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Abstract

Many multi-object-tracking (MOT) techniques have been
developed over the past years. The most successful ones
are based on the classical tracking-by-detection approach.
The different methods rely on different kinds of data asso-
ciation, use motion and appearance models, or add opti-
mization terms for occlusion and exclusion. Still, errors oc-
cur for all those methods and a consistent evaluation has
just started. In this paper we analyze three current state-
of-the-art MOT trackers and show that there is still room
for improvement. To that end, we train a classifier on the
trackers’ output bounding boxes in order to prune false pos-
itives. Furthermore, the different approaches have different
strengths resulting in a reduced false negative rate when
combined. We perform an extensive evaluation over ten
common evaluation sequences and consistently show im-
proved performances by exploiting the strengths and reduc-
ing the weaknesses of current methods.

1. Introduction
Over the past decade, Multi-object-tracking (MOT) has

been an area of active research [22, 24, 25, 29, 20, 19, 15,
10, 9, 30, 13, 28]. Many new approaches are proposed ev-
ery year with applications in robotics, video analysis, and
autonomous vehicles.

The most common approaches make use of object detec-
tors to identify, e.g., pedestrians in images. Given potential
object positions in each image/frame of a video sequence,
tracking-by-detection approaches perform data association
to group the detections into tracks and, at the same time, try
to identify failures, i.e., missing detections and false alarms.
Often, the tracking result includes assumptions about an un-
derlying motion or appearance model and an explicit han-
dling of target exclusion or occlusion.

There is a considerable interest in determining how well
MOT techniques perform [14] and where mistakes are made
[21]. The main question here is how far are we from satu-

(a) CEM: 1 FN (b) DP: 2 FNs

(c) TBD: 1 FN, 1 FP (d) SVM-Union: no errors

Figure 1: Qualitative example of different mistakes of dif-
ferent tracking systems. FNs are marked with a red arrow,
FPs with a blue one, respectively. Note that the combined
result has correctly discarded the FPs and filled in all FNs
by combining the results.

ration and is there still potential for improvement? In this
paper, we show that MOT performance has not yet satu-
rated.

We analyze several key aspects which often result in
tracking errors for multi-person tracking scenarios. Detec-
tors often fail for very small objects or objects that are large
but close to image borders. In crowded scenes, not only do
the detectors encounter problems, e.g., due to overlapping
and occluding pedestrians, but also tracking gets more dif-
ficult, i.e., data association may fail. This is reflected in the
bounding boxes of the tracking result. Even when ignoring
the internal states of the various tracking systems, we are
able to improve tracking performance while only looking
at the output bounding boxes. Two approaches are used to
improve the performance. First, for each method, we train
a false positive classifier based on few additional features.
This already boosts the trackers’ precision. Then, we ex-
ploit that different trackers can compensate for each others’



mistakes. By combining tracking results, false negatives
(FNs) are reduced, resulting in a better recall.

Our main contributions are: (1) We show that current
MOT approaches can be improved on the basis of their
predicted 2D bounding boxes. (2) We present a new FP-
classifier to improve tracking scores of individual track-
ers. (3) We show that combining trackers helps to compen-
sate for individual mistakes, setting a new state-of-the-art
performance.

The paper is structured as follows. We first review re-
lated work (Section 2). Section 3 introduces our false pos-
itive classifier. In Section 4 we present our approach to
combine different trackers. Experiments and evaluation are
given in Section 5.

2. Related Work
The problem of MOT branches into many problem for-

mulations, each with many methods, so we want to put the
focus on visual pedestrian tracking-by-detection.

The most common approach for tracking to deal with
the detector input is the Bayesian probability formulation.
These methods formulate tracking as inference, trying to
solve it via maximum a posteriori (MAP) estimation. Of-
ten an Extended Kalman Filter (EKF) [22] or a Particle Fil-
ter [24] is utilized. The weakness of the Particle Filter is
the computational complexity, while the result of the (E)KF
depends on the underlying motion model. Another branch
are graph-based approaches, like [25], where the detections
form a network and a tracking result is found via maxi-
mum flow. Further methods, like [29] use a CRF of small
tracklets. The result of graph-based approaches sticks to
detection, but using motion or occlusion information is of-
ten problematic. Here other approaches work better, e.g.,
the energy-minimization of Milan et al. [20, 19], which
is closely related to MCMCDA by [23]. Other methods
reach from Quadratic Pseudo-Boolean Optimization [15],
the Hungarian algorithm [10, 9, 30], using person identity
[13] or motion agreement [28].

