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Abstract

In this paper we propose an approach capable of si-

multaneous recognition and localization of multiple object

classes using a generative model. A novel hierarchical rep-

resentation allows to represent individual images as well as

various objects classes in a single, scale and rotation invari-

ant model. The recognition method is based on a codebook

representation where appearance clusters built from edge

based features are shared among several object classes. A

probabilistic model allows for reliable detection of various

objects in the same image. The approach is highly effi-

cient due to fast clustering and matching methods capable

of dealing with millions of high dimensional features. The

system shows excellent performance on several object cate-

gories over a wide range of scales, in-plane rotations, back-

ground clutter, and partial occlusions. The performance of

the proposed multi-object class detection approach is com-

petitive to state of the art approaches dedicated to a single

object class recognition problem.

1. Introduction

Single object class detection has now reached some ma-

turity in computer vision, and research interests have started

to concentrate on more generic approaches capable of deal-

ing with many object classes. However, the performance

level of these methods is still far from the results obtained

for single classes. Many of them can only classify images in

presence/absence tasks without reliable object localization

in challenging viewing conditions due to design of these

approaches [4, 10] or other reasons e.g. noise from unsu-

pervised training data [22], insufficient support from image

measurements [8, 19], inefficient recognition technique to

deal with large space of possible object sizes, poses, and

positions, etc. Furthermore, performance of those multi-

class approaches that can localize objects has not been re-

ported for challenging data used to test single class detec-

tors [8, 23, 24].

The purpose of this work is to design and investigate a

novel approach based on local features and Bayesian de-

cision rules. In this paper, we adopt the following de-

sign guidelines : fast and dense sampling of scale in-

variant features, effective object class representation, ef-

ficient and reliable training and recognition. We also re-

quire the approach to be capable of dealing simultaneously

with many object classes while obtaining recognition re-

sults comparable with state of the art detectors. To fulfill

these requirements we carefully design every crucial stage

of the method while considering resent feature and clus-

tering evaluations [16] as well as desired efficiency. For

this we are pooling from many ideas reported in the liter-

ature [4, 6, 7, 8, 12, 22, 23, 25]. We use a generative ap-

proach rather than adapting one of the discriminative meth-

ods based on powerful machine learning techniques. Gen-

erative models are easier to extend to deal with multiple ob-

ject classes and to update with new training data [7]. On

the other hand the generalization properties often result in

high recall but low recognition precision. However, we will

demonstrate that a generative method is capable of compet-

ing with state of the art discriminative techniques [1, 5, 21]

as well as with combinations of generative and discrimina-

tive methods [9].

Approaches based on feature detectors seem to dominate

in multi-class recognition. Many approaches tend to use

more and more local features applying simultaneously sev-

eral detectors [22, 23], sampling features at edges [2, 15, 21]

and approaching an extreme where interest regions are sam-

pled from all image points at multiple scales [10]. This is

due to the fact that insufficient support from features results

in lower recognition performance as observed in [8]. We

argue that dense sampling can be beneficial but it is suffi-

cient to focus on image points where the signal changes. We

therefore use scale invariant features densely but efficiently

computed from edge points.

Many successful approaches are based on appearance

clusters called visual vocabulary, codebook, or keywords

constructed with different clustering methods e.g. agglom-

erative [1, 12], partitional k-means [22, 25] or other tech-

niques [10]. K-means is often used for its low complex-



ity, thus allowing to deal with many features. However,

we show that a combination of k-means and agglomera-

tive clustering can benefit from the efficiency of the first

one and results in the clustering quality of the second one.

We therefore base our object representation on appearance

clusters and a hierarchical structure of the data provided by

partitional-agglomerative clustering.

There are several possibilities to represent object classes.

A star shape model [11, 21] can be easily trained and eval-

uated in contrast to the constellation model [8] or complex

graphical models [23]. It allows to use as many parts as

required, since the complexity scales linearly. Moreover,

this model is flexible enough to deal with large variations in

object shape and appearance of rigid and articulated struc-

tures. Finally, it can be also extended to rotation invariance,

which we show in this paper.

