
3D City Modeling using Cognitive Loops

Nico Cornelis1 Bastian Leibe2 Kurt Cornelis1 Luc Van Gool1,2

1KU Leuven 2ETH Zurich
Leuven, Belgium Zurich, Switzerland

{firstname.lastname}@esat.kuleuven.be {leibe,vangool}@vision.ee.ethz.ch

Abstract

3D city modeling using computer vision is very chal-
lenging. A typical city contains objects which are a night-
mare for some vision algorithms, while other algorithms
have been designed to identify exactly these parts but, in
their turn, suffer from other weaknesses which limit their
application. For instance, moving cars with metallic sur-
faces can degrade the results of a 3D city reconstruction
algorithm which is primarily based on the assumption of a
static scene with diffuse reflection properties. On the other
hand, a specialized object recognition algorithm could be
able to detect cars, but also yields too many false positives
without the availability of additional scene knowledge. In
this paper, the design of a cognitive loop which intertwines
both aforementioned algorithms is demonstrated for 3D city
modeling, proving that the whole can be much more than the
simple sum of its parts. A cognitive loop is the mutual trans-
fer of higher knowledge between algorithms, which enables
the combination of algorithms to overcome the weaknesses
of any single algorithm. We demonstrate the promise of this
approach on a real-world city modeling task using video
data recorded by a survey vehicle. Our results show that
the cognitive combination of algorithms delivers convincing
city models which improve upon the degree of realism that
is possible from a purely reconstruction-based approach.

1. Introduction
Computer vision finds itself at an exciting stage in its

development. Gradually, the recognition of object classes,
actions and events, material types, and kinds of scenes is
becoming a reality. This not only is key to solving a wide
variety of applications that need such recognition per se. It
also creates the perspective of exploiting a pivotal principle
in the architecture of the brain: feedback loops. Connec-
tions between neural areas are systematically bidirectional.
Bottom-up information flows are without exception accom-
panied by top-down influences. Semantic levels can influ-
ence early processing steps. We coin such interaction that
includes a semantic level a ‘cognitive loop’. In this paper,
such cognitive loop is exemplified for the particular appli-

cation of 3D city modeling. But closing processing loops
over semantic levels of interpretation, even for the very first
stages of image filtering, can be expected to become a cru-
cial aspect in many computer vision systems soon. Only
now are such cognitive loops becoming a feasible option.

Most vision algorithms have well-known failure modes.
Algorithms successfully handling any kind of reasonable in-
put are few and far between. Nevertheless, as our repository
of algorithms grows, chances are improving that they can be
combined into systems where the strength of one algorithm
can compensate for the weakness of another. Of particular
interest are combinations of ‘early’ processing levels, like
stereo, with ‘higher’ or semantic levels, like object class
recognition. Taking city modeling as a case in point, 3D re-
construction can become easier and more accurate when we
know which kind of object is being reconstructed. In turn,
recognition becomes easier and more reliable given a geo-
metric scene context. The 3D city modeling approach taken
in this paper shows that the cognitive loop idea can deliver
more than just the sum of the parts.

The paper is structured as follows. Section 2 describes
related work. The following two sections describe the al-
gorithms that serve as points of departure for this work.
Section 3 describes our initial city modeling work, that
still works without input from a recognition module. Sec-
tion 4 describes the latter, but as it would operate without
scene context. Both are then integrated into a cognitive loop
scheme in the main part of the paper, section 5. Section 6
describes the results of this integration. Section 7 concludes
the paper, and sketches our plans for future research.

2. Related Work.
City modeling has evolved over the years. In the

early days, aerial imagery formed the main type of in-
put [8, 9, 10, 14, 22, 24, 25]. Having the advantage of
being able to reconstruct large areas from just a few im-
ages, the resulting models often lacked visual realism when
viewed from ground level. Today, we can find survey ve-
hicles equipped with laser scanners and cameras gathering
3D depths and textures at ground level [6, 7, 11, 18, 20].
Such laser systems return very detailed and impressive 3D
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models. However, to this day, these laser systems are sparse
and expensive. Furthermore, vast amounts of data has al-
ready been gathered by survey vehicles using mere video
streams annotated with GPS/INS measurements in order to
geo-reference them. Vision algorithms are the key to tap
into this valuable resource and extract 3D information from
those video streams.

