Using Recognition to Guide a Robot’s Attention
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Abstract— In the transition from industrial to service robotics,
robots will have to deal with increasingly unpredictable and
variable environments. We present a system that is able to
recognize objects of a certain class in an image and to identify
their parts for potential interactions. This is demonstrated for
object instances that have never been observed during training,
and under partial occlusion and against cluttered backgrounds.
Our approach builds on the Implicit Shape Model of Leibe and
Schiele, and extends it to couple recognition to the provision of
meta-data useful for a task. Meta-data can for example consisif
part labels or depth estimates. We present experimental results
on wheelchairs and cars.

I. INTRODUCTION

People are very strong at scene understanding. They quickl
create a holistic interpretation of their environment. bme

parison, a robot’s interpretation comes piecemeal. A maj'(_).r : . .
Ig. 1. Humans can very quickly analyze a scene from a singl@geéma

_difference lies in_t_he human ability to recoQ”_ize Obje_CtS E3&(':ognizing subparts of an object helps to recognize thecoljs a whole,
instances of specific classes, and to feed such informasiok bbut recognizing the object in turn helps to gather more dedaihformation

; ; ; i about its subparts. Knowledge about these parts can thersdz to guide
into lower layers of perception, thereby closingcagnitive actions. For instance, in the context of a car wash, a decdtiggosf the

loop (see Fig. 1). Such loops seem vital to ‘make Sensgy in its subparts can be used to apply optimized washing mittwthe
of the world in the aforementioned, holistic way [14]. Thelifferent parts.

brain brings all levels, from basic perception up to coomifi
into unison. A similar endeavour in robotics would implydes

emphasis on strictly quantitative — often 3D —modeling @ thy, \jqer applicability of cognitive feedback, by infemgin
enwronme_nt, and more on a qualitative analysis. i . ‘meta-data’ such as material characteristics, the lonatiod
Indeed, it seems fair to say that nowadays robotics still hggyent of object parts, or even 3D object shape, based ootobje
a certain preoccupation with gathering explicit 3D infotf@a. ¢34 yecognition. Given a set of annotated training images
(typically in the form of range maps) about the environmenk ,4icjar object class, we transfer these annotationgwo

Not only is this often a rather tedious affair, but many Stefa e containing previously unseen object instances ef th
types defy 3D scanning altogether (e.g. dark, specular, Qf o jass.

transparent surfaces may pose problems, depending on the . .
scanner). Taking navigation as a case in point, it is knownThe_re are a couple of recent apprpache_s partially qﬁermg
from human strategies that the image-basedognition of such inference for 3D shape from single images. Hoiem et
landmarks plays a far more important role than distance{baﬁal' [8] estimate the coarse geometric properties of a Scgne b
localisation with respect to some world coordinate sysfEne. earning appearance-based models of surfaces at varieus or
first such implementations for robot navigation have alyea(?r_]tat'on_s' The me_thod focus_es purely on geometry estimatio
been published [4, 3, 19]. This paper argues that moderralvisW'thOUt incorporating an object recognition process. liege

object class recognition can provide useful cognitive Feat solely on the statistics of small image patches. In [20],-Sud
for many tasks in robotids derth et al. combine recognition with coarse 3D reconstract

The first examples of cognitive feedback in vision havitgl a single image, by learning depth distributions for a &frec

already been implemented [9, 7]. However, so far they OnIype of scene from a set of stereo training images. In the same

coupled recognition and crude 3D scene information (t gin, Saxena et al. [18] are able to reconstruct coarse depth

L from a single image of an entire scene by means of a
osition of the groundplane). Here we set out to demonstrater> . . . .
P 9 P ) arkov Random Field. Han and Zhu [5] obtain quite detailed

1See also interview with Rodney Brooks in Charlie Rose 20BY21L 3D quEIS from a_sm_gle_ iImage thrOl_JQh graph representations
http:/Aww.youtube.com/watch?v=o0EstOd8xyeQ, startirgrf 35:00 but their method is limited to specific classes. Hassner and
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Basri [6] infer 3D shape of an object in a single image from

known 3D shapes of other members of the object’s class. Their . g% mn_ ~
method is specific to 3D meta-data though, and their analysi il = ,‘ e e o

is not integrated with the detection and recognition of th — N f.- A Lo
objects, as is ours. The object is assumed to be recognij - Voting Space

and segmented beforehand. Rothganger et al. [15] are able ™" e {eontinuous)
both recognize 3D objects and infer pose and detailed 3D data Rofined Hypothesis  Backprojectod  Backprojection

from a single image, but the method only works for specific (optional) Hypothesis of Maximum

object instances, not classes.

