Streaming Data from HDD to GPUs for
Sustained Peak Performance

Lucas Beyer and Paolo Bientinesi

RWTH Aachen University,
Aachen Institute for advanced study in Computational Engineering Science, Germany
{beyer,pauldj}Qaices.rwth-aachen.de

Abstract. In the context of the genome-wide association studies (GWAS),
one has to solve long sequences of generalized least-squares problems;
such a task has two limiting factors: execution time —often in the range
of days or weeks— and data management —data sets in the order of Ter-
abytes. We present an algorithm that obviates both issues. By pipelin-
ing the computation, and thanks to a sophisticated transfer strategy,
we stream data from hard disk to main memory to GPUs and achieve
sustained peak performance; with respect to a highly-optimized CPU
implementation, our algorithm shows a speedup of 2.6x. Moreover, the
approach lends itself to multiple GPUs and attains almost perfect scal-
ability. When using 4 GPUs, we observe speedups of 9x over the afore-
mentioned implementation, and 488x over a widespread biology library.

Keywords: GWAS, generalized least-squares, computational biology,
out-of-core computation, high-performance, multiple GPUs, data trans-
fer, multibuffering, streaming, big data

1 GWAS, their Importance and Current Implementations

In a nutshell, the goal of a genome-wide association study (GWAS) is to find
an association between genetic variants and a specific trait such as a disease [1].
Since there is a tremendous amount of such genetic variants, the computation
involved in GWAS takes a long time, ranging from days to weeks and even
months [2]. In this paper, we look at OOC-HP-GWAS, currently the fastest
algorithm available, and show how it is possible to speed it up by exploiting the
computational power offered by modern graphics accelerators.

The solution of GWAS boils down to a sequence of generalized least squares
(GLS) problems involving huge amounts of data, in the order of Terabytes. The
challenge lies in sustaining GPU’s performance, avoiding idle time due to data
transfers from hard disk (HDD) and main memory. Our solution, cuGWAS,
combines three ideas: the computation is pipelined through GPU and CPU, the
transfers are executed asynchronously, and the data is streamed from HDD to
main memory to GPUs by means of a two-level buffering strategy. Combined,
these mechanisms allow cuGWAS to attain almost perfect scalability with re-
spect to the number of GPUs; when compared to OOC-HP-GWAS and another
widespread GWAS library, our code is respectively 9 and 488 times faster.

In the first section of this paper, we introduce the reader to GWAS and the
computations involved therein. We then give an overview of OOC-HP-GWAS,
upon which we build cuGWAS, whose key techniques we explain in Section 3
and which we time in Section 4. We provide some closing remarks in Section 5.

1.1 Biological Introduction to GWAS

The segments of the DNA that contain information about protein synthesis are
called genes. They encode so-called traits, which are features of physical appear-
ance of the organism —like eye or hair color— as well as internal features of the
organism —like blood type or resistances to diseases. The hereditary information
of a species consists of all the genes in the DNA, and is called genome; this can
be visualized as a book containing instructions for our body. Following this anal-
ogy, the letters in this book are called nucleotides, and determining their order is
referred to as sequencing the genome. Even though the genome sequence of every
individual is different, within one species most of it (99.9% for humans) stays
the same. When a single nucleotide of the DNA differs between two individuals
of the same species, this difference is called a single-nucleotide polymorphism
(SNP, pronounced “snip”) and the two variants of the SNP are referred to as its
alleles.

Genome-wide association studies compare the DNA of two groups of indi-
viduals. All the individuals in the case group have a same trait, for example a
specific disease, while all the individuals in the control group do not have this
trait. The SNPs of the individuals in these groups are compared; if one variant
of a SNP is more frequent in the case group than in the control group, it is said
that the SNP is associated with the trait (disease). In contrast with other meth-
ods for linking traits to SNPs, such as inheritance studies or genetic association
studies, GWAS consider the whole genome [1].