In this paper, we describe a ground level vision-based
3D city modeling framework, consisting of two parts: a 3D
reconstruction component and an object detection compo-
nent. The 3D reconstruction part is based on our previous
work [1]. It deploys real-time Structure-from-Motion (SfM)
and real-time dense stereo to achieve its goal. An excellent
example of previous work on real-time SfM can be found
in [17], which also assumes that cameras have been cali-
brated beforehand, as is the case in our work. Also recently,
real-time dense reconstruction algorithms which use the
graphics card have emerged, such as [2, 26]. However, the
latter still lacked a more global constraint which is needed
to disambiguate between multiple possible matches in the
case of repeating patterns, which often appear on building
facades. The dense stereo algorithm presented in [1] ful-
fills this requirement by incorporating dynamic program-
ming into real-time dense reconstruction.

The recognition part of this paper is based on [12]. It
stands in the tradition of several object detection approaches
that have recently become available which are capable of
dealing with scenes of realistic complexity, both for the
detection of single [23, 12, 3] and multiple object classes
[21, 19, 15]. However, those approaches typically perform
an uninformed search over the full image — they do not take
advantage of scene geometry yet. We draw from the experi-
ences of those approaches, but in contrast to previous work,
we extend the recognition system with scene geometry in-
formation delivered by the SfM and recognition modules.

Taken together, the two components implement a cogni-
tive feedback loop. Object detection informs the 3D mod-
ules about objects in the scene which may disturb SfM cal-
culations or which cannot be accurately modeled by the
reconstruction algorithm. In return, 3D reconstruction in-
forms object detection about the scene geometry, which
greatly helps to improve detection precision. Previous
work by [4] already contained part of the cognitive loop
idea, combining recognition of architectural primitives with
wide-baseline stereo for building reconstruction. However,
our work goes beyond their early approach in that it imple-
ments a continuous feedback cycle from which all compo-
nents benefit, both in terms of improved results and in terms
of increased system robustness.

3. 3D Reconstruction
The original 3D reconstruction algorithm, as described

in more detail in [1], can be summarized as follows. A

width

Corner type I Corner type II

AI 1 AI 2

AI 3 AI 4

AI = Average Intensity of region
with size width x width

Feature Measure = 

abs((AI1 + AI4) − (AI2 + AI3)) 

Feature measure is assigned
            to this pixel  

Edge 

Figure 1. Top: The measure used to detect image features. Bottom,
Left: For straight edges the measure value is low, Middle: For cor-
ners of this type (I) the measure value is high, Right: For corners
of this type (II) the measure value is low. In city survey sequences,
type (I) corners are more prevalent than type (II) due to the build-
ing architecture. Furthermore, in survey sequences corners of type
(I) do not change over time into corners of type (II) because the
camera typically does not rotate around the optical axis.

Figure 2. Left and middle: Rectified stereo pair with example of a
best match, based on an aggregated similarity measure along the
vertical image direction. Right: Computed similarity map with
optimal path resulting from dynamic programming (white line).

calibrated stereo rig is mounted on top of a survey vehi-
cle. An SfM algorithm delivers the external camera param-
eters for each recorded image. To achieve real-time SfM a
very simple but effective feature detector was implemented.
Namely, image features are detected as the local maxima
of the measure depicted in Figure 1. Additional GPS and
odometry information can be used to guide feature match-
ing during fast turns, to compensate for drift, and to trans-
fer the cameras into a global world coordinate system. The
drift-compensated and globally aligned cameras are then
rectified so that their up-vector is parallel to the world grav-
ity vector. This ensures that 3D lines parallel to the gravity
vector are displayed as vertical lines in each stereo pair.

