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Abstract

In this paper we propose a novel approach to iden-
tify and label the structural elements of furniture e.g.
wardrobes, cabinets etc. Given a furniture item, the sub-
division into its structural components like doors, drawers
and shelves is difficult as the number of components and
their spatial arrangements varies severely. Furthermore,
structural elements are primarily distinguished by their
function rather than by unique color or texture based
appearance features. It is therefore difficult to classify
them, even if their correct spatial extent were known. In
our approach we jointly estimate the number of functional
units, their spatial structure, and their corresponding labels
by using reversible jump MCMC (rjMCMC), a method well
suited for optimization on spaces of varying dimensions
(the number of structural elements). Optionally, our system
permits to invoke depth information e.g. from RGB-D
cameras, which are already frequently mounted on mobile
robot platforms. We show a considerable improvement over
a baseline method even without using depth data, and an
additional performance gain when depth input is enabled.

1. Introduction

Visual understanding of indoor scenes is a crucial task
in robotics. Accurate semantic labeling and object clas-
sification provides rich information about the complex in-
door environment, which is crucial for navigation, manip-
ulation, and interaction with the scene. Most methods fo-
cus on coarse scene understanding. They identify walka-
ble surfaces [11] and objects [8], estimate the 3D geometry
[41, 25, 33], and provide rough labels for the different enti-
ties [37].

Only a limited amount of work aims at a more detailed
object level segmentation [26]. Such a detailed analysis of
the object semantics will allow autonomous robots to per-
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Figure 1: Semantic segmentation of modular furniture in
RGBD images: Left column is the input front face of the
furniture and right column is the segmentation output (door,
drawer and shelf).

form more advanced, human-like interactions in indoor en-
vironments, like arranging groceries in the kitchen, sorting
books on the book shelves, opening/closing a locker etc.
These tasks require a detailed structural inference and the
classification of the spatially variable parts of the furniture.

Our segmentation problem differs from conventional se-
mantic segmentation of the entire scene. A noisy, pixel-
wise segmentation would not be sufficient in order to infer
the structural information that is required for an interaction.
Furthermore, as also noted by Zheng et al. [40], traditional
visual cues such as color and texture are not particularly
useful for labeling furniture items due to their often uni-
formly colored and textured appearance.

In this paper, we present an approach to perform fine
grained segmentation of modular furniture like cabinets,
wardrobes, cupboards, or lockers into their functional units,
namely drawers, doors and shelves. These furniture items
follow a modular design as their entire volume is composed
of a variable number of functional units, the so called inter-
action elements (IEs) (see Figure 1). Additionally, most fur-



niture items are not only rectangular as a whole, but also the
internal structure follows a rectangular subdivision scheme.
We exploit these modular properties in our optimization and
propose a two stage segmentation approach. In the first
stage we generate an overcomplete set of rectangle propos-
als such that each true IE is represented by a rectangle in
the set. A rectangle proposal consists of the rectangle it-
self, and a class label distribution for that rectangle. In the
second stage we select a subset (with unknown size) of the
proposals that represent our final semantic segmentation of
the furniture into interaction elements. We formulate the
proposal selection as rjMCMC based energy minimization
problem.

After the advent of 3D cameras, many previously pro-
posed RGB based methods are improved by using addi-
tional depth information [13, 33, 30]. Undoubtedly, depth
provides powerful additional information when estimating
the real object size or geometry of the scene. We show
that using RGB-D images also improve the segmentation of
furniture significantly. Our method is able to include such
depth data when available.

Contributions.

1. We propose a novel rjMCMC based furniture segmen-
tation method which achieves state-of-the-art results.
Unlike [26], our method allows to predict structure and
labels jointly within a single optimization.

2. We introduce a new data-driven augmentation method
to generate rectangle proposals leading to a significant
higher recall, i.e. the set of IE proposals better reflect
the true IEs.

