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Abstract—In this paper, we address the problem of automatically detecting and tracking a variable number of persons in complex
scenes using a monocular, potentially moving, uncalibrated camera. We propose a novel approach for multi-person tracking-by-
detection in a particle filtering framework. In addition to final high-confidence detections, our algorithm uses the continuous confidence
of pedestrian detectors and online trained, instance-specific classifiers as a graded observation model. Thus, generic object category
knowledge is complemented by instance-specific information. The main contribution of this paper is to explore how these unreliable
information sources can be used for robust multi-person tracking. The algorithm detects and tracks a large number of dynamically
moving persons in complex scenes with occlusions, does not rely on background modeling, requires no camera or ground plane
calibration, and only makes use of information from the past. Hence, it imposes very few restrictions and is suitable for online
applications. Our experiments show that the method yields good tracking performance in a large variety of highly dynamic scenarios,
such as typical surveillance videos, webcam footage, or sports sequences. We demonstrate that our algorithm outperforms other
methods that rely on additional information. Furthermore, we analyze the influence of different algorithm components on the robustness.

Index Terms—Multi-object tracking, tracking-by-detection, detector confidence particle filter, pedestrian detection, particle filtering,
sequential monte carlo estimation, online learning, detector confidence, surveillance, sports analysis, traffic safety
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INTRODUCTION

EW video cameras are installed daily all around the

world, as webcams, for surveillance, or for a multitude
of other purposes. As this happens, it becomes increasingly
important to develop methods that process such data streams
automatically and in real-time, reducing the manual effort
that is still required for video analysis. Of particular interest
for many applications is the behavior of persons, e.g., for
traffic safety, surveillance, or sports analysis. As most tasks at
semantically higher levels are based on trajectory information,
it is crucial to robustly detect and track people in dynamic
and complex real-world scenes. However, most existing multi-
person tracking methods are still limited to special applica-
tion scenarios. They require either multi-camera input, scene-
specific knowledge, a static background, or depth information,
or are not suitable for online processing.

In this paper, we address the problem of automatically
detecting and tracking a variable number of targets in complex
scenes from a single, potentially moving, uncalibrated camera,
using a causal (or online) approach. This problem is very
challenging, because there are many sources of uncertainty
for the object locations such as measurement noise, clutter,
changing background, and significant occlusions.
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In order to cope with those difficulties, tracking-by-detection
approaches have become increasingly popular, driven by the
recent progress in object detection. Such methods involve the
continuous application of a detection algorithm in individ-
ual frames and the association of detections across frames.
In contrast to background modeling-based trackers, they are
generally robust to changing background and moving cameras.

The main challenge when using an object detector for
tracking is that the detector output is unreliable and sparse, i.e.,
detectors only deliver a discrete set of responses and usually
yield false positives and missing detections. Thus, the resulting
association problem between detections and targets is difficult.
Several recent algorithms address this problem by optimizing
detection assignments over a large temporal window in an
offline step [1], [3], [26], [30]. They use information from
future frames and locate the targets in the current frame
with a temporal delay or after the entire sequence has been
observed. In contrast, Sequential Monte Carlo methods offer
a framework for representing the tracking uncertainty in a
causal manner. By only considering information from past
frames, such approaches are more suitable for time-critical,
online applications.

Although a few methods exist for online multi-target
tracking-by-detection, they rely only on the final, sparse output
from the object detector [7], [33], [45]. In contrast, our
approach is based on monitoring its continuous detection
confidence and using this as a graded observation model. The
intuition is that by forgoing the hard detection decision, we
can render tracking more robust. Although such a combination
appears desirable, available object detectors have only been
optimized for accurate results at those locations passing the
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final non-maximum suppression stage. This said, it is not
guaranteed that the shape of the confidence volume in-between
those locations will support tracking. In particular, a majority
of the densities’ local maxima correspond to false positives
that may deteriorate the tracking results, especially during
occlusions and when several interacting targets are present.

