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Abstract. We address semi-supervised video object segmentation, the
task of automatically generating accurate and consistent pixel masks for
objects in a video sequence, given the first-frame ground truth annota-
tions. Towards this goal, we present the PReMVOS algorithm (Proposal-
generation, Refinement and Merging for Video Object Segmentation).
Our method separates this problem into two steps, first generating a
set of accurate object segmentation mask proposals for each video frame
and then selecting and merging these proposals into accurate and tem-
porally consistent pixel-wise object tracks over a video sequence in a way
which is designed to specifically tackle the difficult challenges involved
with segmenting multiple objects across a video sequence. Our approach
surpasses all previous state-of-the-art results on the DAVIS 2017 video
object segmentation benchmark with a J7&JF mean score of 71.6 on the
test-dev dataset, and achieves first place in both the DAVIS 2018 Video
Object Segmentation Challenge and the YouTube-VOS 1st Large-scale
Video Object Segmentation Challenge.

1 Introduction

Video Object Segmentation (VOS) is the task of automatically estimating the
object pixel masks in a video sequence and assigning consistent object IDs to
these object masks over the video sequence. This can be seen as extension of
instance segmentation from single frames to videos, and also as an extension
of multi object tracking from tracking bounding boxes to tracking pixel masks.
This framework motivates our work in separating the VOS problem into two sub-
problems. The first being the instance segmentation task of generating accurate
object segmentation mask proposals for all of the objects in each frame of the
video, and the second being the multi object tracking task of selecting and merg-
ing these mask proposals to generate accurate and temporally consistent pixel-
wise object tracks throughout a video sequence. Semi-supervised Video Object
Segmentation focuses on the VOS task for certain objects for which the ground
truth mask for the first video frame is given. The DAVIS datasets [3],[27],[26]
present a state-of-the-art testing ground for this task. In this paper we present
the PReMVOS (Proposal-generation, Refinement and Merging for Video Ob-
ject Segmentation) algorithm for tackling the semi-supervised VOS task. This
method involves generating coarse object proposals using a Mask R-CNN like
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Fig. 1. PReMVOS overview. Overlay colours represent different object proposals.

object detector, followed by a refinement network that produces accurate pixel
masks for each proposal. We then select and link these proposals over time using
a merging algorithm that takes into account an objectness score, the optical flow
warping, a Re-ID feature embedding vector, and spatial constraints for each ob-
ject proposal. We adapt our networks to the target video domain by fine-tuning
on a large set of augmented images generated from the first-frame ground truth.
An overview of our method, PReMVOS, can be seen in Figure 1. Our method
surpasses all current state-of-the-art results on all of the DAVIS benchmarks and
achieves the best results in the 2018 DAVIS Video Object Segmentation Chal-
lenge [20] and the YouTube-VOS 1st Large-scale Video Object Segmentation
Challenge [13].

2 Related Work

Current state-of-the-art methods for VOS fall into one of two paradigms. The
first is objectness estimation with domain adaptation from first-frame finetuning.
This approach, first proposed in [2], uses fully convolutional networks to estimate
the objectness of each pixel by fine-tuning on the first-frame ground truth. This
approach was expanded upon by [21] and [29],[30] by using semantic segmen-
tation guidance and iterative fine-tuning, respectively. The second paradigm,
used in several state-of-the-art methods [25],[18],[15],[17], involves propagating
the mask from the previous frame using optical flow and then refining these es-
timates using a fully convolutional network. The methods proposed in [18] and
[17] expand this idea by using a network to calculate a re-identification (RelD)
embedding vector for proposed masks and using this to improve the object re-
identification after an object has been occluded. [15] improves upon the mask
propagation paradigm by training on a huge set of augmented images generated
from the first-frame ground truth. Our method tackles the VOS task in an inher-
ently different way than any of the previous papers in the literature. However,
we adopt ideas presented in all of the above papers such as the use of RelD
embedding vectors, optical flow proposal warping and fine-tuning on a large set
of images augmented from the first frame.
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Fig. 2. Diagram showing the components of PReMVOS and their relationships.