1.2 The Importance of GWAS

We gathered insightful statistics about all published GWAS [3]. Since the first
GWAS started to appear in 2005 and 2006, the amount of yearly published
studies has constantly increased, reaching more than 2300 studies in 2011. This
trend is summarized in the left panel of Fig. 1, showing the median SNP-count
of each year’s studies along with error-bars for the first and second quartiles.
One can observe that while GWA studies started out relatively small, since 2009
the amount of analyzed SNPs is growing tremendously. Besides the number of
SNPs, the other parameter relevant to the implementation of an algorithm is
the sample size, that is the total number of individuals of both the case and
the control group. What can be seen in Fig. 1b is that while it has grown at
first, in the past four years the median sample size seems to have settled around
10000 individuals. It is apparent that, in contrast to the SNP count, the growth
of the sample size is negligible. This data, as well as discussions with biologists,
confirm the need for algorithms and software that can compute a GWAS with
even more SNPs; and faster than currently possible.

a) median SNP count b) median sample size

aM 40K
3M 30K
2M 20K
el
™M 10K T _ Y
oM OKe
2005 2006 2007 2008 2009 2010 2011 2005 2006 2007 2008 2009 2010 2011

Fig.1: The median, first and second quartile of a) the SNP-count and b) the
sample size of the studies each year.

1.3 The Mathematics of GWAS

The GWAS can be expressed as a variance component model [4] whose solution
r; can be formulated as

ri= (X{MTUX) XTI My, = 1m (1)

where m is in the millions and all variables on the right-hand side are known. This
sequence of equations is used to compute in r; the relations between variations
in y (the phenotype!) and variations in X; (the genotype). Each equation is
responsible for one SNP, meaning that the number m of equations corresponds
to the number of SNPs considered in the study.

Figure 2 captures the dimensions of the objects involved in one such equation.
The height n of the matrices X; and M and of the vector y corresponds to the

Py &
[MF! Xi M- n
—
n

Fig.2: The dimensions of a single instance of (1).

number of samples, thus each row in the design-matriz X; € R™P corresponds

1 A phenotype is the observed value of a certain trait of an individual. For example,
if the studied trait was the hair color, the phenotype of an individual would be the
one of “blonde”, “brown”, “black” or “red”.

to a piece of each individual’s genetic makeup (i.e. information about one SNP),
and each entry in y € R" corresponds to an individual’s phenotype.?2 M ¢ R™*"
models the relations amongst the individuals, e.g. two individuals being in the
same family. Finally, an important feature of the matrices X; is that they can be
partitioned as (X1|Xg,), where X, contains fixed covariates such as age and sex
and thus stays the same for any ¢, while X, is a single column vector containing
the genotypes of the i-th SNP of all considered individuals.

Even though (1) has to be computed for every single SNP, only the right
part of the design-matrix Xp, changes, while X, M and y stay the same.

1.4 The Amount of Data and Computation Involved

We analyze the storage size requirements for the data involved in GWAS. Typical
values for p range between 4 and 20, but only one entry varies with m. According
to our analysis in Section 1.2, we consider n = 10000 as the size of a study.
As of June 2012, the SNP database dbSNP lists 187852828 known SNPs for
humans [5], so we consider m = 190000 000. With these numbers, assuming that
all data is stored as double precision floating point numbers.? Therefore, the size
of y and M is about 80 MB and 800 MB, respectively; both fit in main memory
and in the GPU memory. The output r reaches 30 GB, coming close to the limit
of current high-end systems’ main memory and is too big to fit in a GPU’s 6 GB
of memory. Weighting in at 14 TB, X is too big to fit into the memory of any
system in the foreseeable future and has to be streamed from disk.