The main contribution of our work is the exploration how
this unreliable information source can be used for robust
multi-person tracking. Our algorithm achieves this robustness
through a careful interplay between object detection, classifi-
cation, and target tracking components. Typically, a bottom-up
process deals with target representation and localization, trying
to cope with changes in the appearance of the tracked targets,
and a top-down process performs data association and filtering
to deal with object dynamics. Correspondingly, our approach is
based on a combination of a general, class-specific pedestrian
detector to localize people and a particle filter to predict the
target locations, incorporating a motion model. To complement
the generic object category knowledge from the detector, our
algorithm trains person-specific classifiers during run-time to
distinguish between the tracking targets.

This paper makes the following contributions:

1) We combine a generic class-specific object detector and
particle filtering for robust multi-person tracking suitable
for online applications. The algorithm addresses the
specific problems caused by the unreliable output from
object detectors and the presence of multiple, possibly
interacting targets.

2) To handle false positive detections, we learn target-
specific classifiers at run-time, which are used to select
high-confidence detections and associate them to targets.

3) To handle missing detections, we exploit the continuous
confidence density output of detectors and classifiers.

4) We analyze and discuss the robustness of the method,
in particular the influence of each part of the algorithm.

5) We experimentally validate our method on a large vari-
ety of highly dynamic scenarios. We quantitatively com-
pare our method to other algorithms and demonstrate
that ours outperforms several state-of-the-art algorithms
that require multi-camera setups, scene knowledge, non-
causal processing, or that rely on object detectors that
are specifically trained for a specific application.

In contrast to our previous work [5], [6], we increase the
robustness of the tracker by detecting re-appearing persons
that temporally left the scene. Second, we discuss how the
different observation model terms assist in handling difficult
situations, and we quantitatively evaluate the influence of these
terms. Third, we show additional results and experiments.
Additionally, we provide a more comprehensive description
of the algorithm as well as implementation details.

The paper is structured as follows. After discussing related
work in the following section, Section 3 describes the algo-
rithm and several important design choices. Section 4 presents
a quantitative evaluation on a large variety of datasets and a
comparison to other algorithms. In Section 5, the robustness
of the observation model is discussed in detail. Section 6
concludes the paper with a summary and outlook.

2 RELATED WORK

Particle Filtering. Particle filters were introduced to the
vision community to estimate the multi-modal distribution
of a target’s state space [19]. Other researchers extended
the framework for multiple targets by either representing all
targets jointly in a particle filter [43] or by extending the
state space of each target to include components of other
targets [41]. In the first approach, a fixed number of particles
represent a varying number of targets. Hence, new targets
have to “steal” particles from existing trackers, reducing the
accuracy of the approximation. In the second approach, the
state space becomes increasingly large, which may require a
very large number of particles for a good representation. Thus,
the computational complexity increases exponentially with the
number of targets. To overcome these problems, most methods
employ one particle filter per target using a small state space
and deal with interacting targets separately [21], [24], [38].

Tracking-by-Detection. While many tracking methods
rely on background subtraction from one or several static
cameras [3], [20], [24], [42], [49], recent progress in object
detection has stimulated the interest in combining tracking
and detection. In contrast to data association based tracking
approaches, which link detection responses to trajectories by
global optimization based on position, size and appearance
similarity [1], [3], [18], [26], [30], [36], [48], the combination
of object detectors and particle filtering results in algorithms
that are more suitable for time-critical, online applications.

To this end, Okuma et al. [33] combine the algorithm of
Vermaak et al. [43] with a boosted object detector. Cai et
al. [7] extend this boosted particle filter using independent
particle sets for each target to increase the robustness for mul-
tiple targets. Additionally, to handle occlusions more robustly,
other researchers use 3D information [11], [15], train detectors
for individual body parts [45], or apply application-specific
motion models [35]. However, all of those approaches have in
common that they rely only on the final, sparse output from
the object detector. On the other hand, state-of-the-art object
detectors all build up some form of confidence density as one
stage of their pipeline, which could be used instead as a graded
observation model to handle difficult situations more robustly.

