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Abstract. We systematically investigate how geometric constraints can
be used for efficient sliding-window object detection. Starting with a
general characterization of the space of sliding-window locations that
correspond to geometrically valid object detections, we derive a general
algorithm for incorporating ground plane constraints directly into the de-
tector computation. Our approach is indifferent to the choice of detection
algorithm and can be applied in a wide range of scenarios. In particular,
it allows to effortlessly combine multiple different detectors and to auto-
matically compute regions-of-interest for each of them. We demonstrate
its potential in a fast CUDA implementation of the HOG detector and
show that our algorithm enables a factor 2-4 speed improvement on top
of all other optimizations.

1 Introduction

Object detection has become a standard building block for many higher-level
computer vision tasks. Current detectors reach sufficient detection accuracies [1]
to support complex mobile scene analysis and multi-person tracking applications
[2–4], and there is a strong call to make this performance available for automotive
and robotics applications.

Even though first CPU [5] and GPU [6, 7] implementations of object detec-
tors have already been proposed that operate at several frames per second, the
pressure to develop more efficient algorithms does not subside. This is because
object detection is only part of a modern vision system’s processing pipeline and
needs to share computational resources with other modules. In addition, prac-
tical applications often require not just detection of a single object category,
but of many categories seen from multiple viewpoints [8]. Consequently, efficient
object detection is a very active field of research. Many approaches have been
proposed in recent years to speed up detection, including detection cascades [5,
9, 10], efficient approximative feature representations [11, 12], and alternatives to
the sliding-window search strategy [13].

The use of scene geometry enables computational speedups which are or-
thogonal to the approaches mentioned above. It is well-known that in many
street-scene scenarios, objects of interest can be expected to occur in a corridor
of locations and scales on the ground plane [14, 3]. Approaches targeted at auto-
motive scenarios have used such constraints for a long time. Surprisingly, though,
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the employed geometric constraints are often defined rather heuristically, sam-
pling a few 3D locations and scales to be processed by the detector [15]. Such
an approach is feasible for single-class detection scenarios with limited camera
motion, but it quickly becomes impractical when multiple object class detectors
shall be combined or when the camera may undergo stronger motion (e.g . for
automatic sports video analysis or pan/tilt/zoom surveillance cameras).

In this paper, we derive a general solution for this problem that is applicable
to any camera, any ground plane, and any object detector or combination of
detectors (as long as perspective distortion is small enough such that objects can
still be detected upright in the image). Starting from geometric principles, we
analyze the space of sliding-window locations that correspond to geometrically
valid object detections under the constraints of a ground plane corridor. We
show that for a given detector scale, this space corresponds to an image region
that is bounded by two parabolas, and we give a practical formula to efficiently
compute the corresponding ROI. Based on this, we propose a sliding-window
algorithm that touches the minimal set of pixels to return all valid detections.

Our approach is flexible. It does not rely on a precomputed ground plane
corridor, but provides a principled algorithm to recompute the ROI for every
frame based on an estimate of the camera motion. The only information it
requires is the current ground plane homography, the projection of the ground
plane normal vector (both of which can be obtained either by structure-from-
motion [3] or homography tracking [16]), the height of the detection bounding
box in the image, and the real-world size range of the objects of interest.

In particular, this makes it possible to combine multiple object detectors with
minimum effort. It does not matter whether those detectors have been trained
on different resolutions [17] or for different viewpoints or real-world object sizes
[18]. Everything that is needed is each detector’s bounding box height in the
image and the target object’s real-world size range. We demonstrate this by
performing experiments for single-class pedestrian detection [19] and for multi-
viewpoint car detection (similar to [3, 18]). In all cases, we show the validity of
our approach and quantify the resulting detector speed-ups. In order to perform
a fair quantitative evaluation of those speed-ups, it is important to apply our
algorithm to an already efficient detector implementation. We therefore combine
it with a fast CUDA implementation of HOG, which closely follows the original
HOG pipeline from [19]. Our resulting groundHOG pedestrian detector runs at
57fps for a street scene scenario without loss in detection accuracy.