It has been demonstrated, that sharing features [24] and

object parts [23] is a promising direction towards handling

many classes without increase in the size of representation

and complexity. We therefore follow this idea in our ap-

proach.

Our main contribution is an efficient object recognition

system capable of recognizing and localizing simultane-

ously several object classes. We first propose a novel hi-

erarchical representation capable of modeling several ob-

ject classes as well as representing individual images. The

representation is based on joint appearance-geometry prob-

ability distributions. The hierarchical data structure is effi-

ciently constructed during learning and allows for efficient

object detection, which we consider as an important contri-

bution. The representation is fully invariant to in-plane rota-

tions. Furthermore it allows to recover the rotation angle of

the recognized objects. Finally, our probabilistic recogni-

tion strategy allows to deal with possible overlaps between

objects as well as ambiguities arising between similar ob-

ject classes.

This paper is organized as follows. Section 2 describes

our recognition approach including feature detection, ob-

ject representation, recognition and learning of the model.

Section 3 gives the implementation details that lead to high

efficiency of training and recognition. Finally, section 4

presents the evaluation results on challenging test data.

2. Object class representation and recognition

In this section we describe our recognition approach. We

first present the features and the model used to represent the

object classes. Next we explain the recognition and learning

procedures of the model.

2.1. Features

We base our approach on scale invariant features densely

sampled from edges. To extract features from images we

apply the method proposed in [15] which combines the

Canny edge detection with Laplacian-based automatic scale

selection [13]. This approach provides position, scale and

dominant orientation of a local structure in a neighborhood

of edge points. The region is then described with 128 di-

mensional SIFT [14]. The descriptor represents local ap-

pearances of the interest regions. The descriptor is com-

puted with respect to the dominant orientation, thus being

rotation invariant. Finally, we reduce the number of di-

mensions to 40 with PCA. Besides the gain in efficiency,

the dimensionality reduction also improves generalization

properties of these features.

Rotation invariance. In [1, 7, 8, 11] the positions of fea-

tures or parts are related to the reference frame or object

center in Cartesian coordinates. This representation is con-

venient but restricted to one pose of the object. We propose

to modify this model and express the positions of features in

polar coordinates, in which the object center is related to lo-

cal coordinates of features. The dominant orientation of the

feature is used as a reference angle. Figure 1(a) illustrates

the rotation invariant representation. There are 4 parameters

used to represent the geometric information of a feature: d–

distance to the object center, φ–angle between the dominant

gradient orientation and the vector between object center

and feature location, σ–scale (size), and θ–dominant gradi-

ent orientation. The first 3 parameters (d, φ, σ) are indepen-

dent of the global rotation angle. Parameter θ is related to

the global coordinates of the image. Given a query feature

we can use its angle and scale as well as the corresponding

geometric parameters of the object model to hypothesize the

object center and scale as shown in figure 1(b). The fourth

parameter θ is used to recover the rotation angle if required

(cf. section 3.4). This representation allows for full rotation

invariance using a three dimensional space of object posi-

tion and scale, which reduces the search complexity.

d
φ

(a)

θ

(b)

φ

dq

qθ

Figure 1. (a) Rotation invariant representation in polar coordinates

with respect to the object center. (b) Query feature and hypothe-

size object center. θq − θ is the rotation of the object.

2.2. Hierarchical codebook

Tree structure. We represent all features extracted from

object classes in a single tree structure. The features are

clustered with a method that produces a hierarchical tree of

clusters. Figure 2(a) illustrates the tree representation. Ap-

pearance clusters aj formed by similar features, are at the

first level of the tree (bottom nodes). Nodes at higher levels
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group the closest clusters together. Each node is therefore

a hyperball in the feature space represented by a centroid

and a radius. The centroid is a mean of all features within

a ball and the radius is a distance from the center to the

furthest feature in the cluster. The radii of nodes increase

towards the top of the tree. Each of the appearance clus-

ters has several geometric distributions gj(d, φ, σ, θ) corre-

sponding to the object classes. The distributions contain in-

formation about the geometric relations between the object

center and local appearance. Figure 2(b) shows appearance

clusters and their distributions for objects. All object classes

are therefore represented in one tree by a set of appearance

clusters and geometric distributions.
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geometric
distributions
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(a) (b)

Figure 2. (a) Hierarchical structure. (b) Codebook representation.

