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Abstract

In this paper, we propose a novel labeling cost for multi-
view reconstruction. Existing approaches use data terms
with specific weaknesses that are vulnerable to common
challenges, such as low-textured regions or specularities.
Our new probabilistic method implicitly discards outliers
and can be shown to become more exact the closer we
get to the true object surface. Our approach achieves top
results among all published methods on the Middlebury
DINO SPARSE dataset and also delivers accurate results on
several other datasets with widely varying challenges, for
which it works in unchanged form.

1. Introduction
We consider the classical computer vision problem of

multi-view stereo, where an object’s 3D shape is inferred
from a set of calibrated 2D images. If the depth obser-
vations from each camera were perfect, multi-view recon-
struction would be easy. In reality, the Lambertian assump-
tion does not always hold, and noise and untextured regions
make 3D reconstruction still difficult.

A large number of approaches have been proposed in re-
cent years to address those issues [6, 7, 8, 12, 13, 19]. Vol-
umetric methods have been particularly successful towards
this goal [12, 13, 19]. Fueled by advances in convex op-
timization [14, 3], globally optimal formulations have been
proposed for the multiview reconstruction problem [12, 13].
However, this line of research has so far mainly focused on
the optimization methods. For highly accurate reconstruc-
tion results, the labeling cost (the data term in energy formu-
lations) is just as important. As Fig. 1 clearly shows, even
the best currently available approaches have major prob-
lems in low-textured image areas, leading to visible artifacts
in the obtained reconstructions.

In this paper, we start from a formulation motivated by
the volumetric approaches of [8, 12]. We present a detailed
analysis of the reasons why those approaches have problems
in specific challenging regions and we derive new insights
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Figure 1. State-of-the-art results for the Middlebury DINO SPARSE

dataset, compared to our approach. In contrast to other methods
our approach is able to accurately reconstruct regions with high
outlier rates, such as low-textured regions.

into the multiview reconstruction problem from this analy-
sis. Based on those insights, we propose a probabilistically
well-founded formulation for the labeling cost that is more
robust to outliers and that achieves improved reconstruction
results (see Fig. 1). The key idea of our approach is to base
the labeling cost on an independently selected subset of the
available cameras for each voxel, such that the cameras can
be trusted with high probability.

Our proposed method is elegant, fast, and simple to im-
plement (also simple to port to the GPU). Moreover, it is
general since we do not make any specific assumption re-
garding the shape of the object and works in unchanged
form for a variety of datasets that offer different challenges,
such as low-textured regions, specularities, concavities, and
thin structures. We quantitatively evaluate our approach on
the well known Middlebury benchmark [17] and achieve the
best result among published methods for the DINO SPARSE
dataset and high ranking results for three other datasets.
Additionally, we also show qualitative results for difficult
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datasets and compare our approach with other methods.
This paper is organized as follows: The next section

discusses related work. Section 3 then describes the used
energy minimization framework and discusses the specific
problems arising in existing methods. We then present our
new labeling costs in Section 4. Section C contains details
about discretization and optimization of the energy func-
tional. Finally, we show experimental results in Section D.

2. Related Work
The first approaches for multi-view stereo were carving

techniques [18], which do not enforce any smoothness and
result in quite noisy reconstructions. They were superseded
by more elegant energy minimization techniques, which ex-
plicitly model smoothness constraints. First were active
contours [2], where the shape evolves to photoconsistent lo-
cations. In the following years, the used surface representa-
tions and optimization techniques were steadily improved,
starting with level sets [5], triangle meshes [7], followed by
graph cuts [19, 15, 8], continuous global optimization [12],
and in the last few years anisotropic measures [13, 16].

In this paper, we focus on volumetric reconstruction ap-
proaches [8, 12, 13, 19]. A problem arising in those ap-
proaches is that one cannot actually observe the inside of
the object. The only observations possible are of the sur-
face. Thus, when only using photoconsistency, which is
only present on the surface, the global minimum of the en-
ergy functional is the empty solution. This problem was first
solved with a ballooning term, which is a data-independent
term that adds a constant outward force [19, 15]. This ap-
proach has several disadvantages. It is sensitive to over-
smoothing and to finding the right balance between data
term and ballooning term.