3 Approach

We propose PReMVOS as a novel approach for addressing the VOS task. This
approach is designed to produce more accurate and temporally consistent pixel
masks across a video, especially in the challenging multi-object VOS task. In-
stead of predicting object masks directly on the video pixels, as done in [2], [21],
[29] and [30], a key idea of our approach is to instead detect regions of inter-
est as coarse object proposals using an object detection network, and to then
predict accurate masks only on the cropped and resized bounding boxes. We
also present a new proposal merging algorithm in order to predict more tempo-
rally consistent pixel masks. The methods presented in [25],[18],[15],[17] create
temporally consistent proposals by generating their proposals directly from the
previous frame’s proposals warped using optical flow into the current frame. In-
stead, our method generates proposals independently for each frame and then
selects and links these proposals using a number of cues such as optical flow
based proposal warping, RelD embeddings and objectness scores, as well as tak-
ing into account the presence of other objects in the multi-object VOS scenario.
This novel paradigm for solving the VOS task allows us to predict both more
accurate and more temporally consistent pixel masks than all previous meth-
ods and achieves state-of-the-art results across all datasets. Figure 2 shows an
overview of each of the components of the PReMVOS algorithm and how these
work together to solve the VOS task.

3.1 Image Augmentation

For each video we generate a set of 2500 augmented images using the first-frame
ground truth. We use the Lucid Data Dreaming method proposed in [15] but
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only generate single images (not image pairs). This method removes the objects,
automatically fills in the background, and then randomly transforms each object
and the background before randomly reassembling the objects in the scene. Fine-
tuning on this set of augmented images allows us to adapt our networks directly
to the target video domain.

3.2 Proposal Generation

We generate coarse object proposals using a Mask R-CNN [9] network imple-
mentation by [31] with a ResNet101 [10] backbone. We adjust this network to
be category agnostic by replacing the N classes with just one class by mapping
all classes to a single foreground class for detecting generic objects. We train
this network starting from pre-trained ImageNet [6] weights on both the COCO
[19] and Mapillary [22] datasets jointly. We then fine-tune a separate version of
this network for each video for three epochs of the 2500 augmented images. This
network generates coarse mask proposals, bounding boxes, and objectness scores
for each image in the video sequence. We extract proposals with a score greater
than 0.05 and also perform non-maximum suppression removing proposals which
have an IoU of 66% or greater with a proposal with a higher score.

3.3 Proposal Refinement

The Proposal-Refinement Network is a fully convolutional network inspired by
[34] and based on the DeepLabv3+ [4] architecture. This network takes as input
a 385 x 385 image patch that has been cropped and resized from an approximate
bounding box around an object of interest. A 50 pixel (in the original image)
margin is first added to the bounding box in all directions. We add a fourth chan-
nel to the input image which encodes the original bounding box as a pixel mask
to the input image. Starting from weights pre-trained on ImageNet [6], COCO
[19], and PASCAL [7], we train this network on the Mapillary [22] dataset us-
ing random flipping, random gamma augmentations and random bounding box
jitter [34] up to 5% in each dimension, to produce an accurate object segmen-
tation, given an object’s bounding box. We then fine-tune a separate version of
this network for five epochs for each video on the 2500 augmented images. We
then use this network to generate accurate pixel mask proposals for each of the
previously generated coarse proposals, by only taking the bounding box of these
proposals as input into the Refinement network and discarding the coarse mask
itself.

3.4 Mask Propagation using Optical Flow

As part of our proposal merging algorithm we use the optical flow between
successive image pairs to warp a proposed mask into the next frame, to calculate
the temporal consistency between two mask proposals. We calculate the Optical
Flow using FlowNet 2.0 [12].



PReMVOS 5

1 3
frame §T ET T-1
ground 3 v
truth < -

horsejump-high
ground = 7%
truth Lo
bike-packing
ground 3 5 ‘ 2
truth L B [ 7 ;
- hOEE
lab-coat

ground l ~
truth

dogs-jump

Fig. 3. Qualitative results of PReMVOS on the DAVIS 2017 val dataset.

