megapixels: Point Grey Flea 2 (FL2-14S3C-C)

• 4 Varifocal lenses, 4-8 mm: Edmund Optics NT59-917

50



4.3. Results Chapter 4. Evaluation

According to the documentation, the spin rate of the laser is 10 frames per sec-
ond. The laser captures approximately 100000 points per spin with the vertical
resolution of 64. The cameras, that are close to parallel with the ground plane,
have recording rate of 10 frames per second and are synchronized with the laser
cycles. The size of the images after cropping via libdc’s format 7 mode is 1382
× 512, but it is decreased by rectification. The car, equipped with this setup is
shown on Fig. 4.2b

4.2.2 Oxford RobotCar

The Oxford RobotCar dataset contains recordings from the streets of Oxford
from May 2014 to December 2015. The specificity of this dataset is, that there is
only a single route, which is repeated over 100 times, but under different weather
and lighting conditions. The setup can be seen on Fig. 4.3. It contains:
Cameras:

• 1 × Point Grey Bumblebee XB3 (BBX3-13S2C-38) trinocular stereo cam-
era, 1280×960×3, 16Hz, 1/3” Sony ICX445 CCD, global shutter, 3.8mm
lens, 66◦ HFoV, 12/24cm baseline

• 3× Point Grey Grasshopper2 (GS2-FW-14S5C-C) monocular camera, 1024×1024,
11.1Hz, 2/3” Sony ICX285 CCD, global shutter, 2.67mm fisheye lens (Sunex
DSL315B-650-F2.3), 180◦ HFoV

LIDAR:

• 2 ×SICK LMS-151 2D LIDAR, 270◦ FoV, 50Hz, 50m range, 0.5◦ resolution

• 1 × SICK LD-MRS 3D LIDAR, 85◦ HFoV, 3.2◦ VFoV, 4 planes, 12.5Hz,
50m range, 0.125◦ resolution

GPS/INS:

• 1 × NovAtel SPAN-CPT ALIGN inertial and GPS navigation system, 6
axis, 50Hz, GPS/GLONASS, dual antenna

Since it was published very recently, we did not have the chance to try our method
on the whole dataset, but only on a small part of it. We used a subsequence of
frames from 4381 to 4874 of the dataset 2014-07-14-14-49-50, as it contained a
lot of buildings.

4.3 Results

4.3.1 Integrated Depth Evaluation

We first show with a toy example, that the depth integration works and gives
reasonable results, then the improvement is shown on a real case image sequences.

51



Chapter 4. Evaluation 4.3. Results

Figure 4.3: The setup of Oxford RobotCar dataset [MPLN17]

Toy example

We created a controlled environment to get a proof, that the depth integration
with an octree works. As a 3D figure we chose an intersection of two planes in
a form of a corner (see Fig. 4.4. This kind of shape has several motivations. A
simple plane will discover only a small amount of the irregularities in the algo-
rithm, while complicated surfaces have rare occurrence in a real world scenario.
Moreover they might mislead a human inspector, since it will be difficult to see
which points contribute to which node of the octree. One more advantage is that
a corner-like surface is a case which happens very often in a real environment. It
also shows, that the algorithm, which heavily depends on surface normals, can
deal with a lot of different orientations and scales and returns a plausible result.

(a) Front view (b) Top view

Figure 4.4: A toy example with a corner-like shape

The results although depend on voxel integration window size h. For a scene
of size 16× 16× 16 an optimal value was 1.5. The results are shown on Fig. 4.5.
As expected, the nodes, that are far from the camera, which is in the middle, are
given larger scale and are not split.

52



4.3. Results Chapter 4. Evaluation

(a) Top view (b) View from right. In top right corner
the nodes of higher scale are seen, cen-
tered at a different position as the rest

Figure 4.5: An toy example with centers of the octree nodes with distance-based
color coding. From highest distance to lowest: red, orange, light
green, cyan, blue, pink; between light green and cyan lies zero in-
tersection level, thus red and blue have different sign and represent
different sides of the surface