To address this problem, Boykov & Lempitsky [1] pro-
posed a data-aware ballooning force using the surface orien-
tation. Hernández et al. [8] proposed a data-aware volumet-
ric term based on probabilistic visibility, where the photo-
consistency score is propagated along the camera ray. Their
approach treats all voxels as background if at least one cam-
era votes for background, which leads to a systematic under-
estimation of the surface, as we show in Sec. 3.3. Kolev et
al. [12] evaluated a number of approaches for setting label-
ing costs in their papers. They estimate surface normals and
select only the cameras that are in front of the surface. As
we show in Sec. 4.1, this does not guarantee that the con-
sidered part of the surface is visible to the selected cameras
and misses important cameras actually seeing the consid-
ered part of the surface, while selecting outlier cameras.

While optimization methods were significantly im-
proved over time, a robust labeling is still an open prob-
lem. Our approach uses the continuous global optimiza-
tion framework by [12] and a novel labeling cost that was
inspired by [8] but that avoids the problems of those ap-

Table 1. Notation used in this paper
x 3D point
Ci observations taken from ith camera

(depth and photo-consistency score)
ci center of camera Ci
πi(x) projection of point x on ith image
σ(x) labeling cost
ρ(x) discontinuity cost
O short for O(x), observation that point x is in-

visible (and thus belongs to the object)
Oi point x is visible from camera i
B point x is not visible from any camera (and thus

either background or inside the object)
Bi point x is not visible from camera i
Si(x) consistency score for camera i

proaches. Our approach selects the cameras with surface
observations closest to the considered point to set the la-
beling costs. We treat the problem in a probabilistic way
and obtain foreground and background probabilities that are
neither systematically overestimated nor underestimated.
Moreover, in our approach the surface estimation even be-
comes more accurate close to the real surface. In contrast
to previous approaches, our approach implicitly selects the
cameras seeing the relevant part of the surface and ignores
outlier cameras with a high probability.

This idea of camera selection is also very different from
the idea of image selection, as proposed by Hornung et al.
[9]. Their approach selects a subset of images for recon-
struction to avoid redundant information. In contrast, our
method selects cameras independently for each voxel.

3. Multi-view Stereo as Energy Minimization
Kolev et al [12] introduced a framework that allows to

partition 3D space into ’foreground’ (or ’object’) and ’back-
ground’ regions. They propose a globally optimal contin-
uous formulation of the problem that has several advan-
tages compared to other approaches. In this section we will
briefly introduce the framework, for more details see [12].

Let V ∈ R3 denote the volume that contains the object,
u : V → {0, 1} is a characteristic function that implic-
itly represents the object. ρobj(x) and ρbck(x) are labeling
costs for foreground/object and background, ρ(x) is a dis-
continuity cost and 1/λ is the smoothness parameter. Multi-
view reconstruction can then be formulated as the problem
of minimizing the following energy:

E(u)=

∫
V

ρ(x)|∇u(x)|dx︸ ︷︷ ︸
smoothing term

+λ

∫
V

(ρobj(x)−ρbck(x))u(x)dx︸ ︷︷ ︸
labeling cost

(1)

Let umin(x) = arg minu(x)E(u). Then the surface can be
extracted via thresholding uν(x) = 1{umin(x) ≥ ν}.
The threshold ν can be set to 0.5 or determined as
arg minν E(uν).



The discontinuity cost ρ(x) is defined very similar in
most of the energy minimization approaches and has been
shown to produce stable and reliable results. Defining ro-
bust labeling costs on the other hand is still an open prob-
lem. Some of the available approaches work well only un-
der special conditions and for specific datasets. Therefore
we concentrate on the labeling costs ρbck(x) and ρobj(x).

3.1. Depth Estimation

Given a set of images I1, I2, ..., IN with extracted back-
ground and calibrated camera parameters, the goal is to cal-
culate the depth of each voxel from every camera. In this
section we will briefly describe the process for camera j
and voxel x that lies inside the convex hull.

We define a ray from camera center cj to the point x:

rj,x(t) = cj +
x− cj
||x− cj ||

t, (2)

where the parameter t is the position along the ray and
corresponds to a certain distance from the camera. Let
tj,x be the position where the ray reaches the point x:
tj,x = ||x− cj ||, and thus rj,x(tj,x) = x.