Not only the number of methods makes evaluation dif-
ficult, but also other problems, like label noise [21] and
all the possible errors that can occur. While, like in de-
tection, false positives (FPs), and false negatives (FNs) can
be used to compute precision or recall, respectively, also
ID switches (IDS) or fragmentations (FRA) are of interest.
With the widely used CLEAR metrics [4] a more compact
evaluation is possible. Here Multi Object Tracking Accu-
racy (MOTA) represents the ratio of errors (FPs, FNs, IDS)
to ground-truth targets and Multi Object Tracking Precision
(MOTP) the average bounding box accuracy (average 2D
IoU) of matched pairs. Another tracking score proposed by
Li et al. [16] captures the mostly tracked (MT: more than
80%), mostly lost (ML: less than 20%) and partially tracked
(PT) ground truth targets. Still, it is important to keep all the

(a) Bounding box size (b) Bounding box overlap ratio

(c) Bounding box crowdedness
(d) Bounding box has supporting de-
tection

Figure 2: Illustration of the used 2D bounding box context
features used to train the FP-classifier. Solid boxes repre-
sent tracker output.

other factors (annotations, detections, evaluation script,...)
consistent [21]. The work on a consistent MOT evaluation
has just started [14].

Combining different tracking results has mainly been
done for single object tracking. For single object or tem-
plate based tracking already some fusion approaches ex-
ist, reaching from early feature fusion [31], to late tracker
fusion, e.g., using HMM [27] or SVMs [26], combining
the results of different trackers and showing an overall im-
provement. [18] and [3] present single-object tracker fu-
sion methods on bounding box level, where [18] compares
averaging, median and majority voting, and [3] uses dy-
namic programming to maximize an attraction energy func-
tion finding a continuous trajectory. Both methods only
take into account the position and size of bounding boxes of
different single-object trackers, where in our case overlap,
crowdedness and detection support are taken as additional
features in the MOT domain. Yet, there is hardly any work
carried out on fusing MOT results. Nevertheless, we do
not claim to give a sophisticated MOT fusion approach, but
rather show that in general the results of different tracking
system are in some ways orthogonal and can be combined to
compensate for each others mistakes, when keeping an eye
on the balance of errors. There is still room for improve-
ment, based on the used scene information, e.g., bounding
box context information to improve the behavior of differ-
ent MOT trackers.

3. FP classification with bounding box context

In this section we propose to identify tracking errors
based on the proposed output bounding boxes. Through the
observation that one tracker tends to struggle in similar con-
ditions (e.g. for small pedestrians, or in crowded scenes) our
goal is to learn to identify such situations. Ideally, different



trackers have different strengths, such that by removing in-
dividual weaknesses and then combining the trackers will
result in an improved performance. Therefore the false pos-
itive classifier is trained for each tracker individually, to ex-
ploit the individual tracker behaviors originating from the
motion model, occlusion terms, etc. and the failures that
may arise because of those.

Inspired by [17] we have chosen the following features
to capture bounding box context information:

Bounding box size. Tracking pedestrians far away from
the camera tends to be more difficult. In 3D tracking the
projected world position of a 2D bounding box belong-
ing to a person further away differs by several meters, if
the bounding box is only shifted by one pixel. In 2D, a
smaller bounding boxes contain fewer information, influ-
encing, e.g., the motion, or appearance model. For some
trackers, also too large bounding boxes may be a cause of
error. We use the bounding box height to approximate the
camera-pedestrian distance.

Bounding box overlap. As soon as an object gets partly
or fully occluded by other targets, keeping track of this ob-
ject gets harder. Unlike detectors, trackers are supposed to
localize those objects but tend to make mistakes. We use
the overlap-area-ratio to quantify if a tracked bounding box
might be occluded by other bounding boxes, disregarding
the exact role of the occlusion (occluder or being occluded).

Bounding box crowdedness. Tracking and identifying
individual pedestrians in crowded spaces is challenging.
Based on the detector output and the tracking history, the
tracker needs to quantify the number of objects in the scene
and also estimate their movement. Especially in crowded
scenes, the individual movements might drastically change,
e.g., to avoid collisions and might not be well predicted by
the motion model. Although bounding box overlap and
crowdedness are correlated, experiments show that using
both features is beneficial. To approximate the crowded-
ness a Gaussian window is centered on each tracked bound-
ing box, with the doubled width as variance. The sum of
those Gaussian weights at a center point of a bounding box
serves as an indicator for the crowdedness.