In the field of bioinformatics, the ProbABEL [6] library is frequently used
for genome-wide association studies. On a Sun Fire X4640 server with an Intel
Xeon CPU 5160 (3.00 GHz), the authors report a runtime of almost 4 hours for
a problem with p =4, n = 1500 and m = 220833, and estimate the runtime with
m = 2500000 to be roughly 43 hours* ~almost two days. Compared to the current
demand, m = 2.5 million is a reasonable amount of SNPs, but a population size
of only n = 1500 individuals is clearly much smaller than the present median
(Fig. 1). The authors state that the runtime grows more than linearly with n
and, in fact, tripling up the sample size from 500 to 1500 increased their runtime
by a factor of 14. Coupling this fact with the median sample size of about 10000
individuals, the computation time is bound to reach weeks or even months.

2 In the example of the body height as a trait, the entries of y would then be the
heights of the individuals.

3 Which may or may not be the optimal storage type. More discussion with biologists
and analysis of the operations is necessary in order to find out whether float is
precise enough. If that was the case, the sizes should be halved.

4 We only consider what the authors called the linear model with the ——mmscore
option as this solves the exact problem we tackle.

2 Prior Work: the OOC-HP-GWAS Algorithm

Presently, the fastest available algorithm for solving (1) is OOC-HP-GWAS [4].
Since our work builds upon this CPU-only algorithm, we describe its salient
features.

2.1 Algorithmic Features

OOC-HP-GWAS exploits the the symmetry and the positive definiteness of the
matrix M, by decomposing it through a Cholesky factorization LLT = M. Since
M does not depend on %, this decomposition can be computed once as a prepro-
cessing step and reused for every instance of (1). Substituting LLT = M into (1)
and rearranging, we obtain

ro= (LX) LX) ML X)) LYy fori=1l.om (2)
—_—— Y—— N——

effectively replacing the inversion and multiplication of M with the solution of
a triangular linear system (trsv).

The second problem-specific piece of knowledge that is exploited by OOC-
HP-GWAS is the structure of X = (X|Xg): X stays constant for any 4, while
Xp varies; plugging X; = (X|Xg,) into (2) and moving the constant parts out
of the loop leads to an algorithm that takes advantage of the structure of the
sequence of GLS shown in Listing 1.1. The acronyms correspond to BLAS calls.

Listing 1.1: Solution of the GWAS-specific sequence of GLS (1).

1 L <« potrf M (LLT = M)

2 X1 <« trsm L, X1 (XL:L_lXL)
3y <« trsv i,y (7=L7"y)

4 rt <« gemv X1, y (FT:XEQ)

5 Stl <« syrk X1 (STL:XEXL)
¢ for i in 1..m:

7 Xri <« trsv L, Xri (XRi :L_IXRi)
8 Sbl <« dot Xri, X1 (Spr, = Xk, X1)
9 Sbr <« syrk Xri (XBR; :X};iXRi)
10 rb <« dot Xri, y (7B, :ngg)

11 r < posv S, r (7‘1'=S;17:i)

2.2 Implementation Features

Two implementation features allow OOC-HP-GWAS to attain near-perfect ef-
ficiency. First, by packing multiple vectors X, into a matrix Xpg,, the slow
BLAS-2 routine to solve a triangular linear system (trsv) at Line 7 can be
transformed into a fast BLAS-3 t rsm. Then, Listing 1.1 is an in-core algorithm

that cannot deal with an X which does not fit into main memory. This limita-
tion is overcome by turning the algorithm into an out-of-core one, in this case
using a double-buffering technique: While the CPU is busy computing the block
b of Xg in a primary buffer, the next block b+1 can already be loaded into a sec-
ondary buffer through asynchronous I/0. The full OOC-HP-GWAS algorithm
is shown in Listing 1.2. This algorithm attains more than 90% efficiency.

Listing 1.2: The full OOC-HP-GWAS algorithm.