Next, a first kind of higher cognitive knowledge is in-
jected into the algorithm by using the realistic assumption
that typical building facades can be modeled by ruled sur-
faces which are parallel to the gravity vector. The afore-
mentioned rectification therefore makes it possible to recon-
struct facades by applying dynamic programming to each
stereo pair in a single pass by aggregating a correlation mea-



Figure 3. (a) Example of a ground truth topological map. (b) Poly-
gon extracted for a single stereo set. (c) Voted carving. (d) Result-
ing topological map from silhouette extraction.

sures along the vertical image direction, as can been seen in
Fig. 2. The left and middle images in this figure illustrate a
set of vertical facade lines in a rectified stereo pair of which
the matching potential is determined by a sum of squared
differences in pixel values along the vertical lines. The right
image shows a 2-dimensional map of these matching poten-
tials. The abscissa of this map is given by the index of the
vertical scan-line in the left stereo image, the ordinate is
the disparity value with the right stereo image. Besides the
tremendous gain in speed compared with algorithms which
run dynamic programming on each single horizontal scan-
line, the reconstruction becomes more accurate as informa-
tion over each vertical scan-line can be integrated.

The different facade depth profiles coming from every
single stereo pair are integrated by applying a voting-based
carving algorithm. After a 2-dimensional topological map
(the scene viewed along the direction of gravity) is initial-
ized to a value of zero, the area covered by each different
depth profile is incremented by one. Only the area with a
value greater than a certain threshold N is carved and the
corresponding silhouette is extracted, see Figure 3. This re-
sults in a robust extraction of the final global facade profile.

Finally, the road itself is reconstructed by fitting lines
through the known contact points of the wheels of the sur-
vey vehicle with the road. This way of road reconstruction
is not only faster than using dense stereo algorithms, but
also more accurate since roads are often not textured enough
for dense stereo. Figure 4 demonstrates some typical results
of our 3D reconstruction algorithm. The four components
of the 3D reconstruction framework (SfM, bundle adjust-
ment, dense stereo integration and scene texturing) can all
process around 28 stereo pairs per second using an image
resolution of 384x288.

Discussion. Note that this algorithm is based on the as-
sumption of a static scene with diffuse reflectance proper-
ties. Cars defy these assumptions. Figure 4 shows that cars
could obviously not be modeled by this algorithm. They
appear squashed onto the road and facades and thereby de-

Figure 4. Left: An image taken from the original survey video.
Right: A rendered image taken from the reconstructed 3D model
from the same camera position.

grade the visual realism of the 3D model to a large ex-
tent. Furthermore, moving and/or shiny cars degrade the
accuracy of the camera positions returned by the SfM al-
gorithm which is based on the assumption of a static scene
with diffuse reflectance properties. It is correct to say that
RANSAC outlier rejection [5] can help to remove moving
objects from further consideration. Unfortunately, many
natural car motions can be misinterpreted as static because
of an ambiguity in their image projection. For example, fol-
lowing a car in the same lane at more or less the same speed
on a straight stretch makes it clearly indistinguishable from
a static object at infinity. Also, a car approaching on the
other lane with a speed correlated to ours is indistinguish-
able from a static car parked somewhere in the middle of
both lanes. Because of the nature of traffic these situations
of correlated motion occur more often than we would wish
(for our application). Furthermore, since cars are passing
close to the cameras they may substantially influence the
computed camera translation and rotation.

Car recognition can help in both aforementioned chal-
lenges by informing the SfM algorithm to ignore car fea-
tures, and by retrieving the 3D position of cars so that they
can be replaced by virtual 3D placeholders, thereby improv-
ing the visual realism of the 3D city model. Replacing real
cars by virtual ones instead of actually trying to model them
in 3D from the images, is advantageous from a privacy point
of view. Content providers are often asked to remove per-
sonal items from their data to avoid privacy issues. The vir-
tual cars do not reveal license plates or other identification
cues.