3. We present a new 3D furniture dataset with corre-
sponding ground truth annotations.

2. Related Work

Segmentation approaches. Segmentation can be per-
formed with or without using the semantic information. Al-
gorithms that do not invoke semantic information, cluster
the image pixels based on feature similarities [2, 14, 24, 4].
The resulting segments naturally do not carry any semantic
label information. A wide range of segmentation methods
also aim to get semantic information from the segments,
e.g. by classifying grouped pixels using supervised learn-
ing techniques [5]. Alternatively, semantic knowledge may
influence the segmentation itself [29, 1, 15, 16]. Most in-
stance segmentation methods are based on combining an
object detector output/region proposals with segmentation
[10, 6]. Such approaches are difficult to apply in our case,
as we exhibit a high inter class similarity and object detec-
tors do not capture relationships between the instances. Ap-

proaches based on Hough voting [27] struggle with classes
of unconstrained size and aspect ratios. Finally, approaches
based on deep learning require significantly more data to
train.

Indoor scene parsing approaches. The majority of man-
made objects can be modeled as a combination of differ-
ent geometric shapes [9, 39]. Han et al. [9] and Zhao et
al. [39] advances the pixel grouping to higher level of para-
metric shape clustering in a hierarchical manner, such that at
each level the corresponding cluster represents a predefined
geometric shape. These approaches are very successful at
capturing geometric structure but they lack semantic label
information. Gupta et al. [8] utilizes general and object-
class specific appearance features as well as contextual in-
formation e.g. object boundaries for semantic segmentation.
Their approach mainly focuses on local patterns rather than
a global structure.

Facade parsing approaches. Parsing building facades
into the architectural elements e.g. windows, walls, roof and
parsing furniture into interaction elements e.g. door, drawer,
shelf appear quite similar. Both contain rectangular grid-
like structures which have to be determined. The Facade
parsing problem is tackled from different directions. Müller
et al. [22] detect repetitive structures in large, grid like fa-
cades in order to obtain meaningful hierarchical facade sub-
divisions. Several methods exploit high-level information
in the form of shape grammars [32] combined with low-
level appearance cues derived from an image [36, 34, 28].
The underlying grammars can either be designed manu-
ally [20] or learned from data [18]. Mathias et al. [19] com-
bine low-level, mid-level and high-level cues in form of a
pixel-wise semantic segmentation, the output of an object
detectors, and a shape grammar respectively. These shape
grammar based techniques assume a strong, style specific
structure and do not generalize well to different architec-
tural styles [21]. In case of furniture parsing, we would
require a very generic grammar, which could only weakly
impose a structural layout. In case of facade parsing, ar-
chitectural elements show significant inter-class variance in
color and texture and often exhibit regular and repetitive
structure. Both of these properties are absent in case of fur-
niture parsing problems.

Furniture Parsing. Lim et al. [17] addresses the problem
of instance level furniture detection and pose estimation by
using a predefined 3D CAD model. The approach targets
to find the same model within a 3D scene. Our goal is to
parse any modular furniture. Pohlen et al. [26] addresses
the problem of furniture segmentation from a single image.
A huge set of possible furniture elements is generated from
the input image; the final segmentation results from select-
ing a suitable element subset. Our approach closely follows
the method described in [26]. We adopt the described ap-



pearance model by incorporating depth information which
improves the label inference performance by almost 33%.
As the number of furniture elements is variable, [26] per-
forms optimization independently for various possible num-
bers of elements using MCMC. In order to find the best so-
lution among the different Markov chains, the most modular
solution is chosen. In contrast to this we perform a single
multi objective optimization using a trans-dimensional vari-
ant of Markov chain namely rjMCMC [7]. This seamlessly
combines the optimization of correct number of parts, their
spatial arrangements, and the class label inference. Our ap-
proach therefore reduces overall computational cost and re-
sults in faster convergence.