1 L <« potrf M (LLT = M)

2> X1 <« trsm L, X1 (X =L'X1)
3y <« trsvlLl,y (7=L"y)

4 rt <« gemv X1, y (Ffr = X19)

5 Stl < syrk X1 (STL =XEXL)
6 Xr[1l]

7 for b in 1..blockcount:

8 Xr[b+1]

9 Xr[b]

10 Xrb « trsm L, Xrb (Xp = L7'X3)

11 for Xri in Xr[b]:

12 Sbl < gemm Xri, X1 (SBrL, :X};iXL)
13 Sbr <« syrk Xri (XBrR; :X}{i}zm)
14 rb <« gemv Xri, y (7B, :X};;Lg])

15 r <« posv S, r (ri = S7'7)

16 r[b-1]

17 r[b]

18 r[blockcount]

3 Increasing Performance by Using GPUs

While the efficiency of the OOC-HP-GWAS algorithm is satisfactory, the com-
putations can be sped up even more by leveraging multiple GPUs. With the help
of a profiler, we determined (confirming the intuition), that the trsm at line 10
in Listing 1.2 is the bottleneck. Since cuBLAS provides a high-performance im-
plementation of BLAS-3 routines, trsm it is the best candidate to be executed
on GPUs. In this section, we introduce cuGWAS, an algorithm for a single GPU,
and then extend it to an arbitrary number of GPUs.

Before the trsm can be executed on a GPU, the algorithm has to transfer
the necessary data. Since the size of L is around 800 MB, the matrix can be sent
once during the preprocessing step and kept on the GPU throughout the entire
computation. Unfortunately, the whole X i matrix weights in at several TB, way
more than the 2 GB per buffer limit of a modern GPU. The same holds true for
the result X R, of the t rsm, which needs to be sent back to main memory. Thus,
there is no other choice than to send it in a block-by-block fashion, each block
Xpr, weighting at most 2 GB.

b

When profiled, a naive implementation of the algorithm displays a pattern
(Fig. 3) typical for applications in which GPU-offloading is an after-thought:
both GPU (green) and CPU (gray) need to wait for the data transfer (orange);
furthermore, the CPU is idle while the GPU is busy and vice-versa.

Fig. 3: Profiled timings of the naive implementation.

Our first objective is to make use of the CPU while the GPU computes
the trsm. Regrettably, all operations following the trsm (i.e. the for-loop at
Lines 11-15 in Listing 1.2, which we will call the S-loop) are dependent on
its result and thus cannot be executed in parallel. A way to break out of this
dependency is to delay the S-loop by one block, in a pipeline fashion, so that the
S-loop relative to the b-th block of X g is delayed and executed on the CPU, while
the GPU executes the trsm with the (b+1)-th block. Thanks to this pipeline,
we have broken the dependency and introduced more parallelism, completely
removing the gray part of Fig. 3.

3.1 Streaming Data from HDD to GPU

The second problem with the aforementioned naive implementation is the time
wasted due to data transfers. Modern GPUs are capable of overlapping data
transfers with computation. If properly exploited, this feature allows us to elim-
inate any overhead, and thus attain sustained peak performance on the GPU.

The major obstacle is that the data is already being double-buffered from
the hard-disk to the main memory. A quick analysis shows that when targeting
two layers of double-buffering (one layer for disk <> main memory transfers and
another layer for main memory <> GPU transfers), two buffers on each layer are
not sufficient anymore. The idea here is to have two buffers on the GPU and
three buffers on the CPU.

The double-triple buffering can be illustrated from two perspectives: the tasks
executed and the buffers involved. The former is presented in Fig. 4; we refer
the reader to [7] for a thorough description. Here we only discuss the technique
in terms of buffers.

In this single-GPU scenario, the size of the blocks Xg, used in the GPU’s
computation is equal to that on the CPU. When using multiple GPUs, this
will not be the case anymore, as the CPU loads one large block and distributes
portions of it to the GPUs.

The GPU’s buffers are used in the same way as the CPU’s buffers in the
simple CPU-only algorithm: While one buffer « is used for the computation, the
data is transferred to and from the other buffer 8. But on the CPU’s level (i.e.
in RAM), three buffers are now necessary. For the sake of simplicity, we avoid
the explanation of the initial and final iterations and start with iteration b.