Appearance clusters (left column) and their geometric distribu-

tions for different object classes. For visualization the distributions

are in 2D Cartesian coordinate system.

Building the tree. To build the tree we use a metric (Eu-

clidean distance) to group the appearance clusters that lie in

a hyperball of a given radius regardless of the object class

or part they belong to. To build the tree structure we ap-

ply agglomerative clustering. This bottom-up method starts

with the number of clusters equal to the number of features

and merges the two closest clusters at each iteration. We

record the indices of merged clusters and the similarity dis-

tance at which the clusters are merged at each iteration. The

procedure continues until the last two clusters are merged.

The resulting clustering trace is then used to construct the

tree. The only parameter to provide is the size of the bot-

tom nodes (radius of appearance clusters) and the number of

tree levels. The radii for intermediate levels are equally dis-

tributed between the bottom node radius and the radius of

the top node. These radii are only indicators for maximum

cluster size at a given level. If there are no clusters between

two levels that can be merged within the prescribed radius,

the level is not created. Therefore, the actual number of lev-

els and the number of nodes depends on the distribution of

data points (features).

Discussion. This tree representation has several advan-

tages. The appearance clusters are shared within one image

as well as among different classes and object parts. Despite

massive amounts of features extracted from images the rep-

resentation is compact. The tree can be used to represent

features extracted from individual images as well as to rep-

resent all object classes. The difference is that a single im-

age representation contains only one geometric distribution

per cluster, and the object class representation contains as

many geometric distribution as there are categories in the

model. This representation can be also seen as a metric tree

similar to those used in fast data structure algorithms [17]

thus allowing for efficient search when matching features to

the appearance clusters (cf. section 3.3). Finally, one can

also interpret it as a tree of classifiers. A classifier (node)

gives a positive response if a query feature lies within the

radius of the node, negative otherwise.

2.3. Recognition

The approach relies on robustly estimated probability

distributions of the model parameters. We apply Bayesian

rules and use a formulation similar to [8]. Given features

F detected in a query image, appearance clusters A, and

geometric distributions G we make a decision :

p(Om|G, A)

p(B|G, A)
=

p(G, A|Om)p(Om)

p(G, A|B)p(B)
(1)

p(Om) and p(B) are priors of an object and background. In

the following we explain only the object related terms but

the background terms are estimated in a similar way. The

likelihood p(G, A|Om) is given by

p(G, A|Om)=
∏

i

∑

j

p(gj, aj |fi, Om)p(fi|Om) (2)

where p(fi|Om) is a feature probability and p(gj , aj |Om) is

a joint appearance-geometry distribution of each cluster. To

simplify the notation we use gj instead of gj(d, φ, σ). Each

feature likelihood is then modeled by a mixture of distribu-

tions p(gj , aj |fi, Om) from appearance clusters aj which

match to query feature fi.

To find initial hypotheses for object locations we search

for local maxima of the likelihood function given by equa-

tion 1. To improve detection precision overlapping bound-

ing boxes of detected objects are frequently removed. How-

ever, we cannot follow this strategy since we want to deal

with multiple objects which can partially occlude each

other, that is the hypotheses can overlap. We allow sev-

eral objects to be simultaneously present at similar positions

and scales. However, we impose a condition that each fea-

ture can contribute only to one hypothesis, since it is very

unlikely that similar parts belonging to different objects are

visible at the same position in the image. We therefore re-

move from the weaker hypothesis H , all p(gj , aj |fi, On)
that contribute to both overlapping hypotheses:

p(G, A|Om)=p(GH , AH |Om) − p(GS , AS |On) (3)

where S ⊂ H is a set of appearance-geometry likelihoods

that also contribute to another stronger hypothesis. The
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weaker hypothesis can be still accepted if it has enough sup-

port from other features.