Bounding box has detection support. This binary fea-
ture captures if one by the tracker proposed bounding box
is supported by a detection or not. We consider a detection
to support a 2D tracking bounding box, if the IoU, i.e., the
Jaccard index, exceeds 50%.

Based on these four features, we train a support vector
machine (SVM) with a RBF-kernel individually for each
tracker in order to classify the predicted bounding boxes as
correct (TP) or not (FP).

FP

TP

FP

TP

FP

TP

Union

Intersection

SVM-Union

FP-SVM

∩

∪

∪
tracker 1

tracker 2

tracker n

……

Figure 3: Overview of the three different combination ap-
proaches.

4. Tracker combination
Different tracking systems often make different mis-

takes. For a qualitative example of such different errors see
Fig. 1. The reason for this can be explained by the usage of
different data association, motion and appearance models,
or if a method explicitly handles occlusions or not.

In the last section we analyzed bounding box context to
exclude FPs from individual trackers. We will now combine
different trackers with the goal of compensating each others
mistakes. We will present two baselines fusion approaches
together with our proposed tracker combination using the
false positive classifier from Section 3. The overview of the
different fusion approaches is illustrated in Fig. 3.

4.1. Union and Intersection

First we introduce two naive approaches to combine the
different trackers: bounding box Union and Intersection.

For the Union baseline we collect all the bounding boxes
of the different trackers. Whenever two or more bounding
boxes overlap, they are likely to describe the same ground
truth object. In that case, we construct one new bound-
ing box from all overlapping bounding boxes by averaging
over position and size (width and height). Which tracking
bounding boxes belong together is decided in a greedy data
association step based on the Jaccard index (IoU>50%).
Regarding the IDs of the combined targets a consistent ID
is kept as long as one of the different trackers had no ID
switch. The target IDs of the different trackers are stored



in a simple map. As soon as all trackers change their ID
regarding to this map, a new ID is assigned to the combined
result. Intuitively, this Union of the different trackers should
lead to a reduction of false negatives, as missed pedestrians
from one tracker might be found by another. On the other
hand all the errors add up. The focus of this baseline clearly
lies on decreasing the FNs (better recall) but has the draw-
back of increasing the FPs (worse precision).

The Intersection baseline follows the opposite strategy
by only keeping bounding boxes when all of the trackers
agree on them. Bounding box averaging and ID-handling
is carried out in the same way as for Union. Intersecting
means that the number of false positives (better precision)
will be decreased while missing out in recall.

4.2. SVM-Union

Union or Intersection both share the problem that one
error (FP or FN, respectively) is decreased, while the other
one increases. The so called MOTA score combines the
rates of FPs, FNs and ID switches and therefore decreases
for the proposed baselines. We consider this score crucial
to assess the combined trackers performance.

Our proposed method takes into account both: the com-
bined strength of all trackers to decrease FNs and also tries
to avoid accumulating FPs.

Algorithm 1 SVM-Union

Input: trackers T1...K with result bbTk = {bbTk}i,t
(box i at frame t) and trained FP-SVMTk

Output: Combined bounding boxes bb∗

// Apply FP-SVM to prune individual results
1: for each method Tk do
2: bbTk ← FP-SVMTk(bbTk)

// Build Union on individual results
3: bb∗ ← ∅
4: for each frame t do
5: for each method Tk do
6: for each bbTk

i,t ∈ bbTk do
7: bb′ ← {bbTk

i,t}
8: bbTk ← bbTk − bbTk

i,t

9: for each other method Tl, (l 6= k) do
10: j = argmax

z
IoU(bbTk

i,t , bb
Tl
z,t)

11: if IoU(bbTk
i,t , bb

Tl
j,t) > 0.5 then

12: bb′ ← bb′ ∪ bbTl
j,t

13: bbTl ← bbTl − bbTl
j,t

14: assign ID(bb′)
15: bb∗ ← bb∗ ∪ average position(bb′)

The main steps of the algorithm are shown in Alg. 1.

First the individual tracking results are filtered using the
learned classifier (Section 3). Then the Union operation
is applied, combining the strengths of the different ap-
proaches. The IDs (line 14) are assigned with a simple map,
as described in Section 4.1. Position and size of a combined
box (line 15) are averaged. As will be shown in the results
each tracker has some confident true positives, which are
not removed by the SVM classifier but at the same time are
not shared by the other trackers. Through such configura-
tion we are able to improve the overall tracking result.