Real case testing

For a real case we used sequence 2011 09 26 drive 106 sync of raw KITTI dataset.
We took every 10th image, from frame 50 till 200. As a ground truth LIDAR’s
point clouds are used, projected into the image space. We take depth value
generated by ELAS, SPS-Stereo and Fusion method at the pixels of the image,
which are semantically labeled as buildings and where ground truth exists. And
as we know the precise 3D positions of those points, we can interpolate the octree
to get the distance to the surface, which in this case shows an amount of error,
while we have to take absolute difference in case of non-integrative methods. The
average errors along with their support (number of points, where both, estimation
and ground truth exist) are shown on Fig. 4.6. It shows, that in observed sequence
SPS-Stereo is able to outperform ELAS algorithm. The reason might be, that
ELAS’ estimation includes a lot of outliers, while SPS-Stereo’s planar assumption
reduces or completely nullifies their effect. However, both these methods are not
able to compete with depth integration approach. While there is a large difference
between SPS-Stereo and ELAS, the difference between octrees, based on those
methods is minor, since the outlier influence is minimized via integration and
voting.

4.3.2 Facade Separation Evaluation

Facade separation on the other hand is much easier to evaluate visually, so a sanity
check by a human inspector replaced the creation of a controlled environment.
But the problem is with a real case evaluation, as the ground truth of buildings

53



Chapter 4. Evaluation 4.3. Results

40 60 80 100 120 140 160 180 200
Frames

0

10

20

30

40

50

D
e
p
th

_e
rr

o
r 

(m
)

SPS-stereo
SPS-stereo-based octree
ELAS
ELAS-based octree

(a) Depth error on a sequence 2011 09 26 drive 106 sync of raw KITTI dataset
[GLSU13].

40 60 80 100 120 140 160 180 200
Frames

0

1000

2000

3000

4000

5000

6000

7000

8000

S
u
p
p
o
rt

SPS-stereo
SPS-stereo-based octree
ELAS
ELAS-based octree

(b) Support of depth error computation on a sequence 2011 09 26 drive 106 sync of
raw KITTI dataset

Figure 4.6: Comparison of different depth/disparity estimation methods

separations is not provided with KITTI dataset. Thus we created a ground truth
ourselves, by labeling different buildings in some images of the sequences, where
they are visually separable (see Fig. 4.7). Since the focus was lying in the
separations, we did not care about fine details doing the labeling, but only drew
a quality separation.

Figure 4.7: An example of a labeled image

54



4.3. Results Chapter 4. Evaluation

The separation procedure is performed on a 2D grid, representing the ground
plane, not in image space. Therefore a projection must be defined, that will
match the separation lines to the image space lines. In Sec. 3.4 we have shown,
how to do the transformation from image space to 3D. Now we show how to do
the inverse.
Given the line l = (lx, ly, lz) and the ground plane Gi = (A,B,C,D) for frame i,
the lower endpoint of the line lies at

llowx = lx

llowy =
Alx + Clz +D

−B
llowz = lz

(4.1)

The upper point can then be located by following the direction of the ground
plane’s normal

lupx = llowx + A · h
lupy = llowy +B · h
lupz = llowz + C · h

(4.2)

where h is a height parameter. Ideally it should be equal to the height of the
current building, but it is usually enough to set it to some realistic constant. In
our experiments we used h = 20m.
The next is transformation to the image space. We must first transform the
points according to the position of the car, when the frame i was taken using pose
matrix Pi provided by KITTI. As the matrix Pi originally transforms points from
coordinate space of frame i to the one of frame 0, we have to use the inverse of Pi.
The last step should be projection into the image space with a projection matrix
Pr. Both matrices also require homogeneous points to work with, therefore we
extend lup and llow with fourth coordinate. Thus the full transformation is

plow = Pr · Pi · llow

pup = Pr · Pi · lup
(4.3)

The final operation should be division of plow = (plowx , plowy , plowd ) and pup by the
third coordinate

plowx =
plowx
plowd

plowy =
plowy
plowd

pupx =
pupx
pupd

pupy =
pupy
pupd

(4.4)

55



Chapter 4. Evaluation 4.3. Results

Now, x represents a width coordinate inside the image, while y shows vertical
position. We calculate the average along the width axis

x =
plowx + pupx

2
(4.5)

We do the same for a ground truth model. As you may recall from Sec. 3.4 we
do not extract points, but line models in form y = mx+ b. We only have to pick
vertical coordinates yt and yb that denote endpoints of the separation. We used
yt = 374 and yb = 0 as they create a maximal possible vertical margin. Hence
the average along horizontal axis for the ground truth is

xgt =
(yt − b) + (yb − b)

2m
=

374− 2b

2m
(4.6)

Each ground truth separation was matched with a prior separation extracted
from the OSM directly and with our separation estimation. Each building has two
separations a priori. We employ intersection over union for priors and estimations
to be compared with ground truth. The results can be seen at Fig. 4.9 and Fig.
4.8. Our method is able to outperform the prior separation on most cases, while
maintaining the prevailing support, which shows, that it hits true interval more
often than a prior does.