Previous algorithms that exploit this intermediate output
have been developed primarily for single-target tracking
(mostly of faces) and have not been evaluated thoroughly for
multiple, interacting targets [27]. For example, to apply their
method to several targets, Li ef al. [27] need to employ offline
post-processing [29]. Similarly, tracking can be performed by
exploiting a classifier trained to distinguish between object
and background [2], [17]. Similar approaches exist that apply
classifiers with different confidence thresholds [28], [46] or ac-
cumulate detection probabilities temporally [8], [40]. However,
the extension of these methods to robust multi-target tracking
is not trivial. Relying on the detector confidence in every situ-
ation can cause tracking errors, particularly during occlusions
between interacting targets and in complex, cluttered scenes.
This work presents a method to use this unreliable information
source for robust multi-person tracking.
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Data Association. Using independent trackers requires
solving a data association problem to assign detections to
targets. Classical approaches include the Joint Probabilistic
Data Association Filter (JPDAF) [13] and Multi Hypotheses
Tracking (MHT) [39]. MHT considers multiple possible as-
sociations over several time steps, but its complexity usually
limits the analysis to only few such steps. JPDAFs instead try
to make the best possible assignment in each time step by
jointly considering all possible associations between targets
and detections, to the cost of an exponentially increasing
complexity. Alternatively, the Hungarian algorithm [22] can
be used to find the best assignment of possible detection-
tracker pairs in a runtime that is cubic in the number of targets.
In practice, a greedy approach is however often sufficient, as
pointed out by [45].

We stick to a greedy scheme and focus on obtaining a good
scoring function. Such an approach is also used by Cai et
al. [7], but their assignments are made only based on the
spatial distance, without considering target appearance. This
can be problematic for complex scenes with many targets
and difficult background, where many false positive detections
occur. Additionally, color histograms can be learned (e.g.,
separately for different body parts [45]), which however do
not always distinguish very well between the targets. Instead,
we employ target-specific classifiers that are trained at run-
time. Song et al. [42] presented a tracking algorithm that also
learns target-specific classifiers. However, their method relies
on background modeling and employs classifiers only when
targets merge and split (i.e., during occlusions). In contrast,
our method exploits the classifiers in each time-step similarly
to the very recent work of Kuo ef al. [23], using it both for
data association and for the observation model.

3 DETECTOR CONFIDENCE PARTICLE FILTER

For many tracking applications, only past observations can be
used at a certain time step to estimate the location of objects.
Within this context, Bayesian Sequential Estimation is a pop-
ular approach, which recursively estimates the time-evolving
posterior distribution of the target locations conditioned on
all observations seen so far. This filtering distribution can
be approximated by Sequential Monte Carlo Estimation (or
Particle Filtering), which represents the distribution with a set
of weighted particles and consists of a dynamic model for
prediction and an observation model to evaluate the likelihood
of a predicted state [10].

As object detection has made impressive improvements
over the last years, a promising strategy is to employ an
object detector for the observation model. However, the re-
sulting detections are often not reliable (Fig. 1), i.e., not all
persons are detected in each frame (missing detections) and
some detections are not caused by a person (false positive
detections). Furthermore, in cases where no depth or scene
information (e.g., ground plane) is available, the detector does
not know where to expect objects of which size in the image.
To address these problems, many recent methods rely on
global optimization techniques instead of making successive,
irreversible decisions at each time step, which is a major
limitation for time-critical applications.
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Fig. 1: The output of a person detector (right: ISM [25], left:
HOG [9]) with false positives and missing detections.

3.1 Algorithm Overview

Our algorithm implements a first-order Markov model, con-
sidering only information from the current and the last time
step, and integrates both class-specific and target-specific
information in the observation model. A separate particle filter
(tracker) is automatically initialized for each person detected
with high confidence. To achieve the necessary robustness, the
information from an object detector is integrated in two ways.
First, the algorithm carefully assesses the high-confidence
detections in each frame and selects maximally one to track
one particular target. In order to resolve this data association
problem, it evaluates a scoring function integrating classifiers
that are trained during run-time for each target, the distance
to the tracking target, and a probabilistic gating function
accounting for the target size, motion direction, and velocity.
If a detection is classified as reliable based on this function,
it is mainly used to guide the associated tracker. Otherwise,
the continuous detector confidence and output of the target-
specific classifiers are mainly used. To evaluate the reliability
of the detector confidence, we perform explicit inter-object
occlusion reasoning.