GPU GPU trsm b | crutrsmb.
Send b | Send bsy =
t
@RWES: (- o § CPUcompb, Recv b m—*
Readbs | Read b3
HDD
Write b.|
CPU 2 GPU transfer GPU computation I I I Data dependencies
HDD = CPU transfer . CPU computation ‘ Asynchronous dispatch

Fig. 4: A task-perspective of the algorithm. Sizes are unrelated to runtime.

With reference to Fig. 5a, assume that the (b-1)-th, b-th and (b+1)-th blocks
already reside in the GPU buffers 3, «, and in the CPU buffer C, respectively.
The block b-1 (i.e. buffer 5) contains the solution of the trsm of block b—1. At
this point, the algorithm proceeds by dispatching both the read of the second-
next block b+ 2 from disk into buffer A and the computation of the trsm on
the GPU on buffer «, and by receiving the result from buffer 8 into buffer B.
The first two operations are dispatched, i.e. they are executed asynchronously by
the memory system and the GPU, while the last one is executed synchronously
because these results are needed immediately in the following step.

As soon as the synchronous transfer 5 — B completes, the transfer of the
next block b+1 from CPU buffer C' to GPU buffer 3 is dispatched, and the S-loop
is executed on the CPU for the previous block b—1 in buffer B on the CPU (see
Fig. 5b).

As soon as the CPU is done computing the S-loop, its results are written to
disk (Fig. 5¢). Finally, once all transfers are done, buffers are rotated (through
pointer or index rotations, not copies) according to Fig. 5d, and the loop con-
tinues with b < b+ 1.

3.2 Using Multiple GPUs

This multi-buffering technique achieves sustained peak performance on one GPU.
Since boards with many GPUs are becoming more and more common in high-
performance computing, we explain here how our algorithm is adapted to take
advantage of all the available parallelism. The idea is to increase the size of the
Xg, blocks by a factor as big as the number of available GPUs, and then split the
trsm among these GPUs. As long as solving a trsm on the GPU takes longer
than loading a large enough block Xg, from HDD to CPU, this parallelization
strategy holds up to any number of GPUs. Since in our systems loading the data
from HDD was an order of magnitude faster than the computation of the t rsm,

trsm

\ B @

\.
o
c B - /A

mg
P [
(a) Retrieve the previous result b—1 from

GPU, and the second-next block b+ 2 of
data from disk.

HDD oaax S bs bes

by ‘ b, ‘ b ‘bﬂ

trsm

g
B o
—"
c B - Jn
HDD ng bs
S

b3 S
i
(c) Write the results b—1 to disk.

ba

b, ‘ b ‘b—\ ‘ b+

trsm
]

;B

o
C 8 - A
HDD patax S bs

b+3 8
Results

(b) Send the next block b+ 1 from RAM
to the GPU, execute the S-loop on b-1
on the CPU.

GPUs ba Q\E
B «
N N
c—0o &
HDD nmxg bs bs%"
Restsr S Ba o, —

(d) Switch buffers at both levels for the
next iteration.

Computation

b ‘ b.| ‘ b ‘ba ‘ b+

b b+

b, ‘ b ‘bﬂ

Fig.5: The multi-buffering algorithm as seen from a buffer perspective.

the algorithm scales up to more GPUs than were available. Listing 1.3 shows

the final version of cuGWAS.5

Listing 1.3: cuGWAS. The black bullet is a placeholder for “all GPUs”.

1 L <~ potrf M

2 cublas.send L — L_gpUe
3 X1 <« trsm L, X1

1y < trsv L, y

o

rt <« gemv X1, y

6 Stl « syrk X1

7 gpubs <« blocksize/ngpus

s for b in -1..blockcount+l:

9 cu_-trsmwait oe

10 cu_send.wait Ce — [

11 Qe < Ccu_Crsm.async L_gpuUe,
12 aio read Xr[b+2] - A

13 for gpu in 0..ngpus:

Qe

(LLT = M)

(Xp=L'X})
(5=L"y)

(7r = X1'9)
(Sro = X7 XL)

(if b in 1..blockcount)
(if b in 2..blockcount+1)
(if b in 1..blockcount) ¥
G (Xe=L7"Xy)
(if b in -1..blockcount-2)
(if b in 2..blockcount+1)

® The conditions for the first and last pair of iterations are provided in parentheses on

the right.