In this work, object related parameters and meta-data are
inferred from a single image, given prior knowledge about
these data for other members of the same object class.
This annotation is intensely linked to the process of objegntry. Those distributions are estimated by recordingoaiai
recognition and segmentation. The variations within thess| tions where a codebook entry matches to the training images,
are taken account of, and the observed object can be quigtative to the annotated object centers. Together withh eac
different from any individual training example for its ctas occurrence, the approach stores a local segmentation mask,
We collect pieces of annotation from different training gea Wwhich is later used to infer top-down segmentations.
and merge them into a novel annotation mask that matches
the underlying image data. Take the car wash scenario of "

Fig. 1 as an example. Our technique allows to identify tHe- 'SM Recognition.

positigns of the vv_indshields, car body, wheels, Iicenseepla. The ISM recognition procedure is formulated as a prob-
headiights etc. This aIIowg Fhe parqmgters of the car wash IIabilistic extension of the Hough transform [10]. Letbe a

_to b_etter adapt_to the specific car. Similarly, for the whbelrs_ sampled image patch observed at locatioiThe probability

in Fig. 5, knowing where the handles are to be expected yie

‘ i dicati ; . bot how t ¢ hold of th t it matches to codebook entey can be expressed as
\?vrrwzg?c;]nailrca 1ons for a service robot how 1o get hold o E(ci\e). Each matched codebook entry then casts votes for

. . . ... Instances of the object categosy at different locations and
The Paper 1 organized as follpws. First, we recapitulalg g o) — (Az, Ay, As) according to its spatial occurrence

the Implicit Shape Model .(.)f Leibe and Sch_|e|e [10], fOlyistribution P(on, Alci, £). Thus, the votes are weighted by

simultaneous object recognition and segmentation (setfio P(on, Aei, O)p(cile), and the total contribution of a patch to

Then.follows the main contribution of thls.pape.r, as wg, object hypothesigo,., \) is expressed by the following
explain how we transfer meta-data from training images arginalization:

a previously unseen image (section Ill). We demonstrate the

viability of our approach by transferring both object p&ds

wheelchairs and cars, as well as depth information for cars plon; Ale,f) = ZP(OWM%QP(CHS) @)
(section V). Section V concludes the paper. ‘

Il. OBJECTCLASS DETECTION WITH AN IMPLICIT SHAPE The votes are collected in a continuous 3D voting space
MODEL (translation and scale). Maxima are found using Mean Shift

Mode Estimation with a scale-adaptive uniform kernel [11].
Each local maximum in this voting space yields an hypothesis
that an object instance appears in the image at a certain
{dCation and scale.

Fig. 2. The recognition procedure of the ISM system.

In this section we briefly summarize thenplicit Shape
Model (ISM) approach proposed by Leibe & Schiele [10]
which we use as the object class detection technique unde
ing our approach (see also Fig. 2).

Given a training set containing images of several instances
of a certain category (e.g. sideviews of cars) as well as thgj. Top-Down Segmentation.
segmentations, the ISM approach builds a model that gener-
alizes over within-class variability and scale. The maugli For each hypothesis, the ISM approach then computes a
stage constructs a codebook of local appearances, i.ecalf lgrobabilistic top-down segmentation in order to determine
structures that appear repeatedly on the training instancidne hypothesis’ support in the image. This is achieved by
Codebook entries are obtained by clustering image featuleckprojecting the contributing votes and using the sttoeal
sampled at interest point locations. Instead of searchimg Segmentation masks to infer the per-pixel probabilitiet the
exact correspondences between a novel test image and meiel p is figure or ground given the hypothesis at location
views, the ISM approach maps sampled image features ontfil0]. More precisely, the probability for a pixglto befigure
this codebook representation. We refer to the features in isncomputed as a weighted average over the segmentation
image that are mapped onto a codebook entrgasirrences masks of the occurrences of the codebook entries to which all
of that entry. The spatial intra-class variability is captlby features containingp are matched. The weights correspond
modeling spatial occurrence distributions for each cod&boto the patches’ respective contributions to the hypothasis
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We underline here that a separate local segmentation mask is

kept for every occurrence of each codebook entry. Different

occurrences of the same codebook entry in a test image will

thus contribute different segmentations, based on thkitive

location with regpect to the_ hypothesized OpJeCt center. . Fig. 3. Transferring (discrete) meta-data. Left: two tragnimages and a
In early versions of their work [10], Leibe and Schiel@est image. Right: the annotations for the training images, te partial

included an optiona| processing step, which refines the Hy.llput annotation. The corner of the license plate match#s avcodebook