5. Experiments
For our experiments, we have chosen a representative set

of MOT tracking methods, also based on code availability.

CEM. The continuous energy minimization by Milan et al.
[20] designs an energy function and minimizes it by using
a jump framework, closely related to MCMCDA. The en-
ergy is composed of several terms, incorporating observa-
tion support, constant velocity dynamics, spatial exclusion
and persistent existence of targets, as well as their number
and the length of their tracks [19]. This method leads to
long consistent tracks, with lowest number of ID switches
(IDS) compared to the other methods.

DP. The graph-based approach by Pirsiavash et al. [25]
minimizes the network-flow via dynamic programming. As
tracking is performed strictly on the detections without ad-
ditional occlusion handling, DP gives short but reliable
tracks, leading to a good precision (low number of FPs),
but suffers from more misses than other methods (number
of FNs).

TBD. The tracking-by-detection framework of Geiger et
al. [10, 9, 30] is part of a complex tracking system in urban
scenes. It relies on the well established extended Kalman
Filter (EKF) for predicting the targets’ positions in case of
a missing detection. The Hungarian algorithm is used to
both solve bipartite matching, associating detections from
one frame to another and connecting tracklets employing an
occlusion sensitive appearance model to bridge gaps. TBD
is able to track many targets resulting in good recall with a
lower precision than the other methods.

Note that all trackers are used as provided by the au-
thors. No parameter tuning has been done, especially not to
optimize the trackers’ output for our classification or com-
bination approach.

To ensure a consistent setup we use the DPM detections
of Felzenszwalb et al. [12, 7] and the evaluation script and
annotations from the MOTchallenge2015 [14] throughout
all the experiments. The methods are compared by using
common measures to assess the tracking quality, already
mentioned in Section 2: CLEAR metrics of [4] (MOTA,
MOTP), Recall, Precision, number of False Positives (FPs),
number of False Negatives (FNs), Number of ID switches



MOTA MOTP Recall Precision FP FN IDS MT PT ML FRA
CEM 25.73 71.29 35.70 83.84 244.9 2496.2 41.4 1.9 12.6 27.4 38.6
CEM+SVM 27.74 71.56 33.85 90.30 142.5 2581.7 42.8 1.3 12.2 28.4 53.4
DP 26.44 70.99 31.94 92.72 103.9 2665.6 81.8 0.8 13.3 27.4 93.1
DP+SVM 26.39 71.00 31.52 93.80 86.8 2695.4 79.9 0.7 13.1 27.7 93.0
TBD 36.52 71.31 47.01 85.65 288.4 2117.1 79.2 4.1 18.2 19.6 100.7
TBD+SVM 37.35 71.32 45.83 88.17 246.5 2176.5 75.7 4 17.7 20.2 101.4

Table 1: Comparison of single tracking results and single tracker+FP-SVM-classifier. Averaged tracking scores over all
scenes. Only improvements are highlighted in red to keep the presentation clear.

-% FP -% TP +% FN MOTA better MOTA worse MOTA equal
CEM+SVM 41.81 7.43 3.43 8/10 2/10 0/10
DP+SVM 16.46 3.04 1.12 2/10 1/10 7/10
TBD+SVM 14.53 3.88 2.81 6/10 3/10 1/10

method avg. 24.27 4.78 2.45 16/30 6/30 8/30

Table 2: Evaluation of the SVM-classifier in respect to the relative decrease of false positives (FP), as well as the decrease of
true positives (TP) and the involving increase of false negatives (FN). The resulting development in the MOTA score is listed
via the number of sequences.

MOTA MOTP Recall Precision FP FN IDS MT PT ML FRA
CEM 25.73 71.29 35.70 83.84 244.9 2496.2 41.4 1.9 12.6 27.4 38.6
DP 26.44 70.99 31.94 92.72 103.9 2665.6 81.8 0.8 13.3 27.4 93.1
TBD 36.52 71.31 47.01 85.65 288.4 2117.1 79.2 4.1 18.2 19.6 100.7
Union 37.2 71.6 50.10 84.10 336 2028 76 6 17 19 85.9
Intersection 23.2 72.2 25.60 93.30 80 2818 15 1 10.3 31 69.9
SVM-Union 39.12 71.66 48.88 87.70 257.5 2095.5 71.7 5.5 16.8 19.6 93.6

Table 3: Comparison of all single tracking results and the combinations. Averaged tracking scores over all scenes. Best
scores are highlighted in bold red. Second best scores in red, to also show improvements without the obvious baselines.