The location of the highest photo-consistency along the
ray is computed using normalized cross-correlation be-
tween square patches around the projection of x in image
j and the projections in the neighboring images:

NCC(πi(x), πj(x))= ni · nj , (3)

ni=
Ii(πi(x))− Ii(πi(x))

‖Ii(πi(x))− Ii(πi(x))‖
(4)

where Ii(πi(x)) is a vector that contains the intensities of
the square patch around the projection of x on image i and
Ii(πi(x)) is a vector containing the mean intensity. In all
our experiments, we used 7 × 7 square patches. Then we
fuse all these NCC values by taking the weighted average:

Sj(x) =

m∑
k=1

wj,ik(x)NCC(πik(x), πj(x)) (5)

where, in order to obtain reliable depth estimates, we use
only the neighboring cameras for computing NCC scores,
as in [12]. Let αi,j be the angle between the normalized
viewing directions of cameras i and j. We use only the
cameras with αi,j 5 αmax (we set αmax = 45◦ in our
experiments) and weight them with

wj,i(x) =
αmax − αj,i(x)∑m
k=1 αmax − αj,k(x)

. (6)

Finally we choose the position with the maximum score Sj
among the positions on the ray:

tj,x,max= arg max
t
Sj(rj,x(t)), (7)

Sj,x,max= max
t
Sj(rj,x(t)). (8)

Figure 2. (left) One camera is not enough to compute a point’s
depth. (right) Observations by multiple cameras. For a given voxel
each camera provides a depth observation for the corresponding
ray. If the voxel is occluded from the position of the respective
camera, the observed depth will be too small.

3.2. Discontinuity Cost

We use the discontinuity cost first proposed in [7]. Each
camera gives a vote for point x only if x corresponds to the
camera ray’s intersection with the object surface:

VOTE j(x) =

{
Sj(x) if tj,x,max = tj,x

0 otherwise.
(9)

and we accumulate the votes from all cameras:

ρ(x) = e−µ
∑N
j=1 VOTEj(x). (10)

where µ = 0.15 as in [12]. This scheme is widely used in
a number of approaches and has proven to be robust and to
yield precise photo-consistency maps [12, 7, 8, 19].

3.3. Labeling Cost

For the labeling cost, we need to determine probabilities
for foreground and for background for each voxel. We can
then define the labeling cost as the following negative log
probabilities:

ρobj(x) = − logP (O|C1 · · ·CN ), (11)
ρbck(x) = − logP (B|C1 · · ·CN ). (12)

whereO corresponds to the event that point x belongs to the
object and B to background. Since the true surface is un-
known, we cannot compute (11) directly. However, we can
introduce random variables o1, · · · , oN (oi ∈ {Oi, Bi}).
Oi means that camera i would label the voxel as object and
Bi as background, respectively. Then we can decompose
(11) using the law of total probability:

P (O|C1 · · ·CN )

= Σoi∈{Oi,Bi}P (O|o1 · · · oN )P (o1 · · · oN |C1 · · ·CN ).(13)

Hernández et al. [8] used the assumption that a point
belongs to the foreground if and only if all cameras
agree that it is foreground: P (O|O1 · · ·ON ) = 1
(c.f . eq. (13)). All other combinations are attributed to back-
ground: P (O|o1 · · · oN ) = 0. However, if point x is visible



only from one camera then we cannot estimate tj,x,max in
(8) because it requires its projections on other images to
estimate the depth (c.f . Fig. 2 (left)). Thus, if a voxel is ob-
served to be foreground by only one camera, this observa-
tion is very likely an outlier caused by noise (see also Fig. 2
(left)).

Therefore, if a point belongs to the background accord-
ing to only one camera without support from a neighboring
camera, this configuration is clearly wrong. In this case, we
cannot be sure if this camera is an outlier or if a neighboring
camera is the outlier, but in [8], all these impossible config-
urations are assumed to belong to the background. Since
P (O|O1 · · ·Ok−1BkOk+1 · · ·ON ) > 0, a considerable
amount of probability mass is shifted from P (O|C1 · · ·CN )
to P (B|C1 · · ·CN ). This probabilistic model thus system-
atically underestimates the foreground probability, leading
to shrinkage. In order to correct for this problem, it would
be necessary to sort out all impossible configurations and
compare only the true foreground and background proba-
bilities. However, since (13) contains 2N terms, this is in-
feasible in practice.