4.3.3 Building Pose Evaluation

For this part we used the same setup as described in Sec. 4.3.1. To test the
inference process and non-linear least squares initial corner-like point cloud was
shifted around inside the scene and then was optimized by our algorithm. The
pose estimation and enhancement procedure was developed iteratively in the first
place, even for a toy example. We started with the changes along single dimen-
sion, then two dimensions simultaneously and at the end we added rotational
component. The results are shown in Fig. 4.11.

Though for the toy example the results are promising, there are certain diffi-
culties that we face, when starting to evaluate in a real case scenario. That is,
there is no ground truth poses provided in KITTI or any known dataset. There
were several possibilities to handle this problem. First was to create the ground
truth manually, with moving the buildings around inside OSM model, until they
coincide perfectly with the LIDAR depth estimations. But even for one sequence
this might be very difficult to do, since visual inspection of humans is not ideal
and moved objects may also be faulty in the end. Secondly an idea of taking
cadastre maps emerged, although it was soon rejected due to troubles of getting
those from local government and legal issues. Finally we decided to perform the
evaluation in 2D image space, by backprojecting the optimized model to an image
and using the depth laser data on pixels, that are manually labeled as buildings.
By a first glance it seems off, that we perform the optimization in 3D and then

56



4.3. Results Chapter 4. Evaluation

60 80 100 120 140 160 180
Frames

0.0

0.2

0.4

0.6

0.8

1.0
Io

U
Prior separation
Separation estimation

(a) Average intersection over union values on buildings from a sequence
2011 09 26 drive 106 sync of raw KITTI dataset [GLSU13].

60 80 100 120 140 160 180
Frames

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Io
U

 s
u
p
p
o
rt

Prior separation
Separation estimation

(b) The number of buildings participated in computation on a sequence
2011 09 26 drive 106 sync of raw KITTI dataset

Figure 4.8: Facade separation estimation vs prior methods

evaluate the results in 2D. The motivation for that is that when moving through
the image sequence, we only see one side of the buildings. The points we sample
are also lying on this side, so the whole method is based on facades. We still have
the 3D information from OSM model, like the position or shape of the building,
but we only assume, that those are reasonable, as we cannot prove it through
street-view observations. Hence projecting in 2D domain does not lose a lot of
information for us. Also it is probably the only way to measure the changes, that
were introduced by optimization. The resulting comparison is provided in Fig.
4.12
We project both, prior and optimized models into an image space via VTK. As
those are just models, we can directly read the depth buffer to read the depth val-
ues at each pixel. Those depth values are then compared to laser measurements,
which are taken as ground truth. We only use those pixels, that are labeled as
buildings in ground truth labeling and have laser and model depth measurements.
To construct a laser depth map, we need to iterate over the laser point cloud and
project each point into an image. In KITTI setup laser points are in different

57



Chapter 4. Evaluation 4.3. Results

0 50 100 150 200 250 300 350
Frames

0.0

0.2

0.4

0.6

0.8

Io
U

Prior separation
Separation estimation

(a) Average intersection over union values on buildings from a sequence 0013 of tracking
KITTI dataset [GLU12].

0 50 100 150 200 250 300 350
Frames

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Io
U

 s
u
p
p
o
rt

Prior separation
Separation estimation

(b) The number of buildings participated in computation on a sequence 0013 of tracking
KITTI dataset

Figure 4.9: Facade separation estimation vs prior methods

coordinate system, as the camera points, so the first thing to do is to cast it to
that system with matrix Tr, provided by KITTI

7.533745e− 03 −9.999714e− 01 −6.166020e− 04 −4.069766e− 03
1.480249e− 02 7.280733e− 04 −9.998902e− 01 −7.631618e− 02
9.998621e− 01 7.523790e− 03 1.480755e− 02 −2.717806e− 01

0 0 0 1


(4.7)

After that we apply the same sequence of matrix multiplications as in Eq. (4.3)
with division of resulting vector by third component. The last thing we check is
that the image space coordinates of the point are within boundaries of the image,
e.g. 0 ≤ x < width and 0 ≤ y < height. After all the iterations are done we have
a laser depth map ready.