4. Object Detection
The recognition system is based on the ISM approach

[12]. A bank of 5 single-view ISM detectors is run in par-
allel to capture different aspects of cars (see Fig. 5 for a
visualization of their distribution over viewpoints). For effi-
ciency reasons, we make use of symmetries and run mir-
rored versions of the same detectors for the other semi-
profile views. All detectors share the same set of ini-
tial features: Shape Context descriptors [16], computed
at Harris-Laplace, Hessian-Laplace, and DoG interest re-
gions [13, 16]. During training, extracted features are clus-
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Figure 5. (left) Visualization of the viewpoints the single-view de-
tectors were trained on. (right) Number of training images used
for each view.

tered into appearance codebooks, and each detector learns
a dedicated spatial distribution for the codebook entries
that occur in its target aspect. During recognition, features
are again matched to the codebooks, and activated code-
book entries cast probabilistic votes for possible object lo-
cations and scales according to their learned spatial distri-
butions. The votes are collected in 3-dimensional Hough
voting spaces, one for each detector, and maxima are found
using Mean-Shift Mode Estimation [12].

5. Building the Cognitive Loop
5.1. Feedback into Object Recognition

Geometric scene constraints, such as the knowledge
about the ground surface on which objects can move, can
help detection in several important respects. First, they can
restrict the search space for object hypotheses to a corri-
dor in the (x, y, scale) volume, thus allowing significant
speedups and filtering out false positives. Second, they
make it possible to evaluate object hypotheses under a size
prior and “pull” them towards more likely locations. Last
but not least, they allow to place object hypotheses at 3D
locations, so that they can be corroborated by temporal in-
tegration. In the following, we use all three of those ideas
to improve detection quality.

Integrating Ground Plane Constraints. Given the cam-
era calibration from SfM and a ground plane estimate from
the 3D reconstruction module, we can estimate the 3D loca-
tion for each object hypothesis by projecting a ray through
the base point of its bounding box and intersecting it with
the ground plane. If the ray passes above the horizon, we
can trivially reject the hypothesis. In the other case, we can
estimate its real-world size and use this to evaluate the hy-
pothesis under a size prior. Formally, we can express this
as follows. Let p(H |I) be the likelihood for the real-world
object H and p(h|I) the likelihood of an image-plane hy-
pothesis h, both given the image I . Then

p(H |I) =
∑

h

p(H |h, I)p(h|I) ∼
∑

h

p(h|H)p(H)p(h|I),

where p(H) expresses a prior for object sizes and distances,
and p(h|H) reflects the accuracy of our 3D estimation. In
our case, we enforce a uniform distance prior up to a max-
imum depth of 70m and model the size prior by a Gaus-
sian. The hypothesis scores are thus adapted by the degree
to which they comply with scene geometry, before they are
passed to the next stage (Fig. 6(a,b)).

Integrating Facade Constraints. Using the information
from 3D reconstruction, we can add another verification
step to check if hypothesized 3D object locations lie behind
reconstructed facades. As this information will typically
only become available after a certain time delay (i.e. when
our system has collected sufficient information about the fa-
cade), this filter is applied as part of the following temporal
integration stage.

Temporal Integration. The above stages are applied to
both camera images simultaneously. The result is a set of
3D object hypotheses for each frame, registered in a world
coordinate system. Each hypothesis comes with its 3D lo-
cation, a 3D orientation vector inferred from the selected
viewpoint, and an associated confidence score. Since each
individual measurement may be subject to error, we im-
prove the accuracy of the estimation process by integrating
the detections over time.

Figure 6(c) shows a visualization of the integration pro-
cedure. We first cluster consistent hypotheses by starting
a mean-shift search with adaptive covariance matrix from
each new data point and keeping all distinct clusters. We
then select the set of hypothesis clusters that best explains
our observations under the constraint that the correspond-
ing real-world cars cannot physically overlap by applying
an MDL criterion. The results of this procedure are dis-
played in Fig. 6(d).

5.2. Feedback into 3D Reconstruction
Object recognition informs the SfM algorithm about ar-

eas where cars can be expected. Features will not be instan-
tiated or tracked in these areas, thereby avoiding erroneous
data which would result from tracking non-static points on
moving and shiny cars. In addition, the cars can be seg-
mented out from the original images before they are used
to determine the texture-map of the 3D city model. This
global texture-map is composed by a weighed averaging of
the contributions of each original image [1]. By segment-
ing out cars from the original images, they will no longer
corrupt the global texture-map and will allow scene parts
which are only temporarily covered by non-car image re-
gions to acquire a sensible texture.

