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Abstract. In this paper, we explore the use of local feature histograms

for view-based recognition of free-form objects from range images. Our
approach uses a set of local features that are easy to calculate and ro-

bust to partial occlusions. By combining them in a multidimensional

histogram, we can obtain highly discriminative classi�ers without hav-
ing to solve a segmentation problem. The system achieves above 91%

recognition accuracy on a database of almost 2000 full-sphere views of

30 free-form objects, with only minimal space requirements. In addition,

since it only requires the calculation of very simple features, it is ex-

tremely fast and can achieve real-time recognition performance.
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1 Introduction

Range images are a valuable supplement to other information channels for object

recognition. They reveal direct, illumination independent information about an

object's 3D surface shape and make the �gure-ground segmentation consider-

ably easier. Due to their inherent geometric nature, research has mainly focused

on using range images for scenery reconstruction [1], or recognition of geometric

objects [2,3]. The recognition process usually consists of a series of preprocessing

steps to extract edges, segment the object into consistent patches, and search

for correspondences with a known object model [4{6]. Many methods have been

designed to improve the quality of the intermediate steps [6, 7], and good re-

sults have been achieved for regular objects [2, 3]. However, free-form objects

still pose signi�cant problems. For them, edge extraction is very di�cult, and

segmentation results may vary largely from one view to the next. The computa-

tional e�ort necessary to compensate for these e�ects is prohibitive for real-time

applications.

Appearance-based approaches have been very successful in dealing with this

problem on color and greyvalue images. In recent years, several approaches that



Fig. 1. A greyvalue and a range image of the same car (top), and the results when a

gradient operator is applied to them (bottom). In the range image, the surface structure

is almost completely lost.

work without segmentation have been proposed, using color histograms [8], eigen-

pictures [9], local feature vectors [10, 11], gradient histograms [12], local curva-

tures [13], or curve segments [14]. Local histograms in particular have been

shown to allow a powerful probabilistic framework that can achieve real-time

performance, even under realistic viewing conditions [12].

This motivates us to explore how local feature histograms can be used for

range images. As range images have di�erent properties, di�erent features are

needed. Current range sensors have problems with transparent or re
ecting ma-

terials and do not work equally well for all surface orientations. As a result, most

real range images contain error regions resembling shadows and partial occlu-

sions. The following section will analyze which features can be used under these

circumstances and how they can be adapted for the use in histograms. We will

then present experimental results to show that our chosen feature histograms

allow fast and accurate recognition (Section 3). A discussion of our work and of

future additions will conclude our work.

2 Feature Analysis

Most approaches on greyvalue images use Gaussian derivatives, alone or in com-

binations, for their recognition [10{12]. However, Figure 1 shows that this does



not work on range images. Instead, we can make use of the advantages of range

images, namely that they provide direct information about the object's shape.

We should therefore give preference to features that capture di�erent aspects of

this shape.

In the following, we will analyze three shape-speci�c local features: intensi-

ties, surface normals, and curvatures. Our goal is to �nd features that are easy to

calculate, robust to viewpoint changes, and that contain discriminant informa-

tion. We will show that the three features mentioned above ful�ll these criteria.

In addition, we will demonstrate how they can be represented in histograms.

2.1 Intensities

Pixel intensities are the simplest available feature. For greyvalue images, they

are largely illumination dependent and thus not very useful for recognition. For

range images, however, the intensity value corresponds directly to a distance to

the object. The intensity distribution of an object can therefore provide valuable

cues about its shape.

Intensity histograms are invariant against translations and image plane ro-

tations. Since range images are often normalized to the range [0,255] in order to

achieve scale invariance, they can be very sensitive to the perceived depth range,

though. If there are large and abrupt changes in the depth range, e.g. due to

occlusion e�ects, the whole histogram will be shifted and recognition might no

longer be guaranteed. For this reason, intensity histograms can only be relied on

for the recognition of surfaces with su�cient depth range. This condition can be

easily detected, and if other features are available, they can take over in those

cases.