. . .. . try which has occurrences on similar locations in the imgiimages. The

pOFhe.SIS by a guided S_earCh for addltlonal_ matches (Flg'.g hotation patches for those locations are combined andnitisted in the

This improves the quality of the segmentations, but at a higbtput annotation.

computational cost. Uniform sampling was used, which be-

came untractable once scale-invariance was introducedtat

system. We therefore implemented a more efficient refinemeit Transferring Discrete Meta-data

algorithm as explained in Section II-C. In case of discrete meta-data, the goal is to assign to each
C. MDL Verification. pixel of the detected object a label< {aj}j=1.n. We first
) . compute the probability(p = a;) for each labek; separately.

In a last processing stage, the computed segmentations g8 js achieved in a way analogous to what is done in eq. (2)
exploited to refine the object detection scores, by taking Oryor ,(p = figure), but with some extensions necessary to
figure pixels into account. Besides, this last stage also disagyapt to the more general case of meta-data:
biguates overlapping hypotheses. This is done by a hypsthes
verification stage based on Minimum Description Length(p = aj|on,\) =
(MDL), which searches for the combination of hypotheses Z Zp(p _ aj|ci,on,)\)p(d(p) _

. . . - ae(p)le)p(e>ci|0n7 )\)
that together best explain the image. This step preclude]sDEN(e) ;

for instance, that the same local structure, e.g. a whieel-li A3)
structure, is assigned to multiple detections, e.g. meltars.
For details, we again refer to [10, 11]. The components of this equation will be explained in detail
next. The first and last factors are generalizations of their
[1l. TRANSFERRINGMETA-DATA counterparts in eq. (2). They represent the annotationsdsto

The power of the ISM approach lies in its ability to recogi? the codebook, and the voting procedure respectively. One
nize novel object instances as approximate jigsaw puzziits pextension consists in transferring annotations also frmagie
out of pieces from different training instances. In this @ap Patchesnearthe pixelp, and not only from thoseontaining
we follow the same spirit to achieve the new functionality of- With the original version, it is often difficult to obtain
transferring meta-data to new test images. full coverage of the object, especially when the number

Example meta-data is provided as annotations to the teinil training images is limited. This is an important feature,
images. Notice how segmentation masks can be considered@gause producing the training annotations can be labour-
a special case of meta-data. Hence, we transfer meta-cita Witensive (e.g. for the depth estimates of the cars in Secvo
a mechanism inspired by that used above to segment obje%}s(?ur notion of proximity is deflr_1ed relative to the size of
in test images. The training meta-data annotations arehatth the image paicte, and parameterized by a scalefactoy.
to the occurrences of codebook entries, and transferred td/@re precisely, let an image patehbe defined by the three-
test image along with each matched feature that contributdgnensional coordinates of its center and sagleobtained
to the final hypothesis (Fig. 3). This strategy allows us f0m the interest point detector, i.e. = (es,ey,¢x). The
generate novel annotations tailored to the new test imag€ighbourhoodV(e) of e is defined as
while explicitly accommodating for the intra-class vailiia _ )

Unlike segmentations, which are always binary, meta-data N(e) = {plp € (ccr ey, v -en)} @
annotations can be either binary (e.g. for delineating siggar A potential disadvantage of the above procedure is that
ular object part or material type), discrete (e.g. for idfgimtg for a pixel p outside the actual image patch, the transferred
all object parts), real-valued (e.g. depth values), or evetovec annotation gets less reliable. Indeed, the pixel may lie on
valued (e.g. surface orientations). We first explain how t@n occluded image area, or small misalignment errors may
transfer discrete meta-data (Section 1lI-A), and then rekte get magnified. Moreover, some differences between the bbjec
the method to the real- or vector-valued case (Section )ll-Binstances shown in the training and test images that were not



noticeable at the local scale can now affect the results. Tfrabarea  Wheels Armrests Scat Frame  Background

compensate for this, we add the second factor to eq. (3) hwhic:

indicates how probable it is that the transferred annatati i GEaNE Lzl

a.(p) still corresponds to the ‘true’ annotatioi(p). This
probability is modeled by a Gaussian, decaying smoothli wi
the distance from the center of the image patctand with
variance related to the size efby a scalefactok:

p(&(p) = a.(p) | e) = Ojﬁea:p (_(da;2 + dy2)/(202))
with o = S8g-ex
(dzy dy) = (pac — €z, Py — ey) (5)

Once we have computed the probabilitigp = a;) for all
possible labelda;};—1.n, we come to the actual assignment
we select the most likely label for each pixel. Note hov
for some applications, it might be better to keep the who
probability distribution{p(p = a;)},=1.~ rather than a hard
assignment, e.g. when feeding back the information as pr
probabilities to low-level image processing.