Related Work Several recent approaches have been proposed to integrate scene
geometry and detection [14, 4, 20–22]. Their main goal is to increase precision
by selecting consistent detections. However, scene geometry offers additionally a
potential speed increase, if one limits the detector’s search region. Many automo-
tive applications therefore employ a fixed, precomputed ground plane corridor
(e.g . [2]), which is deliberately left a bit wider than necessary in order to com-
pensate for changing camera pitch. Other approaches try to stabilize the camera
image by detecting the horizon line [23] or fit a ground plane to stereo measure-
ments [15]. A common approach is to then sample a fixed set of ROIs in 3D
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and to process the corresponding image regions with an AdaBoost classifier [15].
Such an approach is possible when dealing with a single object category, but
it quickly becomes both inefficient and cumbersome when multiple categories
with different real-world sizes shall be detected simultaneously. Such a scenario
requires a more principled solution.

From the computational side, there are two major cost items in the design
of a sliding-window classifier: the evaluation of the window classifier itself and
the computation of the underlying feature representation. The success of the
Viola-Jones detector [5] has shown that for certain object classes such as faces
or cars, relatively simple Haar wavelet features are sufficient. This has been used
in the design of AdaBoost based detectors which evaluate the features for each
test window independently. For more complex object categories, Histograms of
Oriented Gradients (HOG) [19] have become the dominant feature represen-
tation [1]. Unfortunately, HOG features are expensive to compute. Looking at
highly optimized CUDA implementations of the HOG detection pipeline [6, 7],
they typically account for 60-70% of the total run-time of a single-class classi-
fier. It is therefore more efficient to precompute the features and to reuse them
for different evaluation windows [24, 25], as is common practice in the design
of SVM-based detectors [19, 18]. When combining several classifiers for different
object aspects or categories, the relative importance of the shared feature com-
putation decreases, but it still imposes a lower bound on the effective run-time.

In this paper, we therefore address both problems together: (1) Our proposed
algorithm automatically computes the ROIs in which each employed classifier
needs to be evaluated for each detection scale, such that it only considers geo-
metrically valid detections. (2) In addition, it returns the minimal set of pixels
that need to be touched for all detectors together, so that feature computation
can be kept efficient.

The paper is structured as follows. We first derive a general formulation for
the problem and analyze the space of sliding-window locations that correspond to
geometrically valid object detections (Sec. 2). Based on this analysis, we propose
a general algorithm for incorporating ground plane constraints directly into the
detector design (Sec. 3). Finally, Sec. 4 presents detailed experimental results
evaluating the approach’s performance in practice.

2 The Space of Valid Object Detections

The central question we address in this paper is: What is the space of all valid
detections? That is, if we only consider detection bounding boxes that correspond
to objects on the ground plane whose real-world size is within a range of Sobj ∈
[Smin , Smax ], what is the region in the image in which those bounding boxes can
occur? More concretely, we consider a sliding-window detector that processes
the image at a discrete set of scale levels. At each scale, a fixed-size bounding
box of height simg pixels slides over the image. We are interested in the positions
of the bounding box foot point yb that lead to valid detections.
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Geometric Derivation. In the following, we address this problem in the
general case. We use the notation from [26], denoting real-world quantities by
upper-case letters and image quantities by lower-case letters. Let us assume that
we have a calibrated camera with projection matrix P = K [R|t] watching a scene
containing the ground plane π with normal vector N(Fig. 1). We can define a
local coordinate system on the ground plane by an origin Q0 and two orthogonal
basis vectors Q1,Q2. The (homogenous) world coordinates X = [X,Y, Z, 1]

T
of

a point U = [U, V, 1]
T

on the ground plane are then given by the transformation

X = QU =

[
Q1 Q2 Q0

0 0 1

]
U (1)

and their projection on the image plane is given by the homography Hπ = PQ.
We now want to find an object with real-world height Sobj that is located on

or above ground plane position U and which extends from height Sb to height
St = Sb + Sobj . The projections x = [x, y, w]

T
of the object’s bottom and top

points Xb and Xt into the image are given by

xb = PXb = P (QU + SbN) = HπU + SbPN (2)

xt = PXt = P (QU + StN) = HπU + StPN. (3)

Writing hT
j = [hj1, hj2, hj3] for the row vectors of Hπ and using n = [n1, n2, n3]

T
=

PN, we can compute the y coordinates of the corresponding image pixels as

yb =
hT

2 U + Sbn2

hT
3 U + Sbn3

, yt =
hT

2 U + Stn2

hT
3 U + Stn3

. (4)