Varying dimension problems. There are a number
of challenging inference problems i.e. segmentation [35],
multi-object tracking [31], scene parsing [38] etc. where the
dimension of the model of inference is not fixed. Usually,
Bayesian approaches are suitable for such problems. Re-
versible jump MCMC is capable of computing such infer-
ence by jumping between subspaces of differing dimension-
ality. Tu et al. [35] propose a data driven MCMC for im-
age segmentation. Here the Markov chain dynamics is gov-
erned by importance probabilities designed using the image
data. There are seven image models for intensity and color
which describe the segments. The solution is obtained by
maximizing the joint posterior of these segments using the
defined image models. Zhao et al. [38] propose a scene
parsing approach using a stochastic grammar model. This
model is a hierarchical structure which includes scene cate-
gory, functional groups, functional objects, functional parts,
and 3D geometric shapes in a top down fashion. Starting
from extracted 3D shapes from the image, the objects at
every level are clustered according to their function and ap-
pearance in a bottom up fashion using rjMCMC. Smith et
al. [31] developed the rjMCMC particle filter framework for
robust tracking of a variable number of targets. In each of
the discussed methods, a set of four reversible jump moves
such as birth, death, update, and swap are designed to search
though trans-dimensional space. The different move types
are selected based on a time varying prior which depends
on the previous state of the Markov chain.

3. Proposed Approach

In the first stage of the algorithm we generate an over-
complete set of proposals with the goal to generate at least
one matching proposal for each true interaction element
(IE) of the furniture item. Having an over-complete set of
proposals allows us to compute the semantic segmentation
by performing subset selection. This is formulated as an
energy minimization problem in a high dimensional state
space detailed in Section 3.2.

3.1. Proposal Generation

We assume that the front face of the furniture item has
already been extracted and rectified during pre-processing
(e.g. using [12]). As such our search space is restricted to
axis-aligned, rectangular IEs. Following the approach in
[26] first we detect rectangles from the edge map and then
assign each IE candidate a weight and a class label proba-
bility.

3.1.1 Rectangle Detection

We follow two strategies to generate a multitude of rectan-
gles that serve as IE candidates.

Rectangle Set Generation by Pohlen et al. [26]. A seman-
tic edge map is generated from the image in a supervised
manner using random forests [3]. In the edge map horizon-
tal and vertical lines are detected through Hough transform.
Rectangle hypothesis are then generated as a convex hull
formed by iteratively sampling two horizontal and two ver-
tical lines. A hypothesis is accepted as a valid rectangle if
the maximum distance from any boundary pixel of the rect-
angle to the closest edge pixel in the image is below the set
threshold. This procedure leads to a good initial set of pos-
sible IEs, but needs further refinement which we achieve by
the following augmentation method.

Rectangle Set Augmentation. Due to complex textures,
bad lighting conditions, or skewed perspective angles, the
initial strategy for the rectangle set generation is insuffi-
cient. We propose to extend the set of rectangles including
splitting and merging operations on the existing rectangle
set. As an additional benefit, this step of proposal set aug-
mentation mimics costly online data-driven split and merge
moves usually defined in rjMCMC optimizations.

To keep the problem tractable we cluster the initially de-
tected rectangles such that all rectangles of a cluster overlap
(IoU) by more than 95% and only keep one representative
rectangle of each cluster. We then perform two types of
rectangle set augmentations:

• Split augmentation divides a rectangle into two rect-
angles. We iterate over each rectangle in the proposal
pool. First, the horizontal and vertical edge pixel his-
togram are computed. A rectangle is subdivided into
two new rectangles at every peak in edge histogram
greater than a predefined threshold.

• Merge augmentation combines pairs of rectangles.
All neighboring rectangles of nearly the same height
are merged horizontally, rectangles of similar width
vertically.

All newly generated rectangles are only added to the pool
if they do not considerably overlap with already existing
rectangles (using a 85% IoU threshold).



Inclusion of Depth Information To further improve IE de-
tection recall, our method is able to include depth informa-
tion in this stage of the algorithm. To that end we extended
the semantic edge detection forest to learn semantic edges
based on depth maps. We fuse the resulting edge with the
initial edge map via the pixel-wise or operator. Although
we will incorporate depth information throughout our al-
gorithm, we are able to disable depth and roll back to an
RGB-only setup.

3.1.2 Rectangle Weighting

Given the image Im and rectangle r, the weight of the IE
with label l ∈ {door, drawer, shelf} is quantified by the
conditional probability as in Equation 1.

p(l | r, Im)︸ ︷︷ ︸
Label

posterior

∝ p(Im | r, l)︸ ︷︷ ︸
Appearance
likelihood

p(r | l)︸ ︷︷ ︸
Shape
prior

p(l)︸︷︷︸
Label
prior

(1)

Due to a high visual inter-class similarity between the IEs
of a single furniture instance, color and texture appearance
cues are not sufficiently discriminative. We therefore ex-
ploit a set of common traits that can be observed for IEs of
the same class. These traits are the rectangle’s aspect ratio,
the position of the handle, and the edge profile.