2.2 Surface Normals

Surface normals can be easily calculated from �rst derivatives of the image.

After the ususal normalization, only two components of the resulting vector are

relevant. We therefore have to search for a two-dimensional representation that is

spread over as much as possible of the available histogram range without having

a bias for certain regions.

There are two main representations commonly used for this purpose. The

�rst just discards the z-component of the normal vector and represents it as a

pair (x; y). This corresponds to a projection of the orientation hemisphere on

the unit circle (see Figure 2a). The second possibility is a representation as a

pair of angles (�; �) in sphere coordinates, as shown in Figure 2b. The angles

can be calculated as follows:
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This representation is harder to calculate and responds nonlinearly to image

plane rotations. But, as can be seen from Figure 3, it has a larger usable his-



Fig. 2. Representation of normals in projective (left) and sphere coordinates (right)

Fig. 3. In order to compare the projective and sphere coordinates, we took a range
image of a sphere (left), and calculated the histograms for projection (middle) and

sphere coordinates (right). The latter has a larger range and a more even distribution.

togram range and can provide a much more uniform distribution over the his-

togram cells. For this reason, we will only consider the (�; �) representation in

our experiments.

2.3 Curvature

Surface curvatures can be calculated either directly from �rst and second deriva-

tives, or indirectly as the rate of change of normal orientations in a certain local

context region. The usual pair of Gaussian curvature K and mean curvature H

only provides a very poor representation, since the values are strongly correlated

[15,13]. Instead, we will use them in the form of the "shape index", introduced

by Koenderink and modi�ed by Dorai and Jain [15,16, 13]:

SI =
1

2
�

1

�
� arctan
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with kmin(p) and kmax(p) denoting the principal curvatures around the point p.

The shape index SI has the range [0; 1], and every distinct surface shape corre-

sponds to a unique value of SI (except for planar surfaces, which will be mapped



to the value 0.5, together with saddle shapes). The shape index is invariant to

translations, but due to the limited resolution, it will vary with image plane ro-

tations and scale changes. In addition, the reliance on second-order derivatives

makes it very sensitive to noise, in particular on regular surfaces with only little

local shape. Thus it works much better for free-form than for geometric objects.

3 Test Results

In order to evaluate the quality of the proposed features, we have conducted a

series of experiments with di�erent feature combinations and histogram resolu-

tions. Since our goal was to �nd out how well the features were suited to the

recognition task, we have used, at this stage, only a simple recognition strat-

egy of histogram matching using the well-known �2 divergence [12] between two

histograms Q and V :

�
2(Q; V ) =

X
i

(qi � vi)
2

qi + vi

: (3)

Our test database consists of 30 free-form objects1 (Figure 4). Because of the

huge e�ort necessary to obtain full-sphere range images of real objects, we have

decided to create the images synthetically. One of the advantages of range im-

agery is that very accurate polygonal representations of 3D objects can be ob-

tained from relatively few (10-15) scans [1]. By rendering these models into a

depth bu�er, we can get range images from arbitrary viewpoints. All test images

in this work are ideal scans, without shadows and occlusions. A future version

of our work will examine the in
uences of realistic occlusions and compare the

results to those obtained from real images.

The training set contains 1980 images, 66 from each of the 30 objects, dis-

tributed evenly over the whole viewing sphere with angles of 23� 26� between

viewpoints. The system is then tested on the 192 views per object lying halfway

between the training views, for a total of 5760 images in the test set. All his-

tograms are normalized to a uniform sum in order to compensate for di�erently

sized objects.

In a �rst test on a subset of 20 objects, we compared the performance of

intensities, normals, and shape index alone (Table 1). The high discrimination

capabilities of these features can be observed from the result that both normals

and shape index are su�cient to correctly recognize about 80% of the objects.