3.5 RelID Embedding Vectors

We further use a triplet-loss based RelD embedding network to calculate a RelD
embedding vector for each mask proposal. We use the feature embedding network
proposed in [24]. This is based on a wide ResNet variant [32] pre-trained on
ImageNet [6] and then trained on the COCO dataset [19] using cropped bounding
boxes resized to 128 x 128 pixels. This uses a triplet loss to learn an embedding
space in which crops of different classes are separated and crops of the same
class are grouped together. It is trained using the batch-hard loss with a soft-
plus margin proposed in [11]. We then fine-tune this network using the crops of
each object from the generated 2500 augmented images for each of the 90 video
sequences (242 objects) in the DAVIS 2017 val, test-dev and test-challenge
datasets combined in order to have both enough positive and negative examples
to train a network with a triplet-based loss. This network generates a RelD
vector which differentiates all of the objects in these datasets from one other,
which is used to compare the visual similarity of our generated object proposals
and the first-frame ground truth object masks.
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3.6 Proposal Merging

Our proposal merging algorithm works in a greedy manner. Starting from the
ground truth object masks in the first-frame, it builds tracks for each frame
by scoring each of the proposals on their likeliness to belong to a particular
object track. We have exactly one track for each ground truth object and we
make hard decisions for which proposals to add to each track each timestep in a
greedy manner. The proposal with the highest track score is added to each track.
This track score is calculated as an affine combination of five separate sub-scores,
each with values between 0 and 1. In the following, taking the complement of a
score means subtracting it from 1.

The first sub-score is the Objectness score. The objectness score sqp;¢,4,; for
the j-th track of the i-th proposal c;; at time ¢ is given by

Soqu,t,uj(ctj) = MaskObj(ct7i), (1)

where MaskObj(-) denotes the confidence value provided by the Proposal Gen-
eration network.

The second score is a RelD score, calculated using the Fuclidean distance
between the first-frame ground truth ReID embedding vector r(f;) and the ReID
embedding vector r(c;,;) of the current mask proposal, where 7(-) denotes apply-
ing the ReID network, [|-|| denotes the L2 norm, and f; is the bounding box of
the j-th ground truth object in the first frame. This distance is then normalized
by dividing it by the maximum distance for all proposals in a video from the
ground truth embedding vector of interest. The complement is then taken to
convert from a distance into a similarity score.

_ Ir(ceq) = r(£5)l
sreitiis (o ) = ) — U] )

The third score is a Mask Propagation score. This is calculated for each
possible object track as the IoU between the current mask proposal and the
warped proposal that was decided for in the previous time-step for this object
track, warped into the current time-step using the optical flow:

Smaskprop,t,i.j (Ct.i> Dt—1,5) = LoU (¢t i, warp(pi—1,5)), (3)

where p,_1 ; is is the previously selected proposal for timestep ¢ — 1 for object
track j and warp(-) applies optical flow mask warping from frame ¢ — 1 to t.

The fourth score is an Inverse RelD score. This is calculated as the comple-
ment of the maximum RelD score for the current mask proposal and all other
object tracks k except the object track of interest j:

Sinv_reid,t,i,j — 1—- r,?i;((sreid,t,i,k)~ (4)

The fifth score is an Inverse Mask Propagation score. This is calculated as the
complement of the maximum Mask Propagation IoU score for the current mask
proposal and all other object tracks k except the object track of interest j:

Sinv_maskprop,t,i,j — 1—- I,?iX(Smask:prop,t,i,k)- (5)
J
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All five scores are combined together by

Scomb,t,i,j — E QqSq,t,ijo (6)

g€{objectness,reid,maskprop,inv_reid,inv_maskprop}

where Zq oy = 1 and all oy > 0. The greedy decisions are then made by
Di,j = Ct,k,;, Where

kj = argmax Scomb,t,i,j- (7)
3

In cases where the selected proposals for the different objects within one
time-step overlap, we assign the overlapping pixels to the proposal with the
highest combined track score. We present results with both an equal weighting
for each of the five sub-score components and where the weights are tuned using
random-search hyper-parameter optimisation evaluated against the DAVIS 2017
val set. The values of these optimised weights are shown in Table 4. We ran this
optimisation for 25000 random parameter values. For the results on the 2018
DAVIS Challenge we also present results using an ensemble of the results using
the top 11 sets of parameter values, using a simple pixel-wise majority vote to
ensemble the results.