Following Pohlen et al. [26], we learn a codebook rep-
resentation over J codewords p(1,l), ..., p(J,l) ∈ RM2

based
on the M ×M rescaled gradient magnitude image for each
of the classes independently. The objective for the train-
ing procedure is to approximate each training element as a
linear combination of codebook entries. Depending on how
well a new rectangle defined over an image region fr,Im can
be expressed by any of the learned codebooks, the appear-
ance likelihood is defined as follows:

p(Im | r, l) ∝ max
π∈[0,1]J∑

j πj=1

exp

−
∥∥∥∥∥∥fr,Im −

J∑
j=1

πjp
(j,l)

∥∥∥∥∥∥
2

2

 ,

(2)

where π1, . . . , πJ are the codebook coefficients.
The shape prior is estimated with a probabilistic support

vector machine using relative height, width and aspect ratio
as features.

Finally, the label prior represents the observed label fre-
quencies in the training data.

Additional details can be found in [26].

Inclusion of Depth Information From the results in [26] it
is apparent that proposed weighting scheme works well for
doors and drawers but suffers a high confusion between the
drawer and the shelf class. While these classes are difficult
to differentiate visually, depth cues should clearly improve
performance. Here, we incorporate depth information over

the shape prior term by using the relative depth of each rect-
angle compared to the front face of the furniture, and the
aspect ratio of depth in relation to width and height.

3.2. Proposal Selection

From the set of detected rectangles we wish to choose a
subset of rectangles that best explains the image Im. Let
P := {(rk, lk)|k = 1, . . . ,K} be a subset of K rectangles.
Our goal is to find the best subset of rectangles Ŝ ⊂ P such
that

Ŝ = argmax
Ŝ

p(Ŝ|Im). (3)

We jointly estimate the true number of IEs K, their spa-
tial arrangements rk and their respective class labels lk. The
optimization is formalized as a multi-objective optimization
problem:

p(S|Im) ∝ e−Etotal(S), (4)

where

Etotal(S) = Ec(S) + Eo(S) + Ew(S) + (5)
Els(S) + Elv(S) + Es(S)

Maximizing p(S|Im) is equivalent to minimizing the en-
ergy of Equation 5. Each energy term in Etotal(S) captures
a dedicated property as described in the following.

The Cover energy Ec secures a maximum coverage of the
area Ω of the furniture’s face (Figure 3(a)).

Ec = − 1

Ω

 K⋃
k=1

|rk| −
∑
k 6=j

|rk ∩ rj |

 (6)

The Overlap energy Eo ensures minimum overlap be-
tween all pairs of rectangles in a state (Figure 3(b)).

Eo =
1

λo ·
(
K
2

) ∑
k 6=j

|rj ∩ rk|
min(|rj |, |rk|))

(7)

where λo = 0.15 is an empirically determined overlap pa-
rameter.

The Rectangle weight energy Ew choses rectangles with
a high appearance likelihood (Figure 3(c)).

Ew =
1

K

K∑
k=1

1− p(lk | rk, Im) (8)

The Label smoothing energy Els encourages label con-
sistency given the structure of the furniture. For modular
furniture, a modularity tree Γ can be built. The entire face
of the furniture shown in Figure 2 defines the root of the
tree. Elements that are similar in structure are clustered and



Figure 2: Rectangle clusters within a furniture. Two child
rectangles (door) in purple cluster, four child (drawer) rect-
angles in red cluster and two child (door) rectangles in green
cluster.

define the first three child nodes (denoted in purple red and
green). Each child node can be further divided into, smaller
nodes sharing height and/or width. As can be observed in
the example, all leaf nodes that share a parent node tend to
be of the same class. The label smoothing energy favors
such label configurations.

Els =
1

M

∑
n∈Γ

1(
Cn

2

) ∑
c1,c2∈child(n)

c1,c2 are leaf nodes

I [l(c1) 6= l(c2))]

(9)
where M is the total number of leaf clusters in an image
tree Γ, Cn is the number of children of node n and l(·) is
the class label of a child IE.