4. Our Method
Instead of applying the law of total probability to all

cameras in (13), we can first select some subset of cameras
{i1, . . . , ik} ∈ P ({1, . . . , N}) and then apply it to this sub-
set. We will show that by selecting a subset of cameras in a
specific way we can achieve some useful properties.

Not all cameras can provide useful information for a
given voxel. Each camera can only observe the surface of
the object. The volume in front of the surface is assumed
to be empty, thus background. The volume immediately be-
hind the surface corresponds to object. However, we can
only be sure for a narrow band behind the surface. Behind
this narrow band the rest of the volume is unknown, as it is
not visible to this camera. Voxels near the surface will be
classified as invisible (i.e. air or inside the object) by many
cameras, namely the cameras that do not see the surface
from the right angle (c.f . Fig. 2(right)). However, these sur-
face voxels will be classified as foreground by the cameras
that actually see this part of the surface. These observations
are the only ones actually containing information.

Suppose that we selected a subset of cameras such that
they all have similar observations, i.e. they agree about the
labeling of the respective voxel. This means that we have
only two events (O1 · · ·ON and B1 · · ·BN ) in the total
probability formula. We can derive:

P (B|Ci1· · ·Cik)=P (B|Bi1· · ·Bik)︸ ︷︷ ︸
=1

P (Bi1· · ·Bik |Ci1· · ·Cik)

+P (B|Oi1· · ·Oik)︸ ︷︷ ︸
=0

P (Oi1· · ·Oik |Ci1· · ·Cik)(14)

=P (Bi1 · · ·Bik |Ci1 · · ·Cik) (15)

and similarly

P (O|Ci1· · ·Cik)=P (Oi1 · · ·Oik |Ci1 · · ·Cik) (16)

Variables Oi are not independent in this case, since the
visibility depends on several cameras, therefore we cannot
factorize them directly. Assuming equal probabilities for
P (Oi1 · · ·Oik) = P (Bi1 · · ·Bik) and applying Bayes’ the-
orem several times we can get (for the complete derivation
and additional results see our extended version1):

ρbck(x)− ρobj(x)= − log

k∏
j=1

P (Bi1 · · ·Bik |Cij )
P (Oi1 · · ·Oik |Cij )

(17)

=

k∑
j=1

ρ
ij
bck(x)−

k∑
j=1

ρ
ij
obj(x) (18)

In contrast to other approaches, this formulation does not
systematically underestimate either of the probabilities.

We now need to reliably select a subset of cameras. As
mentioned earlier, a widely used assumption is that a point
is invisible if and only if it is invisible from all cameras.
However, in multiple view stereo, if point x is visible only
from one camera then we cannot estimate the depth because
it requires its projections on other images (c.f . Fig. 2(left)).
Our first criterion for selecting cameras is thus that we need
at least two cameras with similar observations.

Another important insight is that only those observations
are reliable which place the surface near this voxel. For
each voxel, each camera provides an estimate how far this
point is away from the surface and if it is in front of or be-
hind the surface. The further the surface observation is from
the voxel, the less reliable the observation is, because the
camera does not actually see this voxel. This means that the
most reliable observations are the ones that have surface ob-
servations nearest the current voxel. Moreover, on a small
scale there will be no self occlusions and therefore all cam-
eras should have similar observations. These insights lead
us to the following selection of cameras (see also Fig. 3).
Let N be the set of cameras and Nd(x) the cameras with
surface observations at most a distance of d away from x:

Nd(x) = { j ∈ {1, . . . , N} | |tj,x,max − tj,x| ≤ d }(19)
dmin(x)= min

d
s. t. |Nd(x)| ≥ k (20)

where dmin is the minimum distance to select k cameras.
When we estimate labeling probabilities for the voxels

that lie on the surface, the proposition that the cameras se-
lected with (19) with some small k have similar observa-
tions, is always correct in case there are no outliers. Our

1http://www.vision.rwth-aachen.de/projects/
cvpr14
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Figure 3. Camera selection in our method (left) and in [12] (right). The blue areas represent the probability of getting the maximum
score at a position along a ray. Red arrows represent the surface observations. Uniform distributions indicate outliers (o), where the
surface observation is at a random position. Outliers mainly occur in untextured regions and the score will be approximately the same for
all patches along the ray. The position of the maximum score is determined by noise, thus randomly. Inlier cameras (i) have a surface
observation very near the true surface. (left) Our method selects the cameras with the three nearest surface observations (green circle, green
cameras), selecting only one of two outliers in the example. It can be seen that the probability of choosing an outlier becomes smaller for
voxels near the true surface.(right) Kolev et al. [12] select all front-facing cameras, according to an estimated surface normal (cyan arrow).
This means they select all outliers.

criterion is however also robust to outliers since outliers
produce randomly distributed predictions that are thus very
rarely located close to the surface. Hence we can assume
that our criterion is correct in sufficiently many cases in or-
der to provide enough data for the convex optimization.