58



4.3. Results Chapter 4. Evaluation

60 80 100 120 140 160 180
Frames

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

Prior separation
Separation estimation

(a) Average intersection over union values on buildings from a subsequence of RobotCar
2014-07-14-14-49-50 dataset [MPLN17].

60 80 100 120 140 160 180
Frames

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Io
U

 s
u
p
p
o
rt

Prior separation
Separation estimation

(b) The number of buildings participated in computation on a subsequence of RobotCar
2014-07-14-14-49-50 dataset

Figure 4.10: Facade separation estimation vs prior methods

59



Chapter 4. Evaluation 4.3. Results

(a) Inference run with changes on a single
dimension, 4k = 1

(b) Inference run with changes on two sin-
gle dimensions, 4j = 2, 4k = 1

(c) Inference run with changes on all three
dimensions, 4j = 2, 4k = 1, 4θ =
0.05

(d) Inference run with changes on all three
dimensions, 4j = 2, 4k = 1, 4θ =
0.5

Figure 4.11: Results of running inference on a toy example, optimizing different
amount of dimensions. Yellow points show initialization, green -
ground truth surface, cyan - the result. The changes along dimension
are given under figures

60



4.3. Results Chapter 4. Evaluation

40 60 80 100 120 140 160 180 200
Frames

0

2

4

6

8

10

D
e
p
th

 e
rr

o
r 

(m
)

Initial model
Optimized model

(a) Depth error on a raw sequence of KITTI dataset.

40 60 80 100 120 140 160 180 200
Frames

0

500

1000

1500

2000

2500

3000

3500

S
u
p
p
o
rt

Initial model
Optimized model

(b) Support in the number of points used for measurement of depth error

40 60 80 100 120 140 160 180 200
Frames

0

2

4

6

8

10

12

14

V
a
ri

a
n
ce

 (
m

*m
)

Initial model
Optimized model

(c) Variance of the depth error

Figure 4.12: Results of running inference on a sequence 2011 09 26 drive 106 sync
of raw KITTI dataset

61



Chapter 4. Evaluation 4.3. Results

40 60 80 100 120 140 160 180 200
Frames

0

2

4

6

8

10

D
e
p
th

 e
rr

o
r 

(m
)

Initial model
Optimized model

(a) Depth error on a subsequence of RobotCar 2014-07-14-14-49-50 dataset.

40 60 80 100 120 140 160 180 200
Frames

0

500

1000

1500

2000

2500

3000

3500

S
u
p
p
o
rt

Initial model
Optimized model

(b) Support in the number of points used for measurement of depth error

40 60 80 100 120 140 160 180 200
Frames

0

2

4

6

8

10

12

14

V
a
ri

a
n
ce

 (
m

*m
)

Initial model
Optimized model

(c) Variance of the depth error

Figure 4.13: Results of running inference on a subsequence of RobotCar 2014-07-
14-14-49-50 dataset

62



4.4. Discussion Chapter 4. Evaluation

4.4 Discussion

As was pointed before, our method has three major parts: depth integration, pose
optimization and facade separation. Each of them includes many parameters and
algorithms, that were established empirically, but could be selected differently.
The depth integration part is very similar to [UB15], but we were changing the
integration distance h, as well as the depth constant dc. For scenes with smaller
and finer objects h was set to 1 or 2, while the depth constant dc varied from
0.01 to 0.1. In fact we can use smaller value for h, but that brings up an other
problem: the input. We work with stereo disparities, which usually yield de-
cent results, but still have error margin, unacceptable for real world application,
like autonomous driving. The errors in disparity lead to errors in normal esti-
mation, which affects the construction of the octree, especially, when errors are
systematic. The problem of Elas was a high number of outliers in each frame for
pixels, that lie on borders of the objects. SPS-Stereo handles the borders rather
well, but the planar assumption creates artifacts in disparity sometimes. Laser
fusion from [HK+11] returns decent results for pixels, close to laser detections,
but is helpless on depth discontinuities. Also because of basing on laser input
the disparity is limited to the maximal laser elevation or the lower part of the
image. This problem makes disparities useless for our algorithm, if the building
was occluded, since the upper half of the image is not present and we lack build-
ing points. Hence given better disparity maps we would be able construct better
octrees, thus obtaining an improved alignment of the model to the observations.
The second problem was the lack of ground truth, especially for the pose estima-
tion evaluation. Not having a correct map made us search for alternative ways
to measure the pose correctness. The backprojection of the optimized model into
2D image space only evaluates the pose indirectly. We were though able to cre-
ate ground truth for facade separation through manual labeling of the buildings
in different frames. Another difficulty was a lack of appropriate sequences, that
contain buildings. In whole KITTI dataset we only could find three sequences,
that fit our purpose.
The last considerable problem was the energy formulation for the inference pro-
cess. We could not express our energy formulation so that it would both, fulfill
our constraints and move the buildings. For the raw sequence we could just dis-
able two dimensions, depth and rotation, and only move the buildings along the
width dimension, but it is not possible for general case, since the scenes are not
always Z-axis oriented. There are two solutions we found to address that problem.
First is to change the ways of implementation, via ceres or some other tool, to be
able to use constraints properly. The second was to exploit facade information,
which is extracted for facade separation step, to compute its normal and then
encourage movements along that normals, while penalizing deviations. This way
the shift parameters can be bounded which allows a better use of optimization
tools.