14 Bgpuxgpubs. . (gpu+l) xgpubs] <« Bgpu

15 Xr[b+1l] —- C (4 b in 0..blockcount-1)
16 for gpu in 0. .ngpus: (if b in 0..blockcount-1)
17 C[gpu*gpubs. . (gpu+l) xgpubs] — Bgpu

18 for Xri in B: (3 b in 2..blockcount+1)
19 Sbl < gemm Xri, X1 (SBrL, :X};IXL)

20 Sbr < syrk Xri (XBrR, =)~(£i)~(Ri)

21 rb <« gemv Xri, y (7B, :Xgig})

22 r <« posv S, r (ri = S; 7))

23 r[b-2] (i1f b in 1..blockcount+1)
24 r[b-1] (1f b in 1..blockcount+1)
25 swap_buffers

4 Results

In order to show the speedups obtained with a single GPU, we compare the
hybrid CPU-GPU algorithm presented in Listing 1.3 using one GPU with the
CPU-only OOC-HP-GWAS. Then, to determine the scalability of cutGWAS, we
compare its runtimes when leveraging 1, 2, 3 and 4 GPUs.

In all of the timings, the time to initialize the GPU and the preprocessing
(Lines 1-7 in Listing 1.3), both in the order of seconds, have not been measured.
The GPU usually takes 5s to fully initialize, and the preprocessing takes a
few seconds too, but depends only on n and p. This omission is irrelevant for
computations that run for hours.

4.1 Single-GPU Results

The experiments with a single-GPU were performed on the Quadro cluster at
the RWTH Aachen University; the cluster is equipped with two nVidia Quadro
6000 GPUs and two Intel Xeon X5650 CPUs per node. The GPUs, which are
powered by Fermi chips, have 6 GB of RAM and a theoretical double-precision
computational power of 515 GFlops each. In total, the cluster has a GPU peak
of 1.03 TFlops. The CPUs, which have six cores each, amount to a total of
128 GFlops and are supported by 24 GB of RAM. The cost of the combined
GPUs is estimated to about $10000 while the combined CPUs cost around
$2000.

Figure 6a shows the runtime of OOC-HP-GWAS along with that of cuGWAS,
using one GPU. Thanks to our transfer-overlapping strategy, we can leverage the
GPU’s peak performance and achieve a 2.6x speedup over a highly-optimized
CPU-only implementation. cuBLAS’ trsm implementation attains about 60 %
of the GPU’s peak performance, i.e. about 309 GFlops [8]. The peak performance
of the CPU in this system amounts to 128 GFlops; if the whole computation were
performed on the GPU at trsm’s rate, the largest speedup possible would be
2.4. We achieve 2.6 because the computation is pipelined: the S-loop is executed

on the CPU, in perfect overlap with the GPU. This means that the performance
of cuGWAS is perfectly in line with the theoretical peak.

In addition, the figure indicates that the algorithm (1) has linear runtime
in m and (2) allows us to cope with an arbitrary m. The red vertical line in
the figure marks the largest value of m for which two blocks of Xy fit into the
GPU memory for n = 10000. Without the presented multi-buffering technique,
it would not be possible to compute GWAS with more than m = 22500 SNPs,
while cuGWAS allows the solution of GWAS with any given amount of SNPs.

4.2 Scalability with Multiple GPUs

To experiment with multiple GPUs, we used the Tesla cluster at the Universitat
Jaume I in Spain, since it is equipped with an nVidia Tesla S2050 which contains
four Fermi chips (same model as the Quadro system), for a combined GPU
compute power of 2.06 TFlops, but with only 3 GB of RAM each. The host CPU
is an Intel Xeon E5440 delivering approximately 90 GFlops.