For voxels x that are far from the real surface this as-
sumption can be violated depending on the properties of the
surface, the camera placements and because of the presence
of outliers. However, as stated above, we need to estimate
accurate probabilities only for the voxels that are near the
actual surface. Therefore we get accurate labeling near the
object surface even though we do not know where this sur-
face is located during the estimation of these probabilities.

The parameter k can be regarded as the minimal number
of cameras that observe a point on the surface. This param-
eter can be selected depending on the number of cameras
that are used for reconstruction. We performed all our expe-
riments with k = 2 and k = 3, with better results achieved
by setting k = 3. Our formulation is stable even when there
are only 2 cameras with similar observation with k = 3.

Monte Carlo Experiment. In order to give a better intu-
ition about the assumptions made above, we performed a
simple experiment in 2D. Consider an object as in Fig. 4,
surrounded by N uniformly spaced cameras (blue circles)
at distance R from the object center and pointing towards
its center. We examine a part of the object, from the cen-
ter of the object to the border of the convex hull (red line
in Fig. 4), and subdivide it into M uniformly distributed
points. For each point on this line, we collect a depth mea-
surement from each camera. In the scope of this experiment
this means we sample a distribution, as described below.

We assume that each depth measurement measures the
true surface with probability (1 − η) or is caused by a
noise process (e.g., due to weak texture) with probabil-
ity η. In the former case, the measurement corresponds to
the true surface depth, plus a Gaussian noise component:
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Figure 4. Object used for Monte Carlo experiment: the yellow area
represents the 2D object and the blue circles indicate the cameras
looking at the object. The points on the red line are examined for
the experiment. The frequency of finding at least two inliers out of
three cameras is displayed in Fig. 5.

dm ∼ dtrue + N(0, σ). In the latter case, it will be uni-
formly distributed on the part of the view ray that lies in-
side the convex hull. We consider all measurements that
provide correct labeling of the point (either background or
foreground) as inliers. It is important to note that even if a
measurement is caused by noise, its outcome may still be
an inlier.

Now we sample from the distributions to obtain a depth
’measurement’ for each camera. We first sample correct or
incorrect cameras with probability 1 − η or η respectively.
Then, depending on the type of the camera, we sample the
surface contact point. Finally, we select the three surface
contact points that are closest to the point of evaluation. If
the majority of those three points are inliers, we consider the
camera selection as correct, else as incorrect. We repeat the
experiment 1,000 times and calculate the frequency of cor-
rect camera selections for each examined point, as shown in
Fig. 5.

As can be seen in Fig. 5, in our approach the probability
of finding at least two correct observations rises near the
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Figure 5. Frequency of finding at least two inliers out of three cam-
eras at different distances from the surface and for different outlier
ratios. The probability of finding at least two correct observations
rises near the true object surface. The small decrease around the
object surface caused by the Gaussian observation noise.

true object surface. The small decrease around the object
surface arises from the fact that correct observations of the
surface are afflicted by a small noise component regarding
the position.

Finally, we need to define labeling costs for a single
camera. For ρijbck(x) and ρijobj(x) we use the costs defined
in [12]. They approximately correspond to the following
Bernoulli distribution:

ρ
ij
bck(x)=−log(µ1{tj,x,max>tj,x}(1−µ)(1−1{tj,x,max>tj,x}))(21)

ρ
ij
obj(x)=−log(µ1{tj,x,max<tj,x}(1−µ)(1−1{tj,x,max<tj,x})) (22)

where

µ = 0.25 +
f(Ci,x,max)

4
, and (23)

f(s) = 1− e−
tan(π

4
(s−1))2

σ2 (24)

is a smooth function that maps from [−1, 1] to [0, 1]. In
all our experiments σ was set to 0.5. In fact, many other
smooth functions with similar properties can be used. In
general we need to map−1 to 1 and 1 to 0 and the values in
between accordingly. For details see [19].