63



Chapter 4. Evaluation 4.5. Conclusion

4.5 Conclusion

We have shown several algorithms, with main focus on building’s pose optimiza-
tion and facade separation from street-view images. The algorithms work for
standard cases, where building’s shape is not unique and it is visually separable
from the others. We first extract disparity maps and then integrate them into
octree. Then we use non-linear optimization on the points, sampled from the
model, to compute building’s transformation. Finally edge detection and inte-
gration are applied, for voting on the building separation. The experiments show,
that improvement exists in most cases, although sometimes errors are introduced,
due to irregularities of the data.
In future work we plan to enhance the method in many directions. From software
point of view, we want to increase the speed of our implementation, while reducing
the memory cost. As for algorithmic side, the method should be more indepen-
dent from the user, regarding various parameters of depth integration, inference
and facade separation. An interesting course would be to omit KITTI’s position
data and perform self-localization, knowing only approximate GPS coordinates
of the car. Also, the optimized buildings model can be used for reconstruction
of a big part of the scene, so we plan to work on reconstruction of the smaller
objects, like cars or poles, which will brings us closer to quality digital recreation
of the real scenes.

64



Bibliography

[AMO] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://

ceres-solver.org.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[CKZ+15] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G Berneshawi,
Huimin Ma, Sanja Fidler, and Raquel Urtasun. 3d object proposals
for accurate object class detection. In Advances in Neural Information
Processing Systems, pages 424–432, 2015.

[CWUF16] Hang Chu, Shenlong Wang, Raquel Urtasun, and Sanja Fidler.
Housecraft: Building houses from rental ads and street views. In
European Conference on Computer Vision, pages 500–516. Springer,
2016.

[Dol] Piotr Dollár. Piotr’s Computer Vision Matlab Toolbox (PMT).
https://github.com/pdollar/toolbox.

[DZ13] Piotr Dollár and C. Lawrence Zitnick. Structured forests for fast edge
detection. In ICCV, 2013.

[DZ14] Piotr Dollár and C. Lawrence Zitnick. Fast edge detection using
structured forests. ArXiv, 2014.

[ER] Peter H Dana Eugene Reimer, Chuck Gantz. Conversion tool: Lat-
long to utm and utm to latlong. http://ereimer.net/programs/

LatLong-UTM.cpp.

[FB81] Martin A Fischler and Robert C Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–
395, 1981.

65

http://ceres-solver.org
http://ceres-solver.org
https://github.com/pdollar/toolbox
http://ereimer.net/programs/LatLong-UTM.cpp
http://ereimer.net/programs/LatLong-UTM.cpp


Bibliography Bibliography

[Gar82] Irene Gargantini. Linear octtrees for fast processing of three-
dimensional objects. Computer graphics and Image processing,
20(4):365–374, 1982.

[GLSU13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets Robotics: The KITTI Dataset. International Journal
of Robotics Research (IJRR), 2013.

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready
for Autonomous Driving? The KITTI Vision Benchmark Suite. In
Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

[GRU10] Andreas Geiger, Martin Roser, and Raquel Urtasun. Efficient large-
scale stereo matching. In Asian conference on computer vision, pages
25–38. Springer, 2010.