An interesting possible extension is to enforce spatiaticon
nuity between labels of neighboring pixels, e.g. by relaxat
or by representing the image pixels as a Markov Randc
Field. In our experiments (Section IV), we achieved goo
results already without enforcing spatial continuity.

B. Transferring Real- or Vector-valued Meta-data

In many cases, the meta-data is not discrete, but rather re
valued (e.g. 3D depth) or vector-valued (e.g. surface taien ¢
tion). We can approximate these cases by using a large num
of quantization steps and interpolating the final estimakés
allows to re-use most of the discrete-case system.

First, we discretize the annotations into a fixed set of ‘galt
labels’ (e.g. ‘depth 1’, ‘depth 2’, etc.). Then we proceedain
way analogous to eq. (3) to infer for each pixel a probabilit
for each discrete value. In the second step, we select fdr ei
pixel the discrete value label with the highest probabhilég
before. Next, we refine the estimated value by fitting a pdeabc
(a(D+1)-dimensional paraboloid in the case of vector value
meta-data) to the probability scores for the maximum valt
label and the two immediate neighbouring value labels. We
then select the value corresponding to the maximum of tﬁ@ 4. Results for‘the. annqtation verification experimentvameelchair

.. L. L images. From left to right: test image, ground-truth, and ougb our system.
parabola. This is a similar method as used in interest poifhite areas are unlabeled and can be considered background.
detectors (e.g. [12, 1]) to determine continuous scale-coor
dinates and orientations from discrete values. Thanksit th

interpolation procedure, we obtain real-valued annatation

our 3D depth estimation experiments this makes a significéﬁtthe_ ISM sy_ster_n [10] achieveo! this by means O_f uniform
difference in the quality of the results (Section IV-B) sampling, which is untractable in the scale-invariant case
' Therefore we implemented a more efficient refinement algo-

C. Refining Hypotheses rithm which only searches for matches in promising location

When large areas of the object are insufficiently covered For each hypothesis, new candidate points are generated
by interest points, no meta-data can be assigned to thégebackprojecting all occurrences in the codebook, exolydi
areas. Using a large value feg, will only partially solve this points nearby existing interest points. When the feature de-
problem, because there is a limit as to how far informatiascriptor for a new point matches with the codebook clusyer(s
from neighboring points can be reliably extrapolated. Atdret that backprojected it, an additional hypothesis vote i$. ddwe
solution is to actively search for additional codebook magc confidence for this new vote is reduced by a penalty factor to
in these areas. The refinement procedure in early versioefiect the fact that it was not generated by an actual interes




point. The additional votes enable the meta-data transfer |«
cover those areas that were initially missed by the interel
point detector. 14
This refinement step can either be performed on the firj
hypotheses that result from the MDL verification, or on af
hypotheses that result from the initial voting. In the Iattase, »
it will improve MDL verification by enabling it to obtain bedt
figure area estimates of each hypothesis [10, 11]. Therefoj
we perform refinement on the initial hypotheses in all ot
experiments.

IV. EXPERIMENTAL EVALUATION

We evaluate our approach on two different object classe
wheelchairs and cars. For both classes, we demonstrate oy
means of a discrete labeling experiment, how our systg
simultaneously recognizes object instances and infeesark
interest. For the cars, we additionally perform an expenime
where a 3D depth map is recovered from a single image o™ &
previously unseen car, which is a real-valued labeling jerab

A. Wheelchairs: Indicating Areas of Interest for an Assisti §
Robot

In our first experiment, the goal is to indicate certain adas
interest on images of various types of wheelchairs. A pdessi
application is an assistive robot, for retrieving a wheaich
for instance in a hospital or to help a disabled person at honi‘. ;
In order to retrieve the wheelchair, the robot must be able
both detect it, and determine where to grab it. Our methold w
help the robot to get close to the grabbing position, aftecivh ﬂ

a detailed analysis of scene geometry in a small region \3‘ «4;;/ ,
interest can establish the grasp [17]. We divide our expamim [ . &
in two parts. First, we quantitatively evaluate the resgiti §
annotations with a large set of controlled images. Next, vi
evaluate the recognition ability with a set of challengieglr |
world images.