A problem occurs when there are similar objects

in the model, which share many appearance clusters,

and have similar location distribution e.g. bicycles and

motorbikes. The probabilities p(gj , aj|bicycle) and

p(gj, aj |motorbike) are comparable in shared clusters. The

likelihoods for these classes are often dominated by shared

clusters e.g. wheels on different vehicles. Therefore we can-

not rely on comparing the scores. To deal with such cases

we use an average confusion factor between every pair of

objects estimated during learning :

conf(Om, On) =
1

|A|

∑

j

p(gj , aj |Om)

p(gj , aj |On)
(4)

where n and m are switched during summing such that

p(gj, aj |Om) < p(gj , aj |On). This factor is approaching 1

if two classes have similar distributions. If the overlap be-

tween two hypotheses as well as the confusion prior are sig-

nificant, we remove from both hypotheses all the contribu-

tions that come from the shared clusters and compare the

remaining score to decide which object is present.

2.4. Learning

The model parameters are joint probability distributions

p(gj, aj |Om) for individual clusters. In the training stage

we separate them in two terms p(gj |aj , Om)p(aj |Om). The

first term is a geometric distribution of an appearance clus-

ter aj for a given object Om and the second term is a

likelihood that the appearance aj represents object Om.

To estimate the model p(aj |Om), p(aj |B), p(gj |aj , Om),
and p(gj|aj , B) we first extract features F from all labeled

training examples. We then build the appearance clusters

and match the features back to the cluster centers. Matches

are considered only within a threshold β. Each feature

that matches to aj contributes to the probability estimate

for aj and to its geometric distribution gj at the position,

scale and orientation given by the feature. The similarity

between appearance cluster aj and feature fi is evaluated

as p(aj |fi) = 1
Z1

exp(−
‖aj−fi‖

2

β
). The probability for a

given appearance cluster aj is therefore :

p(aj |Om)=
∑

i

p(aj |fi, Om)p(fi|Om) (5)

Z1 is chosen such that
∑

j p(aj |Om) = 1. For comparison,

in a threshold based matching p(aj |fi) would be binary and

p(aj |Om) would be a ratio of the number of features that

match to cluster aj to the total number of matches. The

geometric distribution p(gj |aj , Om) is estimated simulta-

neously with p(aj |Om) for each appearance cluster and all

classes :

p(gj|aj , Om)=
1

Z2

∑

i

p(gj |fi, aj , Om)p(fi|Om) (6)

Z2 is chosen such that
∑

j p(gj |aj , Om) = 1. Back-

ground probabilities p(aj |B) are estimated in a similar way,

by matching background features to the appearance clus-

ters. We assume that p(gj|aj , B) is uniform, which is true

for sufficiently large training data. Finally, each appear-

ance cluster has a set of p(aj |Om) values and distributions

p(gj|aj , Om) for all objects Om as well as for the back-

ground p(aj |B).

3. Efficient implementation

One of the advantages of this approach is its efficiency.

In the following we give the implementation details for cru-

cial stages of our learning and recognition system. We first

describe the feature detector, clustering method and fast

matching technique and then we give the details of the train-

ing and recognition stage.

3.1. Feature detector

To efficiently compute features we build on recent ad-

vances from [14] and [15]. Given an input image we first

build a scale-space pyramid with a Gaussian kernel and

sampling interval of 1.2. Next, for each scale level, we com-

pute gradient magnitude and phase, as well as the Lapla-

cian. Gradient magnitude and phase are used to compute

Canny edges. For each edge point we estimate a char-

acteristic scale based on the Laplacian extrema in a way

similar to [15]. To do so we search for the values at the

corresponding positions and scale levels in the Laplacian

pyramid. Given the point position and the scale level of

the Laplacian extremum we identify a region of interest at

the corresponding position in the gradient-orientation pyra-

mids. Following [14] we first estimate all the dominant ori-

entations within the region, and compute a 128 dimensional

SIFT descriptor for each of the orientations. This increases

the robustness for circular structures with many dominant

orientations i.e., wheels of cars, motorbikes, bicycles etc.