The term 0.25 corresponds to the idea that even high con-
sistency scores may correspond to outliers. The maximum
value of µ = 0.5 means that for low consistency scores, we
simply cannot make a decision and we have equal probabil-
ity for foreground and background.

As mentioned above, we determine costs only for the
points that lie inside the convex hull. For all other points
we set low costs for background and high for object, for
example ρobj(x) = 1 and ρbck(x) = 0.

4.1. Comparison with similar approaches

Kolev et al. [12, 10] represent labeling costs as an aver-
age of costs from a subset of cameras. This subset is chosen
using the estimated surface normal, using only the front fac-
ing cameras (c.f . Fig. 3):

N(x)={i∈{1, . . . , N}|∠(Vi, Nx)≤γmax, i∈Vis(x)}(25)

where Vis(x) denotes the set of visible cameras. Their
approach thus requires the estimation of Nx = ∇d(x)

‖∇d(x)‖
where d(x) is a signed distance function to the surface and
of the visibility set Vis(x). It is necessary to estimate Nx

also for points, that are not actually on the surface, which
leads to a disadvantageous selection of cameras. Moreover
they do not include any outlier handling. Kolev et al. per-
form several estimations of the 3D reconstruction and use
a surface reconstructed in the previous iteration to estimate
Nx and Vis(x) for the next iteration. Therefore, errors from
previous iterations propagate to the following ones. This
leads, among others, to problems reconstructing thin struc-
tures. It is possible to use this approach without precomput-
ing results for sparse resolutions, but this would make the
approach significantly slower. In Section D we will show
that this model produces errors in several difficult regions.

5. Discretization and Optimization
We computed the solution of (29) as in [10] using the

Primal-Dual method. We used a multi-resolution scheme
to increase the speed of computations. However, in con-
trast to [12, 10], no errors or inaccuracies are propagated to
the higher levels, because we only limit the search space,
thus the actual estimation is not affected. In all our expe-
riments the multi-resolution scheme affected only the run-
time, but not the quality of the results. We do not precom-
pute depth images, but compute the depth for each voxel,
thereby avoiding problems with grid size and achieving sub-
voxel precision.

6. Experimental Results
We evaluated our approach on the well-known Middle-

bury datasets DINO and TEMPLE2 [17] and on HEAD3 [4].
Each of these datasets exhibits different features: DINO con-
tains a smooth poorly textured object, TEMPLE is better tex-
tured but contains many small and sharp details. The HEAD
dataset violates the Lambertian assumption due to reflec-
tions, moreover it contains very thin structures that are chal-
lenging to reconstruct.

Middlebury: Figures 1 and 6 show our results for DINO
SPARSE. It can be seen that [12, 13, 7, 6] have problems in

2http://vision.middlebury.edu/mview/
3http://vision.in.tum.de/data/datasets/

3dreconstruction

http://vision.middlebury.edu/mview/
http://vision.in.tum.de/data/datasets/3dreconstruction
http://vision.in.tum.de/data/datasets/3dreconstruction
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Hernández [7] Furukawa [6] ours
Figure 6. Results for Middlebury DINO SPARSE (c.f . Fig. 1).

low textured areas such as the shoulders of the dino, where
many outliers occur. Our method reconstructs these parts
accurately, because our approach properly estimates prob-
abilities even under a significant portion of outliers. Fig. 7
shows the Middlebury evaluation at the time of publication.
The numbers confirm the visual impression. We currently
have the top score among published methods for DINO
SPARSE and are on rank 4 for DINO RING. Table 2 com-
pares our results for TEMPLE SPARSE and TEMPLE RING
to the top scores according to the different measures and to
methods similar to ours [12, 13]. Our method reaches ranks
between 11 and 16 depending on the measure. The reason
for the lower performance is that total variation regulariza-
tion tends to penalize non-smooth areas.

It can be seen that many approaches which perform well
on DINO perform not so well on TEMPLE and vice versa.
The only approach with top results on all datasets is [6],
who use a complicated pipeline, whereas our approach is
simple and essentially parameter free. Our approach got
significantly better results than Kolev et al., although the
approach in [12] uses the normal orientation to calculate
depths and [13] uses a more sophisticated anisotropic opti-
mization. Our results are better than all other approaches
that use total variation for regularization.