We collected 141 images of wheelchairs from Google Image
Search. We chose semi-profile views because they were the
most widely available. Note that while the ISM system can
only handle a single pose, it can be extended to handle raultip
viewpoints [21]. All images were annotated with ground trut
part segmentations for grab area, wheels, armrests, seht, a
frame. The grab area is the most important for this experimen
A few representative images and their ground truth anrmitati
can be seen in the left and middle rows of Fig. 4.

The images are randomly split into a training and test set.
We train an ISM system using 80 images, using a Hessian-
Laplace interest point detector [13] and Shape Contextriglesc
tors [2]. Next, we test the system on the remaining 61 images,
using the method from Section IlI-A. Because each image only
contains one object, we select the detection with highestsc
for meta-data transfer. Some of the resulting annotatiams c
be seen in the third row of Fig. 4. The grab area is found quite
precisely. _

To evaluate this experiment quantitatively, we use ttféq'

5. Wheelchair detection and annotation results on ehgihg real-world
: . est images (best viewed in color). Yellow and red rectangléate correct
ground truth annotations to calculate the following errafng faise detections respectively. Note how one wheelahie middle right

measures. We defirleakageas the percentage of backgroundmage was missed because it is not in the pose used for training.



R be;czkig_)rsnd irg’ge Osze:t 3”1“4@“ 1"";‘39'9%6‘;9; unGIgb6e7led Body Windows Wheels Bumper Lights License Backgnd
ackgrn . . . . . . .
fame | 1529 6668 647 046 600 010 | 410 | [N ] N
seat 2.17 1595 74.28 0.97 0.33 1.55 4.75 Test im Giourial firih Result
armrest| 1122 562  29.64 49.32 125  0.63 2.32 __cstimage ounc tru esu
wheels 13.06 9.45 0.36 0.07 71.39 0.00 5.67
grab-area 6.48 1.28 9.77 0.11 0.00 76.75 5.62
TABLE |

CONFUSION MATRIX FOR THE WHEELCHAIR PART ANNOTATION
EXPERIMENT. THE ROWS REPRESENT THE ANNOTATION PARTS IN THE
GROUND-TRUTH MAPS, THE COLUMNS THE OUTPUT OF OUR SYSTEMTHE
LAST COLUMN SHOWS HOW MUCH OF EACH CLASS WAS LEFT
UNLABELED. FOR MOST EVALUATIONS, THOSE AREAS CAN BE
CONSIDERED‘BACKGROUND'.

pixels in the ground-truth annotation that were labeledas n
background by the system. The leakage for this experime
averaged over all test images, 3s75%. We also define a
coveragemeasure, as the percentage of non-background pix
in the ground-truth images labeled non-background by tl§
system. The coverage obtained by our algorithnDfsl %.
This means our method is able to reliably segment the ch
from the background.

We evaluate the annotation quality of the separate pa {"
with a confusion matrix. For each image, we count hoy W=
many pixels of each par; in the ground-truth image are
labeled by our system as each of the possible parts (gr
wheels, etc.), or remain unlabeled (which can be consider
background in most cases). This score is normalized by t
total number of pixels in the ground-trutly. We average the
confusion table entries over all images, resulting in Tdble
The diagonal elements show how well each part was recove
in the test images. Not considering the armrests, the system
performs well as it labels correctly betweéf% and77% of Fig. 6. Results for the car annotation experiment. From keftight: test
the pixels, with the latter score being for the part we are ﬂi{éage, ground-truth, and output of our system. White areasrdabeled and

. L can be considered background.
most interested in, i.e. the grab area. The lower performanc
for the armrests is due to the fact that it is the smallest part
in most of the images. Small parts have higher risk of bei
confused with the larger parts in their neighborhood.