All those operations are fast since we only collect samples

from the precomputed pyramids. Finally, the dimensional-

ity of descriptors is reduced with PCA to 40.

3.2. Clustering

To build the hierarchical structure of appearance clusters

we use a combined top-down-bottom-up clustering method.

The top-down strategy is efficient in partitioning the space

but sensitive to outliers. Bottom-up method provides bet-

ter clustering solution but it is computationally expensive.

To overcome the complexity problems we apply k-means to

initially divide the feature space into few partitions C. The

bottom-up approach based on average link agglomerative

clustering is then used to obtain compact feature clusters

within each partition. It is important to notice that stan-

dard average link is not applicable to large data sets due to
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its O(N2 log(N)) time and O(N2) space complexity. We

use reciprocal nearest neighbor (RNN) search [12] to reduce

the complexity to O(N2) time and O(N) space. RNN av-

erage link is therefore applied to features in each k-means

partition with a similarity threshold, which determines the

maximum cluster size. This threshold is empirically set to

half the size of the appearance clusters (codebook). We

then collect the resulting clusters Q from all C partitions

and perform agglomerative clustering on their centroids un-

til the last two clusters are merged. Using a smaller ini-

tial cluster size prevents from dividing appearance clus-

ters by the boundaries of C partitions. The combination

top-down-bottom-up effectively reduces the complexity to

O(NC + N2
1 + · · · + N2

C + Q2) ≪ O(N2 log(N)) where

N1 + · · · + NC = N . The run time is an order of magni-

tude shorter than for standard k-means (if k set to the same

number of clusters).

3.3. Fast matching

The approach uses large numbers of local features. To

maintain a reasonable run time we make use of the hier-

archical structure and efficiently match features to cluster

centers. This data structure is a metric tree, also called ball

tree where the metric obeys the triangular inequality [17].

It is therefore straightforward to use the hierarchy obtained

from our bottom-up agglomerative clustering. Moreover,

this method optimizes a global criterion for constructing a

compact ball tree representation [18]. Instead of matching

each query image feature separately to the appearance clus-

ters, as it is done in many previous approaches [12, 22, 23],

we represent both the query image and the model as tree

structures. The matching of two trees is then performed

by first computing the Euclidean distance between the cen-

troids of top nodes, see figure 3. If the distance between

two nodes is smaller than the sum of their radii (nodes inter-

sect) then the first node is compared with all the children of

the intersecting node. The search is continued down to the

bottom nodes of both trees with a simple recursive method

which verifies if two nodes intersect. The distance between

bottom nodes is compared with a similarity threshold.

a
b

d e

f
g

h

i

k

m

n

p

r

c

l

Figure 3. (a) Matching two tree structures. The cluster center in-

dices in blue can be compared with the tree structure in figure 2(a).

This matching method allows for a significant speedup.

The matching is approximately 200 times faster compared

to exhaustive search. Moreover, the matching solution is

identical to the one obtained with exhaustive search unlike

in approximations based on kd-tree [3].

3.4. Training and recognition

Training. Given a set of roughly aligned training images

with associated class labels we extract features and com-

pute the appearance clusters for the hierarchical tree. Note

that only positive training data is used to obtain the ap-

pearance clusters. Estimating model parameters (c.f. equa-

tions 5 and 6) consists of matching features to the appear-

ance clusters. We therefore match the model tree to itself,

and compute the object related distributions. Such obtained

distributions are more reliable than just using appearance

cluster members, since we can vary similarity threshold β to

obtain more matches per cluster. Moreover, a larger training

set than the one used for clustering can be used to estimate

the distributions (not used here). The background related

terms are computed in a similar way by matching features

from background images to the appearance clusters.

Recognition. Given a query image we detect features and

build a tree structure using the clustering method. We then

match the query tree to the model tree to compute a 3D like-

lihood function (cf. equations 1 and 2) for each object class

in the model. This is done by scaling and rotating the geo-

metric distribution gj(d, φ, σ) with the scale and dominant

orientation of each query feature that matches to cluster aj .