We can now express the constraint that the projected object height in the image
should exactly correspond to the height of the sliding window given by simg :

yt = yb + simg (5)

hT
2 U + Stn2

hT
3 U + Stn3

=
hT

2 U + Sbn2 + simg

(
hT

3 U + Sbn3

)
hT

3 U + Sbn3(
hT

2 U+Stn2

) (
hT

3 U+Sbn3

)
=
(
hT

2 U+Sbn2+simg

(
hT

3 U+Sbn3

)) (
hT

3 U+Stn3

)
The set of all ground plane locations U for which this constrained is fulfilled is
then given by the conic section C with

UTCU=0 (6)

[
U V 1

]h3h
T
3 +

0 0 a
0 0 b
a b c+ d

UV
1

=0 , where

[
2a 2b c

]
=

1

simg

[
(St − Sb)(n3h

T
2 − n2h

T
3 ) + simg(St + Sb)n3h

T
3

]
(7)

d = StSbn
2
3 . (8)
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It can easily be seen that the discriminant of the conic (i.e., the determinant
of its upper-left 2 × 2 matrix) is 0, since h3h

T
3 has only rank 1. The equation

therefore represents a parabola, whose projection into the image is given by

xTDx = xTH−Tπ CH−1
π x = 0 . (9)

Analysis. In our sliding-window detection scenario, we are interested in finding
objects which have a real-world height in the range Sobj ∈ [Smin , Smax ]. From
the above derivation, it follows that the only windows at which those objects
can be found are located in the space between the two curves defined by D for
St = Sb + Smin and St = Sb + Smax . In the following, we analyze the detailed
shape of those curves further. If the camera viewing direction is exactly parallel
to the ground plane, then eq. (9) degenerates and defines a pair of lines (one of
which will be behind the camera). In order to analyze the remaining cases, we
perform the variable substitution[

Ū
V̄

]
=

[
h31 h32

−h32 h31

] [
U
V

]
(10)

and obtain the ground plane locations of the curve points on the parabola

V̄=
h2

31+h2
32

2(h32a−h31b)
Ū2 +

h33(h2
31+h2

32)+h31a+h32b

h32a−h31b
Ū +

(h2
33+c+d)(h2

31+h2
32)

2(h32a−h31b)
.

Of particular interest is the factor in front of the quadratic term Ū2. In a more
detailed analysis we found that the factor is negligible for most practically rele-
vant cases in automotive or mobile robotics scenarios, unless a wide-angle camera
is used. This means the parabola can be approximated by a line.

Obtaining the Ground Constraints. In the above derivation, we assumed
an internally and externally calibrated camera, as well as knowledge about the
ground plane. In an automotive or mobile robotics setup, this information can
be obtained by structure-from-motion and dense stereo measurements (e.g . [3,
4]). However, looking at the components of D in eq. (9), it becomes clear that
the curve is already fully specified if we know the ground plane homography Hπ
and the projection of the normal vector n = PN. This makes the approach also
attractive for other applications, such as sports broadcasts or surveillance, where
landmark points on the ground plane can be tracked to maintain calibration.

The homography Hπ can be estimated from at least four image points with
known ground plane coordinates (e.g . using the DLT algorithm [26]). The pro-
jection of the normal can also easily be obtained from two or more points with
known heights above the ground plane. Let Xi be a point with height Si above
its known ground plane footpoint Ui. According to eq. (4), the corresponding
image coordinates are given by

xi =
hT

1 Ui + Sin1

hT
3 Ui + Sin3

, yi =
hT

2 Ui + Sin2

hT
3 Ui + Sin3

. (11)
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Fig. 1. (left) Visualization of the employed coordinate system and notation. (middle
& right) Ground plane corridor at scales σ = 1.75 (middle) and σ = 0.65 (right). Two
valid detections within the corridor are shown. The selected region-of-interest (ROI) is
delimited by the uppermost and lowermost lines.

From this, we get an equation system, with two constraints per measured point:−Si 0 Sixi
0 −Si Siyi
...

...
...


n1

n2

n3

=

(hT
1 − xihT

3 )Ui

(hT
2 − yihT

3 )Ui

...