4 Experiments

We evaluate our algorithm on the set of DAVIS [3],[27],[26] datasets and bench-
marks. Table 1 shows our results on the three DAVIS benchmarks. The DAVIS
2017 test-dev and val datasets contain multiple objects per video sequence,
whereas the DAVIS 2016 val dataset contains a single object per sequence. The
metrics of interest are the J score, calculated as the average IoU between the
proposed masks and the ground truth mask, and the F score, calculated as
an average boundary similarity measure between the boundary of the proposed
masks and the ground truth masks. For more details on these metrics see [26].

On all of the datasets our method gives results better than all other state-of-
the-art methods for both the F metric and the mean of the J and F score. We
also produce either the best, or comparable to the best, results on the J metric
for each dataset. These results show that the novel proposed VOS paradigm
performs better than the current VOS paradigms in predicting both accurate
and temporally consistent mask proposals.

Table 2 shows our results both with and without ensembling on the DAVIS
2017/2018 test-challenge dataset evaluated during the 2018 DAVIS Challenge
compared to the top six other competing methods. Our method gives the best
results and gets first place in the 2018 DAVIS Challenge.

Figure 3 shows qualitative results of our method on four video sequences
from the 2017 val dataset. These results show that our method produces both
accurate and temporally consistent results across the video sequences.
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DyeNet MRF Lucid ReIlD OSVOS-SOnAVOS OSVOS
(17 [ 5] [18)  [21]  [29][30]  [2]

J&F Mean 71.6 682 67.5 66.6 66.1 57.5 56.5 50.9
Mean 67.5 65.8 64.5 634 644 52.9 52.4 47.0

Ours

17 J Recall 76.8 - - 73.9 - 60.2 - 52.1
T-D Decay 21.7 - - 19.5 - 24.1 - 19.2
Mean 75.7 70.5 705 699 6738 62.1 59.6 54.8

F  Recall 84.3 - - 80.1 - 70.5 - 59.7
Decay 20.6 - - 19.4 - 21.9 - 19.8

J&F Mean 77.8 741 70.7 - - 68.0 67.9 60.3
Mean 73.9 - 67.2 - - 64.7 64.5 56.6

17 J Recall 83.1 - - - - 74.2 - 63.8
Val Decay 16.2 - - - - 15.1 - 26.1
Mean 81.7 - 74.2 - - 71.3 71.2 63.9

F  Recall 88.9 - - - - 80.7 - 73.8
Decay 19.5 - - - - 18.5 - 27.0

J&F Mean 86.8 - - - - 86.5 85.5 80.2
Mean 84.9 86.2 84.2 - - 85.6 86.1 79.8

16 J  Recall 96.1 - - - - 96.8 96.1 93.6
Val Decay 8.8 - - - - 5.5 5.2 14.9
Mean 88.6 - - - - 87.5 84.9 80.6

F  Recall 94.7 - - - - 95.9 89.7 92.6
Decay 9.8 - - - - 8.2 5.8 15.0

T Mean 36.4 - - - - 21.7 19.0 37.8

Table 1. Our results and other state-of-the-art results on the three DAVIS datasets:
the 2017 test-dev set (17 T-D), the 2017 val set (17 Val), and the 2016 val set (16
Val). On the 17 Val and 16 Val datasets we use the naive merging component weights,
whereas on the 17 T-D dataset we use the weights optimised using the 17 Val set.