With only 43% recognition, the image intensities are not nearly as good. How-

ever, this changes when we combine them with normals in a second experiment

on the full database of 30 objects (Table 2 ). This combination is able to achieve

over 91% recognition2 with a very small histogram size (only 128 cells). Taking

1 The complete database with over 10000 range images is available at

http://range.informatik.uni-stuttgart.de
2 In these tests, our prime interest was in recognition performance. The results in-

dicate, however, that a quite reliable pose estimate can be obtained as a nice by-

product. The pose estimation scores are not accurate, though, since there are many

unaccounted symmetries in our test database.



Fig. 4. Some examples of objects from the test database

features histogram size identi�cation (1-3) pose estimation (1-3)

i 32 43.80% 58.59% 21.43% 36.67%

n 8-8 80.60% 89.56% 27.60% 51.28%

s 64 82.55% 91.22% 39.97% 66.85%

s+ i 16-16 80.05% 89.24% 19.67% 40.44%

Table 1. Recognition results of intensities (i), normals (n), and shape index(s) with

�rst and best 3 matches (20 objects). Only the best histogram resolutions are shown.

into account the relatively large spacing of the viewpoints, this is a very good

result. Compared to this, the combination of all three features brought only a

minor increase in performance to 93%.

From the analysis in section 2, we know that intensities and shape index are

best suited for di�erent kinds of images. By taking only the best results from

the two combinations \normals + intensities", and \normals + shape index", we

can get a recognition rate of up to 94.9%. This indicates that these two feature

combinations can form a good supplement and compensate for one another's

individual weaknesses.

An interesting result is that the best feature combinations need only very

small histograms. Using the combination of normals and intensities, we can get

a recognition rate of 91% with only 128 histogram cells. Thus, a whole object

with its 66 training views can be represented by only 128�66 = 8448 real values

{ signi�cantly less space than is needed for the thumbnail image to visualize the

object!

With the small histogram sizes shown in the table, the system is also very

fast. Using 256-cell histograms, for example, it takes only 0.1 CPU seconds to



features histogram size identi�cation (1-3) pose estimation (1-3)

n + s 8-8-16 87.75% 92.90% 73.13% 86.91%

n+ i 4-4-8 91.60% 96.01% 79.45% 91,63%

n + s+ i 4-4-8-8 93.16% 96.96% 77.85% 89.81%

Table 2. Recognition results of higher-dimensional combinations of all three features
with di�erent histogram sizes (30 objects).

match a test image with the 1980 histograms in the database on a Sun Blade

1000 (600MHz).

4 Probabilistic Recognition

Simple histogrammatching is still a very crude recognition method. Its main two

de�ciencies are that it cannot deal with partial occlusions too well, and that the

usual �2 signi�cance estimate fails when we compare slightly shifted histograms

(resulting from viewpoint changes). This estimate is necessary when we want

to combine di�erent feature channels. A probabilistic approach, as described in

Schiele's work [12] can provide much better results.

Instead of calculating an abstract distance measure, this approach directly

estimates the posterior probability of an object hypothesis on, given a particular

set of independent measurement vectors m1; :::;mk. Using the Bayesian theorem,

and assuming that all objects are equally likely, we obtain:

p(onj
^

mk) =

Q
k
p(mk j on)P

i

Q
k
p(mk j oi)

(4)

where p(mkjon) designates the likelihood of measurement vector mk given the

object on. This probability can be estimated directly from the histogram saved

for on. Schiele's results indicate that only a relatively small number of measure-

ment vectors (20-33%) is necessary to reliably detect and identify objects [12].

We applied the probabilistic recognition to the feature combination nsi. First

results show that this can further improve the recognition performance.

5 Future Work and Conclusion

In this paper, we have have shown the usefulness of local feature histograms

for view-based object recognition from range images. Our approach achieves

recognition rates above 91% on a database of almost 2000 full-sphere views

of 30 objects while using only very small histograms. The system is very fast

and achieves real-time performance. In the future, we plan to extend it with

a probabilistic framework to compensate for occlusions and evaluate it on real

range images.
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