 (12)

An=b , (13)

resulting in the least-squares solution n = A†b if at least two points are given.

Extension to Multiple Scales. Until now, we have assumed that the image
is scanned with a fixed-size detection window with height simg . In order to
detect objects at different scales, a sliding-window detector processes downscaled
versions of the input image at fixed scale intervals σ. We achieve the same effect
by adapting the internal camera calibration matrix K. If we assume a camera
with zero skew, this results in the following matrix for scale level k:

Kk =

αx/σ
k 0 x0/σ

k

0 αy/σ
k y0/σ

k

0 0 1

 . (14)

Propagating this change to the ground plane homography and the projection of
the normal vector, we can see that those entities are obtained as

Hπ,k =

hT
1 /σ

k

hT
2 /σ

k

hT
3

 , nk =

n1/σ
k

n2/σ
k

n3

 . (15)

3 Detection Algorithms

Putting all the pieces together, we can now formulate a general algorithm for ge-
ometrically constrained object detection, as shown in Alg. 1. For each scale level,
we first compute the corresponding D matrices for the minimum and maximum
object size. We then create a rectangular ROI by inserting the x coordinates of
the left and right image borders into eq. (9) and taking the minimum and maxi-
mum of the resulting y coordinates. As derived above, only the window locations
inside this region correspond to geometrically valid object detections. Since we



Efficient Use of Geometric Constraints for S.-W. Object Detection 7

Algorithm 1 The proposed algorithm
Compute Hπ and n.
for all scale levels k do

Compute Hπ,k and nk according to eq. (15).
Compute DSmin

and DSmax according to eq. (9) using Hπ,k.
Set xmin and xmax to the left and right image borders.
Compute ymin and ymax by solving eq. (9) for xmin and xmax using DSmin

and DSmax .
Process the ROI (xmin , ymin , xmax , ymax ) with the detector:
• Only up-/downscale the image pixels inside the ROI.
• Only compute features inside the ROI.
• Only apply the sliding-window classifier to the window locations in the ROI.

end for

compute the region for each scale independently, this allows us to restrict all
rescaling and feature computation steps to those regions.

Multi-Class/Multi-viewpoint Detection. A straightforward extension to
multiple classes or viewpoints of objects is to apply several specialized classifiers
on the precomputed features. This approach can be easily augmented with our
geometric constraints formulation. For each individual classifier one precomputes
the ROI. The HOG features are then computed for a minimal region encompass-
ing all ROIs that are active at each scale. Each classifier can then be evaluated
on its respective region. Note that only the height of each object class and the
classifiers’ window sizes are necessary. No error-prone manual process is required.

Different Detector Resolutions and Part-based Models. A common me-
thod to improve detection performance is to use specialized classifiers for distinct
scale ranges [10]. Our formulation naturally adapts to the ROI multi-resolution
case. Here, the benefit is that the system can determine automatically if at some
scale only a subset of classifiers can return viable detections. It is not necessary
to fine tune any further parameters. If no valid ROI is found for a classifier, it is
automatically skipped for the current scale. Similarly, our algorithm can be used
with the popular part-based detection approach by Felzenszwalb et al . [18].

4 Experimental Results

We quantitatively evaluate our proposed ground plane constraints. In order to
demonstrate the advantage our algorithm can achieve on top of all other opti-
mizations, we combine it with a highly optimized CUDA implementation of the
HOG detector (in the following called cudaHOG). Our code is publicy available
at http://www.mmp.rwth-aachen.de/projects/groundhog.

Baseline Detection Performance. First, we establish that our baseline sys-
tem cudaHOG achieves the same detection performance as two other published
HOG-based systems: the original Dalal HOG Detector [19] and fastHOG [7].
Fig. 3(left) compares the performance on the INRIA pedestrian dataset [19].
We plot recall vs. false positives per image (fppi) using the standard PASCAL
VOC criterion [27]. The plot shows that our baseline cudaHOG implementation
is competitive.