The object recognition algorithm uses the knowledge of
camera parameters and ground plane resulting from the 3D
reconstruction algorithm to guide its search for cars. In ad-
dition to identifying those images regions that could contain
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Figure 6. Stages of the recognition system: (a) initial detections before and (b) after applying ground plane constraints, (c) temporal
integration on reconstructed map, (d) estimated 3D car locations, rendered back into the original image.

cars, it also generates a list of 3D hypotheses for the scale,
position and rotation of each detected car. These could be
used directly to instantiate 3D virtual cars. However, the
orientation estimates are not in all cases sufficiently accu-
rate due to the inherent limitations of the appearance-based
object recognition algorithm (which uses object detectors
that are trained on a discrete set of car orientations). In ad-
dition, the location estimates are based on a rough ground
plane estimate, extrapolating the road surface under the
survey vehicle at the time when the object was first seen.
Therefore, the virtual cars look more or less alright, but they
can be positioned slightly above or below the road surface,
and do not always seem to be neatly parked due to the noise
on their rotation (as shown in the middle image of Figure8).
Therefore, the following refinement is performed for each
car. Along the camera path resulting from SfM one looks
for the camera centre closest to the estimated 3D position of
the car. Around this location the ground plane is estimated
using the contact points of the wheels of the survey vehicle
on the road, as previously explained in section 3. The 3D
virtual model can now be made to rest on this ground plane.
Its orientation within the plane can be refined as follows.
When the car direction returned by the object recognition
algorithm is close to the direction of the local camera path
section where it passes the car, the latter direction is adopted
as final orientation of the car. As a consequence, when the
motion of the survey vehicle through the street is smooth,
the resulting refined orientations of the cars will inherit this
smoothness.

6. Experimental Results
In this section, we compare the results obtained by the

stand-alone object recognition and 3D reconstruction algo-
rithms with the results from the integrated system based on

our cognitive loop. Our test scenario is a city modeling task
from a stereo video stream recorded by our survey vehicle
over a distance of approximately 500m.

Figure 6(a,b) shows typical car detections which can be
expected with and without the use of higher scene knowl-
edge. As can be seen, too many false positives are detected
at improbable locations and scales in the image when prior
knowledge on scene geometry is lacking. The ground plane
and camera parameters retrieved by the reconstruction al-
gorithm clearly help in retrieving hypotheses with realis-
tic positions and scales. The object recognition algorithm
returns image segmentation masks for the detected cars.
These segmentation masks are used to inform the Structure-
from-Motion algorithm not to instantiate or track features in
those areas as they are likely to be unreliable (see Figure 7).
Each car detection in each subsequent image casts a vote for
the position and orientation of the car in 3D space. These
votes are then integrated over time to form 3D car hypothe-
ses (see Figure 8). The resulting lists of 3D car hypotheses
is used to instantiate virtual 3D placeholders in the 3D city
model. These do an excellent job in occluding the artifacts
from which original 3D city model suffered, in increasing
the visual realism of the final model and in hiding private
information such as license plates (Figure 9).

We applied the following computer graphic tools to
blend the virtual 3D cars into the real environment. First,
a directional light source was placed above the scene and
the cars were rendered using local Gouraud shading. To
simulate the metallic look of a typical car, a specular com-
ponent was added which takes as its input a spherical reflec-
tion map which is built up on the fly by the graphics card.
In this way, the cars reflect the environment as would be ex-
pected in real-life. For speed reasons, the shadows of cars



Figure 8. Car location estimates obtained from the recognition module and integrated over the full sequence.

Figure 7. (left) Successful car detections. (right) Corresponding
car segmentation masks fed back to the SfM module.

on the road were not explicitly calculated but were mim-
icked by dark spots which were blended on the road under
the car. This also helped in covering up the remaining car
artifacts which were textured onto the road surface.

Figure 10 shows a collection of views on the final 3D city
model from vantage points away from the original camera
path followed by the survey vehicle.