Head: Fig. 9 shows our results for the HEAD dataset
compared to [12] and [4]. [12] produces poor results in
many regions and was not able to recover the thin structure.
[4, 11] proposed a more complex framework to deal with
these problems. Our method achieves slightly better results
than [4, 11], although using the simpler framework from
[12], except for our novel labeling cost. This clearly shows
that the improvement is due to our new labeling method.

Runtime: For DINO we used a maximal resolution
of 2563 and for TEMPLE and HEAD 3963. On the CPU
(i7 3770, 4 cores) computation time was less than 2 hours

Figure 7. Middlebury Multi-view Stereo Evaluation [17]. The best
result is marked in red. For DINO SPARSE we have the top result
in terms of completeness. In terms of accuracy our method ties
with Furukawa3 [6]. [21] are listed with a better accuracy, but this
method was not published yet.

TEMPLE RING TEMPLE SPARSE
Acc Comp Acc Comp

Vu [20] 0.45 99.8
Bradley 0.57 98.1 0.48 93.7
Furukawa3 [6] 0.47 99.6 0.63 99.3
Kostrikov (ours) 0.57 99.1 0.79 95.8
Kolev3 [13] 0.7 98.3 0.97 92.7
Kolev2 [12] 0.72 97.8 1.04 91.8

Table 2. Middlebury Multi-view Stereo results [17] for the TEM-
PLE dataset compared to top ranking and similar approaches. At
the time of publication our approach was ranked between 11th and
17th place depending on the dataset and measure. The top ranking
method for TEMPLE RING by Vu et al. [20] produces significantly
worse results on the DINO dataset than our approach. Compared to
Kolevs methods [12, 13] our method performs significantly better.
[8] did not submit to the benchmark.

and for the GPU version at most 20 minutes on a GTX 680.

Limitations and future work: It is worth mentioning
that the used optimization framework operates on a discrete
grid. This fact enforces some restriction on the accuracy of
the reconstructed objects. Our method could be improved
by using more elaborate ways to compute depth, higher res-
olution or using anisotropic optimization from [13].

7. Conclusion

We presented a novel labeling cost for multi-view re-
construction, that is probabilistically derived and becomes
more accurate the closer to the true object surface. Our
method is robust to outliers, simple to implement, general
and it is among the top performing methods in the popular
Middlebury benchmark.
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Affordanzen von Objekten” (LE 2708/1-1) under the D-A-
CH lead agency programme.



ground truth Kolev2 [12] ours
Figure 8. Results for Middlebury TEMPLE RING.

Figure 9. (top) Kolev et al. [12], images from [4] (middle) Cre-
mers et al., images from [4]. [4] does not present results for DINO,
but our reimplementation shows that this approach has problems in
the dino dataset, especially in concave regions. (bottom) our pro-
posed approach performs significantly better than [12] and slightly
better than [4], although we use the simpler optimization frame-
work from [12]. This clearly shows that the improvements reached
by our method are due to our novel labeling term.
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Appendix
This appendix contains four sections. In Section A we

give details about the camera selection process. Section B
contains detailed derivations of the formulas in the paper
and Section C gives more details about the discretization
and optimization used in the framework. In Section D we
show results for more datasets.

A. Effect of the Number of Cameras
Fig. 10 shows our results for DINO SPARSE using k =

1, 2, 3, 4. The results given for 2 cameras look slightly bet-
ter in some concave areas, but the reconstruction for k = 3
cameras is less noisy. The reconstruction using k = 4 cam-
eras has problems in concave areas, where there are fewer
cameras available that are able to see these points. All our
results submitted to the Middlebury evaluation were created
using k = 3.

B. Derivations
Complete derivation of the formula in Section 4:

ρbck(x)− ρobj(x)

= − log
P (B|Ci1 · · ·Cik)

P (O|Ci1 · · ·Cik)

= − log
P (Bi1 · · ·Bik |Ci1 · · ·Cik)

P (Oi1 · · ·Oik |Ci1 · · ·Cik)

= − log
P (Ci1 · · ·Cik |Bi1 · · ·Bik)

P (Ci1 · · ·Cik |Oi1 · · ·Oik)

= − log

k∏
j=1

P (Cij |Bi1 · · ·Bik)

P (Cij |Oi1 · · ·Oik)