(IDS), number of mostly tracked (≥ 80%) pedestrians
(MT), number of mostly lost (≤ 20%) pedestrians (ML),
partially tracked (>20% and <80%) pedestrians (PT), and
the fragmentations (FRA).

We tested our methods on a large set of publicly avail-
able sequences of different data sets (ETH [6, 5], ADL [14],
KITTI [11], TUD [2, 1], PETS [8], Venice [14]), covering
the MOTChallenge2015 benchmark [14].

The training of the classifier (Section 3) is done via
cross-validation, i.e., in a leave-one-out fashion, to maxi-
mize the training information, while we test on the leftover
sequence.

5.1. False Positive Classification

We first analyze the quality of the false positive classi-
fier (FP-SVM) individually for each tracker and show its
impact on the tracking scores. Table 1 summarizes the re-
sults, showing the individual methods alone and in combi-
nation with the FP-SVM. All scores are averaged over the
ten sequences. The scores of the individual sequences can

be found in the supplementary material. As can be seen
on the left half of Table 2 the number of false positives are
reduced by 24.3%, while removing only 4.8% of the good
hypotheses (increasing the number false negatives by only
2.5%) averaged over all methods. This leads to a consistent
improvement in precision and MOTP. It also shows that our
false positive classification is effective.

On a sequence level, the right part of Table 2 shows the
absolute number of sequences on which the FP-SVM im-
proved results based on MOTA score, how often it got worse
or stayed the same. For CEM and TBD the FP-SVM im-
proved MOTA in most of the sequences. On the other hand
DP does not severely change. This is good news, as Table 1
shows that DP has already a very good precision and the FP-
SVM learns not to throw away good bounding boxes. This
is also consistent with our observation that DP outputs short
but precise tracks. For reference, the highest improvement
of the MOTA score on a single sequence is +6.1 percentage
points for TBD on KITTI-17, +9.9 for CEM and +1.2 for
DP on KITTI-13.
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Figure 4: Normalized histograms of boxes that are classified
as FP by the SVM classifier. The projection on the two
features height (left) and crowdedness (right) are shown for
each method, averaged over all sequences.

Fig. 4 gives some insight to the different classifiers’ be-
havior, showing the distribution of boxes classified as FP on
two projections in the feature space, height and crowded-
ness. The other two features, occlusion and detection sup-
port can be found in the supplementary material. We can see
that the SVM for DP and TBD mainly discards small boxes
in clear areas. While for TBD still some large boxes and
boxes in crowded areas are discarded, the classifier learned
for CEM captures a broader distribution of discarded boxes
in terms of both heights and levels of crowdedness. Note
that this projection onto one feature is simplistic but gives
a rough idea of the learned failure cases of the individual
tracking methods.

5.2. Tracker Combination

We proposed several combinations of trackers, namely
Union, Intersection, and SVM-Union. Tab. 3 compares the
combined methods to the original individual ones. We again
show the averaged results over all sequences, results on in-
dividual sequences are found in the supplementary material.

The results of our baselines look somewhat expected. In-
tersection has the best precision, but the worst recall; Union
the best recall but misses precision. The result also shows

that our proposed SVM-Union combines the benefits of
both of the (rather extreme) baselines. This can be mainly
observed on the combined tracking scores MOTA (but also
MOTP), for which our SVM-Union outperforms all of the
individual methods. The best individual method (TBD) by
2.6 percentage points and CEM by 13.39 percentage points.
On the sequence level, SVM-Union improves the MOTA
score on 8 out of the 10 sequences. Fig. 5 gives an overview
of the development of the MOTA score for the individual se-
quences. The comparison shows each original method, its
SVM pruned classification result and the final fusion result,
showing an overall improvement.

6. Conclusion

In this paper we have shown that current state-of-the-
art MOT trackers can still be improved by only using the
high level information of bounding box context. We have
designed a FP-classifier which is (despite of its simplicity)
able to improve tracking scores of the core trackers on a
large set of commonly used sequences. In addition we ana-
lyzed the possibilities to combine several MOT results. Our
final method SVM-Union is able to prune errors of the indi-
vidual methods while combining their strength resulting in
an improved tracking performance.

The proposed late fusion of the trackers shows that there
is still room for improvement and that there are some or-
thogonal strengths and weaknesses of the individual meth-
ods which should be exploited in a unified tracking ap-
proach in future work.
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