All 3D geometric distributions of matched clusters are then

integrated into the likelihood function. Finally, we search

for local maxima using a 3D Gaussian kernel and solve for

overlapping hypotheses and ambiguities (cf. equations 3

and 4).

Rotation recovery. Given a hypothesis and the features

that contributed to the hypothesis we compare their dom-

inant orientations θq with the orientations collected in the

fourth dimension of geometric distributions (cf. section 2.1)

and compute a 1D histogram of rotation angles. The max-

imum bin in this histogram indicates the orientation of the

hypothesis.

4. Experimental results

In this section we present experimental results for our

method. We first explain the experimental setup, then show

the results on different test data and compare with other

methods.

4.1. Experimental setup

Training and test data. We evaluate the performance of

the recognition system on 4 object classes from a street sce-

nario, namely pedestrians, cars, motor-bikes and bicycles.

We introduce one more challenging category which is an

RPG shooter (rocket propelled grenade launcher). All train-

ing and test data except RPG come from the Pascal collec-

tion [20]. We use 600 pedestrian training images, which is

a subset of the data used in [5]. The test set consists of 84

images with 149 pedestrians. Note that 20 images in this
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Figure 4. Performance evaluation. (a) Precision-recall for cars, motorbikes, RPG, and bicycles. (b) Results for pedestrians (c) Comparison

of different methods on motorbikes. (d) Performance for multi-class vs. individual detectors.

set contain only upper-bodies, which cannot be detected by

the current implementation of our approach due to the ob-

ject center falling outside the image, thus outside the limits

of the likelihood function. Nonetheless, we use this set in

order to be directly comparable with the performance of [5]

for which the results are reported in [20]. The multi-scale

car test data of 108 images with 139 cars was used in [1, 9].

We used 50 side views of cars for training. The 115 motor-

bike test images were previously used in [9]. For training

we use 150 motorbike examples from 101 Caltech set. The

bicycle test data [20] contains 113 images with 123 bicy-

cles. 100 side views of bicycles were used for training. A

dummy RPG was used to prepare the training images and

some of the test images. The training set contains 104 im-

ages of various RPG-shooter poses in 5 different cloths on a

uniform background. The test data contains 40 images col-

lected from feature movies, TV news as well as taken from

real street scenes. Finally, 600 background images are taken

from the set in [5] for training.

Evaluation criteria. We adopt the evaluation criteria

used in Pascal challenge [20]. A detection is considered

correct, if the area of overlap between the predicted bound-

ing box Bp and ground truth bounding box Bgt exceeds

50% by the formula
area(Bp∩Bgt)
area(Bp∪Bgt)

> 0.5. Thus, our results

are directly comparable with [5, 9, 20].

4.2. Run time

One codebook representation is trained for all five cat-

egories. There are 1004 positive training images in total

and 2.5 · 106 edge based features. The tree structure con-

tains 8.2 · 104 nodes with 7 top nodes and 5.5 · 104 bottom

nodes (appearance clusters). The entire training procedure

including clustering and model parameters estimation takes

8 hours. 95% of that time is spent on building the tree struc-

ture. For comparison, training a single class model from

2 ·105 features takes less than 1 hour on a P4 2GHz. Feature

extraction in a VGA image takes less than 1 second. Clus-

tering, matching and computing the likelihood takes 1-10

seconds, depending on the number of features in the image.

This favorably compares to other methods e.g. in [8] train-

ing a model from 1.2 · 104 takes 24-36 hours and the detec-

tion time is 10-15 second. In [21] training from 50 images

takes 1-4 hours and the detection time is 10s per image.