Detector Confidence. At the core of our approach lies the
confidence density built up by person detectors in some form.
This is the case for both sliding-window based detectors such
as HOG [9] and for feature-based detectors such as ISM [25].
In the sliding-window case, this density is implicitly sampled
in a discrete 3D grid (location and scale) by evaluating the
different detection windows with a classifier. In the ISM
case, it is explicitly created in a bottom-up fashion through
probabilistic votes cast by matching, local features.

In order to arrive at individual detections, both types of
approaches search for local maxima in the density volume
and then apply some form of non-maximum suppression.
This reduces the result set to a manageable number of high-
confidence hypotheses, but it also throws away potentially
useful information. Figure 2 illustrates both types of output. As
can be seen, there are situations where a detector did not yield
a final detection, but a tracking algorithm could still be guided
using the confidence density. On the other hand, both detectors
also show a high detector confidence on certain background
structures. Thus, relying on this intermediate output leads to
tracking errors (c.f., [27], [28], [46]).



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SUBMITTED JANUARY 2010, REVISED OCTOBER 2010 4

Fig. 2: Detector output (top: ISM [25], bottom: HOG [9]),
showing high-confidence detections (left, green rectangles)
and the detector confidence (right, shaded overlay). The confi-
dence density often contains useful information at the location
of missing detections, which we exploit for tracking.

3.2 Particle Filtering

Our tracking algorithm is based on estimating the distri-
bution of each target state by a particle filter. The state
x = {x,y,u,v} consists of the 2D image position (x,y) and
the velocity components (u, v). We employ the bootstrap filter,
where the state transition density (or prior kernel) is used as
importance distribution to approximate the probability density
function [16]. The importance weight w for each particle i at
time step ¢ is described by:

wp o wpy - plo]ay). (D
Since re-sampling is carried out in each time step using a fixed
number of N = 100 particles, wi_, = % is a constant and can
be ignored. Thus, Eq. (1) reduces to the likelihood of a new
observation o; given the propagated particles x, which we
estimate as described in Sec. 3.4 (Eq. (0)).

Size and Position. Instead of including the size of the
target in the state space of the particles, the target size is
set to the average of the last four associated detections. In
our experiments, this yielded better results, possibly because
the number of particles necessary to estimate a larger state
space is growing exponentially. Although represented by a
(possibly multi-modal) distribution, a single position of the
tracking target at the current time step is sometimes required
(e.g., for visualization or evaluation).

Motion Model. To propagate the particles, we use a
constant velocity motion model:
($7y)t

(uv U)t =

(T, 9)e-1 + (u, )11 - At + E(w,y) @)
(u, U)t—l + €(u,v)- 3)

The process noise € y),€(u,y) for each state variable is
independently drawn from zero-mean normal distributions.
The initial variances 0(2% Y) and 0'(2% . for position and velocity
noise are set proportionally to the size of the tracking target.

Fig. 3: The initialization and termination region for a typical
surveillance scenario (left). The initial particles are drawn
from a normal distribution centered at the detection (middle).
The weight of each particle is determined by evaluating the
respective image patch (right).

During tracking, they decrease inversely proportional to the
number of successfully tracked frames (down to a lower limit).
Hence, the longer a target is tracked successfully, the less the
particles are spread. At is dependent on the framerate of the
sequence.

For sequences with abrupt, fast camera motion (which could
be detected automatically), we apply the same motion model
but additionally employ the Iferative Likelihood Weighting
procedure [32]. To this end, the particles are divided into
two sets, from which the first set is propagated normally. The
particles from the second set are iteratively propagated and
weighted several times (in our case, three times), to allow for
more extreme particle movements within one time step.