The Layout variance energy Elv incites the structural
modularity in the tree and penalizes shape and position de-
viations within a tree branch.

Elv =
1

M

∑
n∈Γ

∑
ci∈child(n)

[h(ci)− hm]2 + [w(ci)− wm]2

(10)
where h(·) and w(·) determine the height and width of
a child rectangle, hm and wm denote the average cluster
width and height.

The State size energy Es favors a higher number of IEs.

Es = −K
N

(11)

where N is the number of rectangles in the proposal pool.

3.2.1 Reversible Jump MCMC Moves

The solution space of the energy function described above
represents a high dimensional space. Optimization in this
space can be achieved efficiently by sampling the Markov
chain with simulated annealing, an MCMC based stochas-
tic optimization method. The Markov chain with a sta-
tionary distribution is constructed such that the majority of
the probability mass concentrates at the global minimum

of the total energy. By sampling different states of the
chain one can traverse through the multi-dimensional state
space. From the current state S, the new state S∗ is sam-
pled with proposal probability p(S∗|S). If p(S∗)p(S∗|S) >
p(S)p(S|S∗), then we accept the “better” state S∗. Other-
wise, we accept the new state with a probability propor-
tional to p(S∗)

1
Ti p(S|S∗)/p(S)

1
Ti p(S∗|S) where i ∈ N is

the current iteration and Ti is the temperature at step i. Ef-
fectively, the acceptance probability of the new state is:

a (S, S∗) = min

{
1,
p(S∗)

1
Ti p(S|S∗)

p(S)
1
Ti p(S∗|S)

}
(12)

Pohlen et al. [26] performs a simulated annealing based
optimization in multiple rounds, each time with a different,
fixed dimension. Bounds on the dimension are estimated
in a separate process, solely based on rectangle shapes, i.e.
decoupled from appearance. The repeated optimization pro-
cess is prone to errors in the bounds estimation and ineffi-
cient.

In contrast, we perform optimization using a trans-
dimensional variant of MCMC, namely reversible jump
MCMC [7]. The idea behind rjMCMC is to allow sam-
pling the trans-dimensional space with a stationary distribu-
tion. To achieve a stationary distribution a careful balance
of the chain dynamics must be fulfilled. In rjMCMC, this
balance is obtained through dimension matching reversible
jump moves. In our architecture, we design one jump move
pair (birth and death move) to search over the variable di-
mensional space and one diffusion (exchange) move to ex-
plore a fixed dimensional space:

Birth move. The new state S∗ is generated from S by
adding a new rectangle r from the rectangle pool while
keeping all the other rectangles fixed. The birth move in-
creases the dimension of S by the dimension of the added
rectangle dim(r). The acceptance probability for this move
is:

aB (S, S∗) = min
{

1, θB(S, S∗)
}

(13)

where

θB(S, S∗) =
p(S∗)

1
Ti

p(S)
1
Ti︸ ︷︷ ︸

posterior
ratio

· qD(S, r | S∗) · p(D)

qB(S∗ | S, r) · p(B)︸ ︷︷ ︸
proposal

ratio

· JB︸︷︷︸
jacobian

(14)
where, JB =

∣∣∣ ∂(S∗)
∂(S,r)

∣∣∣ is a Jacobian for the transformation
from (S, r) to S∗. p(B) and p(D) are the probabilities for
choosing birth and death moves respectively, qB(S∗ | S, r),
is the probability to add rectangle r to the current state S,
and similarly qD(S, r | S∗) defines the probability to delete
a certain rectangle r from the current state S. p(S) and



(a) cover (Ec) (b) overlap (Eo) (c) weight (Ew) (d) Eo + Ec (e) Eo + Ec + Ew (f) total

Figure 3: Effect of different energies on the proposal subset selection (from left to right): cover (Ec), overlap (Eo), rectangle
weight (Ew), Eo + Ec, Eo + Ec + Ew, Total (E). We show the most important energy terms and their combination that
contribute most of the segmentation performance during the proposal selection step.

