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Datasets and evaluation metrics: We evaluate our method on S3DIS [2] and virtu-
al KITTI [3] in terms of mean IoU, overall pixel accuracy and average class accuracy. 
Both datasets include per point semantic class annotations.

Deep learning approaches have made tremendous progress in the field of semantic 
segmentation over the past few years. However, most current approaches operate in 
the 2D image space. Direct semantic segmentation of unstructured 3D point clouds 
is still an open research problem. The recently proposed PointNet architecture pres-
ents an interesting step ahead in that it can operate on unstructured point clouds, 
achieving decent segmentation results. However, it subdivides the input points into a 
grid of blocks and processes each such block individually. In this paper, we investigate 
the question how such an architecture can be extended to incorporate larger-scale 
spatial context. We build upon PointNet and propose two extensions that enlarge 
the receptive field over the 3D scene. We evaluate the proposed strategies on chal-
lenging indoor and outdoor datasets and show improved results in both scenarios.
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 · We present two mechanisms that increase the spatial context for semantic seg-
mentation of 3D point clouds: input- and output-level context.

 · We verify experimentally that our proposed extensions achieve improved results on 
challenging indoor and outdoor datasets.

 · We show competative results using only geometric input features (no color).
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 · Main Idea of PointNet: Compute a global feature summarizing a set of unordered 
point features using max-pooling (M).

 · Prediction is based on point features representing local context concatenated (C) 
with the global feature representing neighboring context.

 · Neigborhood is limited spatially up to a certain radius.
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