7. Discussion & Future Work
In this paper, we presented a practical implementation of

a cognitive feedback loop in a city modeling framework.
Our proposed approach integrates 3D reconstruction and
object detection in a tight collaboration, which allows one
algorithm to help the other overcome its weaknesses. More
specifically, cars needed to be removed from the survey
videos since they may degrade the performance of 3D re-
construction and leave unpleasing artifacts in the final 3D
city model. Object recognition was used to detect cars in
the survey videos, but without higher scene knowledge too
many false positives were found. For this reason, the 3D
ground plane and camera parameters retrieved by the recon-
struction algorithm were used to guide object recognition in
its search for cars of realistic size, positioned on the road.
The detection results, on the other hand, could be used to

segment out the cars from the original images and thus re-
move them from further processing by the reconstruction al-
gorithm. In addition, the detected 3D car hypotheses could
be used to instantiate a virtual 3D placeholder for each de-
tected car in the final city model. In this way, the artifacts
caused by cars could be removed and a final 3D city model
with heightened visual realism could be obtained.

Apart from covering up the reconstruction artifacts from
observed cars on the road surface, the placeholder models
have several additional advantages. Since they are instan-
tiated in the same locations as their real counterparts, they
give a better impression of the scale of the reconstructed
model and the width and passability of its streets. This is
an important feature, as the main application area of future
city modelling technology will most likely be in car naviga-
tion systems, for which recovery of the number and dimen-
sions of individual driving lanes becomes increasingly im-
portant. In addition, the placeholder models make it possi-
ble to ”brand” the city model with the car type the final nav-
igation system is built into. The reconstructed city would
then contain neutral car models, interspersed with models of
the driver’s (or manufacturer’s) prefered car brand. Last but
not least, the substitution of observed real cars by generic
models also addresses privacy issues.

It is important to point out that the proposed placeholder
solution does not violate our goal (stated in [1]) of creat-
ing a compact city model suitable for rendering on a low-
cost platform. The reconstructed city model for the entire
test sequence, including all facade textures, takes up only
712kB. Each placeholder car model requires an additional
300–500kB of storage, but it can be reused whenever the
car is instantiated in the reconstruction. In our test appli-
cation, we used 4 distinct car models, which together with
the shadow effects, already gave rise to a surprising degree
of variability in the depicted scenes. For a final applica-
tion, we expect that 10–12 distinct car models will be suf-
ficient to reduce repetitions. The spherical reflection map,
used for increased realism, also does not add to the stor-
age costs, since it can be created dynamically, as part of the
regular rendering process. The simple rendering algorithm
we used can be performed even by the latest generation of



Figure 9. Left: Rendered image taken from the original 3D city model. Right: Rendered image of the final 3D city model containing the
3D virtual placeholders for each detected car hypothesis.

Figure 10. A collection of rendered images taken from various vantage points.

PDAs with mobile graphic cards.
At this stage, all detected cars were removed from fur-

ther processing by the reconstruction algorithm. However,
parked cars can still contribute something to the reconstruc-

tion algorithm as it complies to the assumption of a static
scene. We will therefore investigate to what extent we can
make a difference between parked and moving cars and use
that information. We envision some problems with scenar-



ios which are borderline cases. For instance, when standing
in front of a red traffic light most cars around us will be
static but they will gradually start to move when the traffic
light turns green. Therefore, there is a grey zone in which
we cannot clearly determine whether the car is static or not.

This first cognitive loop which was established between
reconstruction and recognition will inspire us to add addi-
tional loops between existing components to increase the
overall robustness of the combined system. Detectors for
other classes of objects, such as pedestrians, motorbikes,
trees, etc. could be used in the same spirit as presented in
this paper. They will help in improving the visual quality of
the final 3D model, and in automatically masking out image
content which might otherwise lead to privacy issues.

Finally, the higher understanding of urban architecture
would help in improving the 3D geometry and therefore
also its texture. For instance, balconies which stick out of
the building facades could be detected and modeled, doors
could be detected and pushed deeper into the facades, etc.
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