p(S∗) are determined from the energyE according to Equa-
tion 4. We assume uniform proposal probability for select-
ing the rectangle, hence the proposal ratio only depends on
the number of rectangles in the current state (k) and in the
proposal pool (N−k). The probabilities for death and birth
moves are set so that the overall acceptance rate is high. The
Jacobian is derived to be 1 (Please refer to supplementary
for the derivation). Equation 14 simplifies to:

θB(S, S∗) =
p(S∗)

( 1
Ti

)

p(S)
( 1
Ti

)
· N − k

k
· p(D)

p(B)
(15)

Death move. This move is the reverse of a birth move. It
removes one rectangle while keeping all the other rectan-
gles fix. Death and birth moves are a reversible move pair,
ensuring balance in the chain. The acceptance probability
of a death move can be given as:

aD (S, S∗) = min
{

1, θD(S, S∗)
}

(16)

where

θD(S, S∗) =
(
θB(S, S∗)

)−1

=
p(S∗)

( 1
Ti

)

p(S)
( 1
Ti

)
· k

N − k
· p(B)

p(D)
(17)

Another popular reversible jump move pair is the split
and the merge move. As these moves are computationally
expensive, we avoid using them during optimization. In-
stead, the split/merge augmentation as described in Section
3.1.1 serve as a proxy.

Exchange move. Is a diffusion move which preserves di-
mensions. A rectangle is randomly selected from the cur-
rent state and is exchanged with another rectangle which is
randomly sampled from the proposal pool:

aE (S, S∗) = min
{

1, θE(S, S∗)
}

(18)

where

θE(S, S∗) =
p(S∗)

( 1
Ti

)

p(S)
( 1
Ti

)
(19)

4. Evaluation

To the best of our knowledge, we are the first to present
a furniture dataset including both, RGB and depth. For the
evaluation of our proposed method we introduce a new syn-
thetic dataset consisting of 160 images with a resolution of
640 × 480. The ground truth structures and labels are an-
notated manually. In our experiments we perform a 4-fold
cross validation. In each round, 75% of the images are used
to train the appearance codebook and shape priors and 25%
images are used for testing. We are only aware of the work
of Pohlen et al. [26] which tackles this problem of furniture
segmentation and therefore serves as a baseline for compar-
ison in the experiments. We generate our dataset by modi-
fying readily available 3D furniture models in blender. All
the given models are oriented in aesthetically beautiful ori-
entation and lighting condition. We change the orientation,
texture and lighting condition of these models. Addition-
ally, we add artificial axial and lateral Kinect noise depend-
ing on depth and orientation as described in [23].

4.1. Quantitative Results

In this section we evaluate various aspects of our pipeline
and present the overall quantitative results.

Rectangle Set Augmentation. During the generation of
our over-complete set of IE proposals, we use the previ-
ously suggested proposal generation by Pohlen et al. [26]
and then extend the resulting proposal set by our rectangle
set augmentation. We evaluate the maximum achievable re-
call at this stage of the pipeline and the resulting overall
improvement. The initial proposal generation step achieves
a recall of 79.8%, our augmentation improves this recall to
83.3%. For our full pipeline we observed an improvement
of 1% point by adding IE augmentation.

Structural Inference. Compared to [26], in our method
we remove the costly rectangle pruning step and effectively
add a corresponding pruning criteria to the objective func-
tion, Equations 5, 6, 7. This improves the overall speed
considerably (1.9x faster) and avoids hard decisions before
optimization, leading to better recall and hence overall seg-
mentation. We report precision, recall and F1 measure of
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Figure 4: Qualitative comparison of segmentation on 3D synthetic data: The first row is the input RGB images. Second row
is ground truth annotation. Third row shows result of segmentation by [26]. The last row shows our segmentation result using
depth. (door, drawer and shelf).

Figure 5: Qualitative results: The input real Kinect images and corresponding segmentation are displayed respectively on
row 1 and row 2. Columns 1-5 shows the success cases while columns 6 displays the failed cases. The two main reasons for
failure are missed edges and high amount of texture. (door, drawer and shelf).

our structure inference. At this stage, we are only interested
in the subdivision of the furniture, not in the resulting se-
mantic labeling. For comparison, Table 1 serves the 2D and
3D versions of our method and the work of [26]. Table 1
shows that using 3D improves our method by a large mar-
gin, yet even our 2D version sets a new state-of-the-art.