In order to evaluate the scalability of cuGWAS, we solved a GWAS with
p=4,n=10000, and m = 100000 on the Tesla cluster, varying the number of
GPUs. As it can be seen in Fig. 6b, the scalability of the algorithm with respect
to the number of GPUs is almost ideal: Doubling the amount of GPUs reduces
the runtime by a factor of 1.9.

a) Runtime with respect to SNP count m b) Scalability with respect to GPU count
100 50
«—in-core | out-of-core—
75 37,5
o) o)
(0]
E 50 £ 25
g 5
2 a9 &
0o 24
25 ~—0— 12,5
O 4
olo©
~—9
0 ~ 0
0K 22,5K 45K 67,5K 90K 1 2 3 4
m (SNP count) Number of GPUs
+ OOC-HP-GWAS O cuGWAS 1GPU O cuGWAS Ideal scalability

Fig.6: The runtime of our cuGWAS algorithm a) using 1GPU compared to
OOC-HP-GWAS;, using 1GPU and b) using a varying amount of GPUs.

5 Conclusion and Future Work

We have presented a strategy which makes it possible to sustain peak perfor-
mance on a GPU not only when the data is too big for the GPU’s memory, but

also for main memory. In addition, we have shown how well this strategy lends
itself to exploit an arbitrary number of GPUs.

As described by the developers of ProbABEL, the solution of a problem of
the size described in Section 1.4 by the GWFGLS algorithm took 4hours. In
contrast, with cuGWAS we solved the same problem in 2.88s. Even accounting
for about 6 seconds for the initialization and Moore’s Law (doubling the runtime
as ProbABEL’s timings are from 2010), the difference is dramatic. We believe
that the contribution of cuGWAS is an important step towards making GWAS
practical.

Software The code implementing the strategy explained in this paper is freely
available at http://github.com/lucasb-eyer /cuGWAS and http://lucas-b.eyer.be.

Acknowledgements Financial support from the Deutsche Forschungsgemein-
schaft (German Research Association) through grant GSC 111 is gratefully ac-
knowledged. The authors thank Diego Fabregat-Traver for providing us with the
source-code of OOC-HP-GWAS, the Center for Computing and Communication
at RWTH Aachen for the resources, Enrique S. Quintana-Orti for granting us
access to the Tesla system as well as Yurii S. Aulchenko for intorducing us to
the computational challenges of GWAS.

References

1. Genome-Wide Association Studies, http://www.genome.gov/20019523

2. Fabregat-Traver, D., Bientinesi P.. Computing Petaflops over Terabytes of Data:
The Case of Genome-Wide Association Studies. CoRR. abs/1210.7683 (2012)

3. A Catalog of Published Genome-Wide Association Studies, www.genome.gov/
 gwastudies/

4. Fabregat-Traver, D., Aulchenko Y.S., Bientinesi P.: Solving Sequences of Generalized
Least-Squares Problems on Multi-threaded Architectures. CoRR. abs/1210.7325
(2012)

5. Announcement Corrections: NCBI dbSNP Build 137 for Human,
http://www.ncbi.nlm.nih.gov/mailman/pipermail/dbsnp-

& announce/2012g2/000123.html

6. Aulchenko, Y.S., Struchalin, M.V., Van Duijn, C.M.: ProbABEL package for genome-
wide association analysis of imputed data. BMC Bioinformatics 11, p.134 (2010)

7. Beyer, L.: Exploiting Graphics Accelerators for Computational Biology. Diploma
thesis (2012)

8. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pp. 31:1-31:11.
IEEE Press, Piscataway (2008)

9. Quintana-Orti, G., Igual, F. D., Marqués, M., Quintana-Orti, E. S., Van de Geijn,
R. A.: A run-time system for programming out-of-core matrix algorithms-by-tiles
on multithreaded architectures. In: ACM Transactions on Mathematical Software
38 (4), pp. 25:1-25:25. ACM, New York (2012)