4.3. Recognition results

Figure 4(a) shows precision-recall curves for cars, mo-

torbikes, bicycles, and RPG object classes. The best recog-

nition score is obtained for cars. 94.7% EER (equal er-

ror rate) performance compares favorably to 44% [1] and

87.8% in [9]. Initial recall for our method with 0 false pos-

itives is 78%. The motorbike test data is more challenging

and contains many out of plane rotations as well as occlu-

sions. Our EER performance for this data is 88% with ini-

tial recall of 70% compared to 81% EER and 40% initial

recall in [9]. The performance for bicycles is lower since

the test images contain many different viewpoints and par-

tial occlusion. EER score is 49%. However the detector

trained on side views demonstrates some tolerance to view-

point changes (cf. figure 5) due to the rotation invariance of

the model. The score for RPG class is 81%. The confusion

factor between pedestrians and RPGs is surprisingly low,

but some false positives occur on upper bodies of pedes-

trians. Finally the lowest performance of 45% EER is on

pedestrian images. However a state of the art pedestrian

detector from [5] obtains a similar EER score but lower re-

call in high precision range. 2416 of positive and 12180

of negative examples were used to train this detector com-

pared to our 600 positive and 600 negative. Both curves are

displayed in figure 4(b).

In figure 4(c) we compared the overall performance of

the system on the motorbike test data with different meth-

ods applied at various stages of our approach. The top per-

formance of 89% is obtained by the method proposed in

the paper. The score drops to 72% if a DoG feature detec-

tor from [14] is applied instead of our edge based detector.

We also modified the original approach to threshold based

matching (see section 2.4). The resulting EER performance

is 8% lower. Finally we changed the clustering approach

to k-means to obtain the appearance clusters. This method

was tested without the hierarchical tree. The matching was

approximately 150 times slower and the EER performance
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dropped by 28%. These results clearly show that a careful

selection of methods at each stage of the approach can bring

a significant improvement of the performance.

In figure 4(d) we compare the performance of the multi-

class detector with the results obtained with detectors

trained for individual classes. The recognition rate of in-

dividual car and motorbike detectors is slightly lower than

for the complete model which agrees with the observations

in [23, 24]. No significant difference in performance was

observed for other classes. However, we observe that the

recall is higher for our new multi-class detector but the con-

fusions with other classes lower the score. We also observe

that the number of appearance clusters grows sub-linearly

with increasing number of object classes as more clusters

are shared between different categories. The multi-class

model uses approximately 75% of the number of clusters in

all individual detectors with the same maximum size of ap-

pearance clusters. This indicates that the method can scale

to a large number of classes since the complexity reduces

compared with individual detectors. Another consequence

of sharing clusters is that the required amount of the training

data is reduced. In particular, wheel based vehicles seem to

benefit from the training data of each other. Additional ex-

periments have to be carried out to quantify this.

Figure 5 shows detection examples on different cate-

gories. The results are displayed for recognition threshold

set to EER on the pedestrian database. Note the difficulty

of the recognition task in presence of occlusion on motor-

bike examples and RPG, various object scales for pedes-

trians and cars, different viewpoints for bicycles, multiple

object classes occluding each other and in-plane rotations.

Bicycle examples demonstrate the deficiencies of the star

shape model. The object center is hypothesized based on

strong cues from one wheel only. Thus, the star model al-

lows to deal with occlusion but not with strong changes in

the structure of the object.

5. Conclusions

We have presented an approach capable of detecting

multiple object classes simultaneously in images using a

single hierarchical codebook representation for all object

classes. The performance is comparable with state of the

art discriminative approaches based on powerful machine

learning techniques and trained on large image sets of indi-

vidual classes. We proposed an efficient method for build-

ing object class representation and for recognition. The

complexity of the model, training as well as recognition

run times are improved compared to many other methods.

We studied the influence of various detector parameters and

demonstrated that careful selection of feature detector, clus-

tering method, and probabilistic model are equally impor-

tant and can lead to significant improvements.

In the short term it would be interesting to test other fea-

tures e.g. from [16]. Smaller sets of initial features would

result in further increase of efficiency and allow to learn

large numbers of object classes. Another experiment we

plan, is to use a fixed tree model trained on several classes

and add a new class to the model just by estimating new

class distributions without using appearance clusters from

the new class. This would demonstrate the scalability of the

model to large number of object classes.
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