Effect of Ground Plane Constraints. Next, we investigate the effects of
the ground plane constraints in detail. For the experiments in this section, we
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Fig. 2. cudaHOG vs. groundHOG for scale steps 1.05 (left) and 1.20 (right). In both
cases, we plot the performances when starting at scale 1.0 and when upscaling the
image to twice its original resolution (scale 0.5). For the upscaled version we also plot
the performance for a bounded ROI width of maximal 600 pixels.

use the Bahnhof sequence from the Zurich Mobile Pedestrian corpus [4], and
employ ground planes estimated by SfM. The sequence consists of 999 frames of
size 640×480, containing 5,193 annotated pedestrians with a height > 60 pixels.

We start by evaluating computational effort on the first 100 frames. We vary
the start scale and ground plane corridor size and report the number of blocks
and SVM windows evaluated, as well as the average run-time per frame (Tab. 1).
Our baseline cudaHOG runs at roughly 22 fps for the start scale 1.0. By adopting
a ground plane corridor of [1.5m, 1.9m], we can more than double the speed to
57 fps.

In addition, we investigate how detection performance is affected by the start
scale. As observed by several authors [1, 3, 4], the HOG detection performance
can be considerably improved by upscaling the input images to twice their origi-
nal resolution (start scale σ = 0.5 instead of σ = 1.0). The results shown in Fig. 2
verify this performance improvement (e.g ., recall increases by 10% at 0.2 fppi).
Usually, the upscaling step comes at considerable additional cost. groundHOG
can achieve significant computational savings here, since it can limit the upscal-
ing operation to a (relatively small) band around the horizon line. As Tab. 1
shows, groundHOG can still process the upscaled images at 20 fps (23 fps if the
width of the detection corridor is also bounded to 600 pixels), effectively the
same run-time as the unconstrained detector on the original images. Hence, our
algorithm achieves significantly higher recall in the same computation time.

Finally, we investigate the effect of increasing the scale step factor σ from its
default value of 1.05 to 1.20 (as also explored in [6]). As shown in Tab. 1 and
Fig. 2, this results in a significant speedup to 222 fps without and 87 fps/104
fps with upscaling at a moderate loss of recall (about 5% at 0.5 fppi).

Multi-Class/Multi-viewpoint Detection. As a proof-of-concept experiment
for multi-viewpoint detection, we have trained a basic car detector for five view-
points. We perform a bounding box based non-maximum-suppression step on the
individual detector outputs to combine them into a single detection response.
While this basic setup cannot achieve the absolute detection rates of more so-
phisticated setups, it is suitable to demonstrate the effects of a ground plane
constraint. We evaluate on the Leuven sequence [3] that contains 1175 images
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scale step 1.05 scale step 1.2
start 1.0 start 0.5 start 1.0 start 0.5

cuda ground cuda ground max w cuda ground cuda ground max w
HOG blocks 53,714 21,668 215,166 52,230 40,781 16,305 6,334 65,404 15,142 11,460
SVM windows 31,312 4,069 162,318 11,132 8,208 9,801 1,243 50,110 3,289 2,341

run-time (ms) 43.78 17.28 183.60 49.80 43.49 12.44 4.50 50.35 11.45 9.58
run-time (fps) 22 57 5 20 23 80 222 19 87 104

Table 1. HOG blocks & SVM windows evaluated per frame on the Bahnhof sequence
when applying groundHOG with the corridor [Smin , Smax ] = [1.5m, 1.9m]. max w refers
to a maximal ROI width of 600 pixels. (CPU: Core2Quad Q9550, GPU: GTX 280)
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Fig. 3. (left) Baseline comparison on INRIAPerson dataset. (right) Results of a 5-view
car detector on Leuven sequence, demonstrating the performance gains through our
geometric constraints. The individual results are merged by a simple NMS scheme.

at 720 × 576 pixel resolution. Fig. 3 shows that detection performance benefits
significantly, as fewer false positives are encountered by groundHOG. When in-
corporating the ground plane constraints, detection takes only 94 ms compared
to originally 339 ms, representing a 3.6-fold speedup.

5 Conclusion

We have systematically explored how geometric ground plane constraints can be
used to speed up sliding-window object detection. As a result of this analysis,
we have presented a general algorithm that enforces a detection corridor, while
taking maximum advantage of the sliding window detection scheme. We have
demonstrated this approach in a CUDA implementation of the HOG detector.
As verified in our experiments, the resulting groundHOG algorithm achieves at
least the same detection accuracy as the original HOG detector in a range of
detection scenarios, while allowing significant speedups.
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