= − log

k∏
j=1

P (Bi1 · · ·Bik |Cij )
P (Oi1 · · ·Oik |Cij )

=

k∑
j=1

ρ(Bi1· · ·Bik |Cij )−
k∑
j=1

ρ(Oi1· · ·Oik |Cij )

=

k∑
j=1

ρ
ij
bck(x)−

k∑
j=1

ρ
ij
obj(x)

C. Discretization and Optimization
In our experiments we used the following discretization.

We used a uniform 3-dimensional grid Nx×Ny ×Nz with
the maximal resolution Nmax and define the grid step as

h=max (
|xmax−xmin|

Nmax
,
|ymax−ymin|

Nmax
,
|zmax−zmin|

Nmax
) (26)

and resolutions for all dimensions:

Nx=
|xmax−xmin|

h
,Ny=

|ymax−ymin|
h

,Nz=
|zmax−zmin|

h
.(27)

Function values at the points of the grid are defined as

gi,j,k = g(xmin + hi, ymin + hj, zmin + hk). (28)

The minimum of

E(u)=

∫
V

ρ(x)|∇u(x)|dx︸ ︷︷ ︸
smoothing term

+λ

∫
V

(ρobj(x)−ρbck(x))u(x)dx︸ ︷︷ ︸
labeling cost

(29)

can then be found using the Primal-Dual method. We start
with some initialization u(0) and then for t = 0, 1, . . . we
iterate

ξ
(t+1)
i,j,k = ΠK(ξ

(t)
i,j,k + η∇ū(t)i,j,k) (30)

u
(t+1)
i,j,k = Π[0,1](u

(t)
i,j,k + θ(div(ξ

(t+1)
i,j,k )− bi,j,k)) (31)

ū
(t+1)
i,j,k = 2u

(t+1)
i,j,k − u

(t)
i,j,k (32)

until convergence. b(x) = λ(ρobj(x) − ρbck(x)), ΠX de-
notes the projection into the setX andK = {ξ ∈ R3|‖ξ‖ ≤
ρi,j,k}. In all our experiments η = θ = 0.1. We used∣∣∣∣E(u(t+1))− E(u(t))

E(u(t))

∣∣∣∣ < ε (33)

as a convergence criteria with ε = 10−9.
In order for the algorithm to converge, ∇ui,j,k has to be

defined as forward difference:

∇ui,j,k =

 ui+1,j,k − ui,j,k
ui,j+1,k − ui,j,k
ui,j,k+1 − ui,j,k

 , (34)

and divergence as backward difference:

div(ξi,j,k) =

(ξ
(0)
i,j,k−ξ

(0)
i−1,j,k)+(ξ

(1)
i,j,k−ξ

(1)
i,j−1,k)+(ξ

(2)
i,j,k−ξ

(2)
i,j,k−1).(35)

Also when we search for the depth we discretized the
camera ray in the following way:

tjx,max = arg max
t∈{tj,x+ih−h2 |i∈N}

Sj(rj,x(t)). (36)

This choice of the ray discretization is due to the fact that
we search for the surface not at the grid points but between
them.

Furthermore, since we approximate∇u(x) with forward
differences it is important to make the discontinuity cost
consistent with discretization:

V OTEj(x)=


Sj(x) if rj,x(tj,x,max) ∈

[x, x+h]×[y, y+h]×[z, z+h]

0 otherwise.
(37)

We use a multi-resolution scheme to increase the speed
of computations. However, in contrast to [12], no errors



(a) k = 1, i.e. ≥ 1 camera (b) k = 2, i.e. ≥ 2 cameras (c) k = 3, i.e. ≥ 3 cameras (d) k = 4, i.e. ≥ 4 cameras

Figure 10. Results for DINO SPARSE for different number of cameras.

or inaccuracies are propagated to the higher levels, because
we only limit the search space, thus the actual estimation
is not affected. In all our experiments the multi-resolution
scheme affected only the runtime, but not the quality of the
results. We do not precompute depth images, but compute
the depth for each voxel, thereby avoiding problems with
grid size and achieving sub-voxel precision.

D. Additional Results
In the paper we discussed results for the HEAD

dataset [4] because it provides some interesting special
cases for multi-view reconstruction. We also evaluated our
approach on other datasets from that repository and include
the results in Fig. 11.



Figure 11. Results for the datasets BEETHOVEN, BUNNY, PIG [4].