n
cﬁfferent parts. Moreover, even though such systems mostly
To test the detection ability of our system, we collecte}aave sensors to measure distances to the car, they are only

a set of 34 challenging real-world images with considerablljésed locally \_/vh_|le the mach|_ne is already running. It coutd b
clutter and/or occlusion. We used the same ISM system asul%eful to optimize the yvashmg process befarehand, based on
the annotation experiment, to detect and annotate thescimairthe cars global. shape inferred by our system. )
these images. Some results are shown in Fig. 5. We consigePtl dataset is a subset of that used in [9]. It was obtained
a detection to be correct when its bounding box covers tHEM the LabelMe website [16], by extracting images labeled
chair. Out of the 39 wheelchairs present in the images, 3ewd@s ‘car and sorting them according to their pose. For our

detected, and there were 7 false positives. This correspand ©XPeriments, we only use the ‘az300deg’ pose, which is a
a recall of 77% and a precision 081%. semi-profile view. In this pose both the front (windscreen,

headlights, license plate) and side (wheels, windows) are
B. Cars: Optimizing an Automated Car Wash visible. This allows for more interesting depth maps and par
In further experiments, we infer different types of meta@nnotations compared to pure frontal or side views. Theséata
data for the object class ‘car. In the first experiment, weontains a total of 139 images. We randomly picked 79 for
decompose recognized cars in their most important partgining, and 60 for testing.
similarly to the wheelchairs. In the second experimentyapp  For parts annotation, the training and testing phase is anal
imate 3D information is inferred. A possible applicatiorais ogous to the wheelchair experiment (section IV-A). Results
automated car wash. As illustrated in Fig. 1, the decomipwsit are shown in Fig. 6. The leakage 6s33% and coverage is
in parts can be used to apply different washing methods to #h&2%. The confusion matrix is shown in Table Il. It again



Fig. 7.

Test image

Results for the car depthmap experiment. From left gbtritest
image, ground-truth, and output of our system. White areasrdedeled and
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the second car (top row) and fourth car (bottom row) in Fig. 7.

bkgnd body bumper headlt window wheels licenseunlabeled
bkgnd | 23.56 2.49 1.03 0.14 1.25 1.88 0.04] 69.61
body | 4.47 7215 4.64 181 8.78 186 0.24 6.05
bumper | 7.20 454 7376 157 0.00 785 243 2.64
headlt | 1.51 36.90 23.54 34.75 0.01 0.65 0.23 241
window 3.15 1355 0.00 0.00 80.47 0.00 0.00 2.82
wheels | 11.38 6.85 851 0.00 0.00 63.59 0.01 9.65
license | 2.57 1.07 39.07 0.00 0.00 1.04 56.25 0.00
TABLE Il

CONFUSION MATRIX FOR THE CAR PARTS ANNOTATION EXPERIMENT
(CFR. TABLE ).

shows good labeling performance, except for the headlights
Similarly to the armrests in the wheelchair experimentss th

is as expected. The headlights are mostly very small, hence
easily confused with the larger parts (body, bumper) in Whic
they are embedded.

For the depth map experiment, we obtained ground-truth
data by manually aligning the best matching 3D model from
a freely available collectionto each image, and extracting
the OpenGL Z-buffer. In general, any 3D scanner or active
lighting setup could be used to automatically obtain depth
maps. We normalize the depths based on the dimensions
of the 3D models, by assuming that the width of a car is
approximately constant. The depth maps are quantizex) to
discrete values. Using these maps as annotations, we use our
method of section IlI-B to infer depths for the test images.

Results are shown in the rightmost column of Fig. 7.
The leakage is4.79% and the coverag®4.6%, hence the
segmentation performance is again very good. It is possible
to calculate a real-world depth error estimate, by scalimg t
normalized depth maps by a factor based on the average width
of a real car, which we found to be approximatelysm.

All depth maps are scaled to the interv@l, 1] such that
their depth range i8.5 times the width of the car, and the
average depth error i8.042. This is only measured inside
areas which are labeled non-background in both the ground-
truth and result images, to eliminate bias from the backggou

A plausible real-world depth error can therefore be catedla

by multiplying this figure by3.5-1.8m, which yields a distance

of 27cm. To better visualize how the output compares to the
ground truth, Fig. 8 shows a few horizontal slices througb tw
depth maps of Fig. 7.

To illustrate the combined recognition and annotationitgbil
of our system for this object class, we again tested it on real
world images. We used the same system as in the annotation
experiment on a few challenging images containing cars in a
similar pose, including the car wash image from Fig. 1. Rssul
are shown in Fig. 9.

V. CONCLUSIONS

We have developed a method to transfer meta-data annota-
tions from training images to test images containing pnasiyp
unseen objects, based on object class recognition. Instead
of using extra processing for the inference of meta-data, it

2http://dmi.chez-alice.fr/models1.html



to handle fully continuous and vector-valued meta-data. We
will also investigate methods to improve the quality of the
annotations by means of relaxation or Markov Random Fields,
and ways to greatly reduce the amount of manual annotation
work required for training.
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