4.1 Proposal Refinement

We perform an ablation study to investigate the effect of the Refinement net-
work on the accuracy of the mask proposals. We compare the coarse proposals
generated from a state-of-the-art instance segmentation method, Mask R-CNN
[9], to the refined proposals generated by feeding the bounding boxes of these
coarse proposals into our Refinement Network. In order to evaluate these results
we calculate the best proposal for each object in each frame which maximizes
the IoU score with the ground-truth mask. We then evaluate using the standard
DAVIS evaluation metrics using these merged proposals. This oracle merging al-
gorithm allows us to evaluate the accuracy of our proposal generation separately
from our merging algorithm.
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Ours Ours DyeNet ClassAgno. OnlineGen. Lucid ContextBased
(Ens) [16] VOS [35] VOS [8] [14] VOS [28]
J&F Mean 7T4.7 718 73.8 69.7 69.5 67.8 66.3
Mean 71.0 679 71.9 66.9 67.5 65.1 64.1
J Recall 79.5 759 794 74.1 77.0 72.5 75.0
Decay 19.0 23.2 19.8 23.1 15.0 27.7 11.7
Mean 78.4 756 758 72.5 71.5 70.6 68.6
F  Recall 86.7 829 83.0 80.3 82.2 79.8 80.7
Decay 20.8 24.7 20.3 25.9 18.5 30.2 13.5

Table 2. Our results (with and without ensembling) on the DAVIS test-challenge
dataset compared with the top five other competitors in the 2018 DAVIS Challenge.

J mean F mean J&F mean
Without Refinement 71.2 77.3 74.2
With Refinement 77.1 85.2 81.2
Boost 5.9 7.9 7.0

Table 3. Quantitative results of an ablation study on the 2017 val dataset showing
the effect of the Refinement Network on the accuracy of generated mask proposals.

Presented results are calculated using oracle merging (see Section 4.1).

Refinement Ground Truth

No Refinement

Fig. 4. Qualitative results showing the effect of the Refinement Network on the mask
proposal accuracy. Results are calculated using oracle merging (Section 4.1).

Table 3 shows the quantitative IoU () and boundary measure (F) improve-
ment for our refined proposals over the Mask R-CNN proposals. Our method
results in a 5.9% improvement in IoU and a 7.9% improvement in boundary
measure over just using the Mask R-CNN proposals.
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Figure 4 also visualizes the qualitative results of the improved accuracy of the
refined masks over the generated Mask R-CNN masks. In all examples the refined
proposals match the ground truth masks more closely than the coarse proposals
and capture the boundary contours at a much higher fidelity. This is due to
the refinement network extracting deep features only over the area of interest
for each object, and not over the whole image as is done in the case for Mask
R-CNN. The Refinement Network is also able to recover parts of objects that
were completely lost in the coarse proposals, for example in the two examples
of bicycles shown. This is because the Refinement Network takes as input only
the bounding box of the coarse mask proposal, not the coarse mask itself, and
relies only on it’s trained knowledge of what is inherently an object in order to
generate the refined segmentation masks. Also when the bounding box does not
accurately cover the whole object, as is the case with the bicycle in the second
column of Figure 4, the refinement network is still able to recover the accurate
mask as it takes into account a 50 pixel margin around the coarse mask proposal
bounding box.

4.2 Proposal Merging

We perform a further ablation study to investigate the effect of each of the merg-
ing algorithm sub-score components on the accuracy of the merging algorithm.
Table 4 shows the results of this ablation study on the DAVIS 2017 val dataset.

We first present an upper bound baseline result for our merging algorithm.
This is calculated by choosing the best proposal for each object in each frame
which maximizes the IoU score with the ground-truth mask. This oracle merging
method gives a 81.2 J&JF mean score.