[HK+11] Daniel Huber, Takeo Kanade, et al. Integrating lidar into stereo for
fast and improved disparity computation. In 3D Imaging, Model-
ing, Processing, Visualization and Transmission (3DIMPVT), 2011
International Conference on, pages 405–412. IEEE, 2011.

[HRD+12] Stefan Holzer, Radu Bogdan Rusu, M Dixon, Suat Gedikli, and Nassir
Navab. Adaptive neighborhood selection for real-time surface normal
estimation from organized point cloud data using integral images.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on, pages 2684–2689. IEEE, 2012.

[Hub77] Peter J Huber. Robust methods of estimation of regression coefficients
1. Statistics: A Journal of Theoretical and Applied Statistics, 8(1):41–
53, 1977.

[Kol11] Vladlen Koltun. Efficient inference in fully connected crfs with gaus-
sian edge potentials. Adv. Neural Inf. Process. Syst, 2(3):4, 2011.

[Mat13] Markus Mathias. Object detection for urban modeling (object-
detectie voor stadsmodellering). 2013.

[MMT+16] J. Robert Menzel, Sven Middelberg, Philip Trettner, Bastian Jonas,
and Leif Kobbelt. City Reconstruction and Visualization from Public
Data Sources. In Vincent Tourre and Filip Biljecki, editors, Euro-
graphics Workshop on Urban Data Modelling and Visualisation. The
Eurographics Association, 2016.

[MPLN17] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1
Year, 1000km: The Oxford RobotCar Dataset. The International
Journal of Robotics Research (IJRR), 36(1):3–15, 2017.

66



Bibliography Bibliography

[OHE+16] Aljoša Ošep, Alexander Hermans, Francis Engelmann, Dirk Kloster-
mann, , Markus Mathias, and Bastian Leibe. Multi-scale object can-
didates for generic object tracking in street scenes. In ICRA, 2016.

[osma] Openstreetmap. http://www.openstreetmap.org/copyright/.

[osmb] Osm2world: Create 3d models from openstreetmap. http://

osm2world.org/.

[PASW13] Jeremie Papon, Alexey Abramov, Markus Schoeler, and Florentin
Worgotter. Voxel cloud connectivity segmentation-supervoxels for
point clouds. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2027–2034, 2013.

[RC11] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud
Library (PCL). In IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 9-13 2011.

[RTG98] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for
distributions with applications to image databases. In Computer Vi-
sion, 1998. Sixth International Conference on, pages 59–66. IEEE,
1998.

[RWL11] Michal Recky, Andreas Wendel, and Franz Leberl. Façade segmen-
tation in a multi-view scenario. In 3D Imaging, Modeling, Process-
ing, Visualization and Transmission (3DIMPVT), 2011 International
Conference on, pages 358–365. IEEE, 2011.

[UB15] B. Ummenhofer and T. Brox. Global, dense multiscale reconstruction
for a billion points. In IEEE International Conference on Computer
Vision (ICCV), Dec 2015.

[YMU14] Koichiro Yamaguchi, David McAllester, and Raquel Urtasun. Effi-
cient joint segmentation, occlusion labeling, stereo and flow estima-
tion. In European Conference on Computer Vision, pages 756–771.
Springer, 2014.

[ZGWG15] Chen Zhou, Fatma Güney, Yizhou Wang, and Andreas Geiger. Ex-
ploiting object similarity in 3d reconstruction. In International Con-
ference on Computer Vision (ICCV), December 2015.

67

http://www.openstreetmap.org/copyright/
http://osm2world.org/
http://osm2world.org/

	Introduction
	Related work
	Disparity methods
	ELAS
	SPS-Stereo

	Semantic segmentation

	3D City Reconstruction
	Building a 3D Model from OSM
	Parsing OSM data
	Parsing trees
	Building parsing
	Road parsing
	Matching with street-view observations

	Octree
	Definition
	Truncated signed distance
	Construction
	Octree interpolation
	Algorithms
	Parameters
	Input

	Inference
	Problem formulation
	Unary potentials
	Pairwise potentials
	Derivatives
	Parameters and limitations

	Facade Separation

	Evaluation
	Datasets
	Experimental setup
	KITTI
	Oxford RobotCar

	Results
	Integrated Depth Evaluation
	Facade Separation Evaluation
	Building Pose Evaluation

	Discussion
	Conclusion

	Bibliography