Class Label Inference. Here we measure the accuracy of
the predicted labels only for the correctly detected IEs. We
consider a IE detected if the IoU with a ground truth annota-
tion exceeds 65%. This allows us to measure the efficiency
of our appearance model independent of the structural sub-

Table 1: Comparison of overall structure inference perfor-
mance. Here we compare our method with and without
depth to the approach presented in [26].

precision recall F1

[26] 68.8% 49.8% 57.8%
our (2D) 63.5% 68.7% 66.0%
our (3D) 73.5% 79.9% 76.6%

division. Table 2 reports accuracy of class label prediction



for [26] and our approach with and without using depth.

Table 2: Class label accuracy for correctly detected IEs.

door drawer shelf
[26] 91.9% 71.7% 15.5%

our (2D) 76.4% 77.6% 40.9%
our (3D) 99.3% 96.2% 98.8%

It is apparent that depth is a crucial cue to approach per-
fect class label inference. We show the full confusion matri-
ces for the overall segmentation for both, without and with
depth (see Table 3). Using only 2D information leads to a
high confusion between “drawer” and “shelf”, which can be
resolved using depth.

Table 3: Detailed class label performance of our approach
with and without using depth.

Prediction 2D
Door Drawer Shelf

Tr
ut

h Door 75.4% 1.5% 23.1%
Drawer 3.7% 77.0% 19.3%
Shelf 12.9% 44.4% 42.7%

Prediction 3D
Door Drawer Shelf

Tr
ut

h Door 99.3% 0.7% 0%
Drawer 3.0% 96.2% 0.8%
Shelf 1.1% 1.1% 98.8%

Segmentation performance. To compare the overall seg-
mentation performance, we combine the structure and la-
beling accuracy of the algorithm. We multiply the structure
accuracy with the label accuracy for each label and take the
average. The combined performance of the baseline from
Pohlen et al. [26] reaches 33.8%, compared to our method
(2D) reaching 45.5%. When enabling depth the final result
of our full pipeline is 78.3%.

Contribution of Energy Terms. We examine how each
of the energy terms affect the structure and label prediction.
We perform segmentation using different combinations of
energy terms in Figure 6. As expected, the rectangle weight
energy (Ew) is crucial for label accuracy, as is the cover en-
ergy (Ec) for predicting structure. While the structure pre-
diction reaches competitive results using only single energy
terms, the label accuracy highly benefits of energy combi-
nations. The full energy term results in the best overall per-
formance.

4.2. Qualitative Results

Figure 4 shows an overall qualitative comparison be-
tween [26] (2D) and our approach (3D). Besides using only

Structure F1 Labeling
Accuracy

20

40
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80 Eo
Els + Elv
Eo + Ec
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Ew

Eo + Ec + Ew
E - Es
E - Ec
E

Figure 6: Bar graph showing performance on structure pre-
diction (Left) and label accuracy (right) with different com-
binations of the energy terms. Best result is achieved when
all the energy terms are incorporated.

our proposed synthetic dataset, we also performed a qualita-
tive study on real world image samples originating from the
Kinect sensor. For this experiment, we train the appearance
codebook and shape prior on the entire synthetic dataset
(160 images). Figure 5 shows example segmentation result.

Contribution of Energy Terms. Figure 3 qualitatively
shows the influence of each energy term given a single ex-
ample.

5. Conclusion

We propose a method for semantic segmentation of fur-
niture into their interaction elements for RGB-D images.
We show that depth information is crucial to the structural
inference and classification of the IEs. We propose a multi-
objective optimization method using an effective energy
maximization formulation. We successfully demonstrate
the strength of our rjMCMC optimization design for our
trans-dimensional model space. Finally, we show consid-
erable improvement on the previous state-of-the-art results
for furniture parsing given on novel 3D furniture dataset.
This work is also transferable to real Kinect images, open-
ing doors for the advance research in robotics for interaction
with furniture. Our code1 and annotated dataset2 are pub-
licly available.
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