We then present the results of our merging algorithm where the weights
for each of the five sub-score components were optimised using random-search
hyper-parameter optimisation evaluated against the DAVIS 2017 val set. This
optimisation was done by evaluating 25000 random affine combinations of the 5
component weights and selecting the set of weights that resulted in the best IoU
score. This result gives another upper bound of 78.2 J&JF mean score, as this
was evaluated on the same dataset as the weight values were optimised on. Our
greedy selection algorithm based on a combination of the 5 sub-component scores
is able to reach a J&JF mean score that is only 3% lower than the hypothetical
maximum, showing that these carefully selected 5 sub-score components are
sufficient to generate accurate and consistent object tracks, even in difficult cases
such as multiple similar objects and large occlusions. These opimised weights
used on the 2017 test-dev dataset presented in Table 1, all other dataset results
in Table 1 and Table 4 use equal weights for the five sub-components.

The naive combination with all 5 sub-score components has a J&F mean
score of 77.8 which is only 0.4 below that with optimised weights. This indicates
that the merging algorithm is relatively robust to the exact weights and that
what is more important is the presence of all five components.

The Objectness sub-score separates well-defined mask proposals with accu-
rate boundary contours from proposals with boundaries that are less likely to
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Num. Merging Sub-Score Components J&F
Comp. Objectness RelD InvReIlD  MaskProp InvMaskProp  Mean

0 Oracle merging 81.2
5(opt.) 19% 18% 14% 22% 27% 78.2
5 v v v v v 77.8

76.7
75.5
76.9
76.3
75.9

74.2
75.0
74.2
73.5
69.6
71.1
75.8
69.3
75.9
74.3

v - - - 2.7
64.7
69.1
- - v 57.9
- 68.7
- 74.3
- v 68.8
74.0
47.8
73.6

v - - - - 29.5
- v - - - 67.4
1 - - v - - 44.3
- - - v - 72.8
- - - - v 34.4
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Table 4. Results of an ablation study on the DAVIS 2017 val dataset showing the
effect of each of the merging algorithm sub-score components on the accuracy of the
merging algorithm. The oracle merging result indicates an upper bound for the merging
algorithm performance (Section 4.1). The components given as percentages indicate the
optimal component weights calculated using hyper-parameter optimisation on the 2017
val set. The components given by a checkmark (v') have equal weights for each checked
components. For each group of results with the same number of components the best
result is expressed in bold and the worst in italics.
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model a consistent object. It is also able to distinguish objects of interest given
in the first frame from other objects in the scene, as this score was trained in the
Mask R-CNN fine-tuning process to identify these objects and ignore the others.
However, this sub-score component is unable to distinguish between different
objects of interest if more than one is present in a video sequence.

The RelD sub-score is used to distinguish between objects that look visually
different from each other. This works well to separate objects such as bikes and
people from each other in the same video sequence, but does not work as well
on sequences with multiple similar looking objects.

The MaskProp sub-score is used for temporal consistency. This can distin-
guish well between very similar objects if they are separated in the spatial do-
main of the image. However, this sub-score cannot deal with cases where objects
heavily occlude each other, or completely disappear before later returning.

The InvRelID and InvMaskProp sub-scores are used to force the selected mask
proposals in each frame to be as distinguishable from each other as possible. Just
using the other 3 components often results in failure cases where the same or
very similar mask proposals are chosen for different objects. This occurs when
similar looking objects overlap or when one object disappears. These two sub-
components work by distinguishing proposals that are visually and temporally
inconsistent with other objects in the video sequence, resulting in a signal of
consistency with the object of interest. These components can separate well
between the different objects of interest in a video sequence, but they are unable
to separate these objects from possible background objects.

The results in Table 4 show that all five sub-scores are important for accu-
rate proposal merging, as removing one of these components results in a loss of
accuracy between 0.9, when only removing the InvRelD sub-score, to 2.3, when
removing the MaskProp sub-score. Without both the InvRelD and InvMaskProp,
the J&F mean score decreases by 1.9 points, showing that these sub-scores that
were introduced to promote spatial separation of the chosen proposals are an in-
tegral part of the merging algorithm. Only using these two sub-components,
however, results in a score decrease of 30.5 points. Removing the two main key
components, the RelD and MaskProp sub-scores, results in a loss of 8.2 points,
whereas only having these two components results in a loss of 3.5 points. When
used by itself, the MaskProp sub-score is the strongest component, resulting in
a loss of 5.0 points.

4.3 Runtime Evaluation

We perform a runtime evaluation of the different components of the PReMVOS
algorithm. The complete PReMVOS algorithm with first-frame data augmenta-
tion and fine-tuning was designed in order to produce the most accurate results
without regards for speed requirements. For further evaluation, we present in Ta-
ble 5 three versions of PReMVOS. The original version, a fast-finetuned version,
and a version without any fine-tuning. The fast-finetuned version is fine-tuned for
one third of the iterations as the original method, and instead of the slow Lucid
Data Dreaming [15] image augmentations, it uses simple rotations, translations,
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Table 5. Runtime analysis of the different components of the PReMVOS algorithm.
Times are in seconds per frame, averaged over the DAVIS 2017 val set. Augmentation
Generation is run on 48 CPU cores, and Fine-tuning is done on 8 GPUs. Otherwise,
everything is run sequentially on one GPU / CPU core.
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Fig. 5. Quality versus timing on the DAVIS 2017 val set. For methods that only publish
runtime results on the DAVIS 2016 dataset, we take these timings as per object timings
and extrapolate to the number of objects in the DAVIS 2017 val set.

flipping and brightness augmentations. Only one set of weights are fine-tuned
over the whole DAVIS val set rather than different weights for each video. A
combination of the specific proposals from the fine-tuned proposal network and
the gemneral proposals from a proposal network that was not fine-tuned on the
validation set first-frames are used. The not-finetuned version of PReMVOS just
uses the general proposals without any fine-tuning. Figure 5 compares the qual-
ity and runtime of PReMVOS against other methods in the literature. Across
all of the presented runtime scales, our method compares to or exceeds all other
state-of-the-art results.

4.4 Further Large-scale Evaluation

In Table 6 we present the results of PReMVOS on the new YouTube-VOS dataset
[33], the largest VOS dataset to date (508 test video compared to 30 in DAVIS),
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Overall J seen J unseen F seen J unseen
Ours 72.2 73.7 64.8 77.8 72.5
Seq2Seq [33] 70.0 66.9 66.8 74.1 72.3
2nd 72.0 72.5 66.3 75.2 74.1
3rd 69.9 73.6 62.1 75.5 68.4
4th 68.4 70.6 62.3 72.8 67.7

Table 6. Results on the YouTube-VOS dataset, using the PReMVOS Fast-finetuned
version of PReMVOS. These results obtained 1st place in the the 1st Large-scale Video
Object Segmentation Challenge. 2nd’,’3rd’,’4th’ refers to the other competitors results
in this challenge with that ranking. Bold results are the best results for that metric.

our results on the test set obtained 1st place in the 1st Large-scale Video Object
Segmentation Challenge. We don’t run the original PReMVOS method but the
PReMVOS Fast-finetuned version (see Section 4.3), which can be evaluated on
this larger dataset in a more reasonable amount of time. Our results are much
better than [33], the only other method that has published results on this dataset.
It is also better than all other methods that submitted results to the 2017 1st
Large-scale Video Object Segmentation Challenge.

5 Conclusion

In this paper we have presented a new approach for solving the video object
segmentation task. Our proposed approach works by dividing this task into first
generating a set of accurate object segmentation mask proposals for each video
frame and then selecting and merging these proposals into accurate and tempo-
rally consistent pixel-wise object tracks over a video sequence. We have developed
a novel approach for each of these sub-problems and have combined these into
the PReMVOS (Proposal-generation, Refinement and Merging for Video Object
Segmentation) algorithm. We show that this method is particularly well suited
for the difficult multi-object video object segmentation task and that it produces
results better than all current state-of-the-art results for semi-supervised video
object segmentation on the DAVIS benchmarks, as well as getting the best score
in the 2018 DAVIS Challenge.
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