Initialization and Termination. Object detection yields
fully automatic initialization. The algorithm initializes a new
tracker for an object that has subsequent detections with
overlapping bounding boxes, which are neither occluded nor
associated to an already existing tracker. In order to avoid
persistent false positives from similar looking background
structures (such as windows, doors, or trees), we only initialize
trackers from detections that appear in a zone along the
image borders for sequences where this is reasonable, such
as for typical surveillance settings. This was the case for
most experiments in Sec. 4, where the initialization region
was comparable to Fig. 3 (left). For sequences where targets
appear in the middle of the image, e.g., for shorter sequences
(TUD Crossing) or for sequences from moving cameras (UBC
Hockey, Soccer), we initialized on the entire image.

The initial sample positions are drawn from a normal
distribution around the detection center (Fig. 3, middle). The
initial size corresponds to the detection size, and the motion
direction is set to be orthogonal to the closest image border.

A tracker only survives a limited number of frames without
associated detection and is then automatically terminated.
However, to re-detect a target that temporally leaves and later
re-enters the field of view, the trackers are only deactivated
(c.f,, [6]). Thus, instead of immediately initializing a new
tracker, the algorithm checks first if the same target has already
been observed before. For this purpose, the classifier of each
deactivated tracker is evaluated.
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Algorithm 1 Greedy data association.
T : set of all trackers
D : set of all detections
S(tr,d) : scores for each tracker-detection pair, Eq. (4)
A(tr,d) = 0 : final associations of detection d to tracker tr
Require: Vir € T: ) A(tr,i) <1
Require: Vd € D : 3, A(j,d) <1
while T'# & A D # @ do
(tr*,d*) = arg maxerer,aep S(tr, d)
if S(tr*,d*) > 7 then

A(tr*,d*) =1
T ={T\tr*}
D={D\d"}

3.3 Data Association

In order to decide which detection should guide which tracker,
we solve a data association problem, assigning at most one
detection to at most one target. The optimal single-frame
assignment can be obtained by the Hungarian algorithm [22].
In our experiments, we however found that a greedy algorithm
achieves similar results at lower computational cost.

Greedy Data Association. The matching algorithm works
as follows (see Algorithm 1): First, a matching score matrix
S for each pair (¢r,d) of tracker ¢r and detection d is
computed as described below. Then, the pair (¢r*,d*) with
maximum score is iteratively selected, and the rows and
columns belonging to tracker ¢r and detection d in S are
deleted. This is repeated until no further valid pair is available.
Finally, only the associated detections with a matching score
above a threshold are used, ensuring that a selected detection
actually is a good match to a target. Consequently, the chances
are high that often no detection will be associated with a target,
but if one is, it can be used to strongly influence the tracker.

Matching Score. Our data association method evaluates
a matching function S(¢r,d) for each tracker-detection pair
(tr,d). The higher the score, the better the match between
detection and tracking target. It employs a classifier c¢;.(d)
trained for ¢r, which is evaluated for d:

N
S(tr,d) = g(tr,d) - (cor(d) + a- Y py(d—p)), @)

pEtT

where prr(d—p) ~ N (posq—posy; 0,0?) denotes the normal
distribution evaluated for the distance between the position of
detection d and a particle p, and g(tr,d) is a gating function
described next. The last term of (Eq. (4)) measures the density
of the particle distribution, rewarding associations where the
particles are densely distributed around the detection.

Gating Function. Not only the distance of a detection
to the tracker is important, but also its location with respect
to the motion direction. Therefore, a gating function g(tr,d)
additionally assesses each detection. It consists of the product
of two factors:

g(tr,d) = p(sizeq|tr)p(pos 4|tr) (5)

Fig. 4: The gating function depends on the velocity of the
target, resulting in different 2D cone angles or a radial decay.

Fig. 5: The classifier response (heat map) visualized for one
tracking target (white). As the classifier is adapted continu-
ously, it becomes more discriminative (right: 20 frames later).

lf ‘vtr| < Ty

_ Jon (5FE ) o (d = )
otherwise.

p/\/(%) -pa(dist(d, ve,))

The first normal distribution measures the agreement between
the bounding box height of target and detection. The second
normal distribution follows the intuition that fast-moving ob-
jects cannot change their course abruptly because of inertia.
Therefore, the term depends on the velocity of the target. If
the velocity |vy,| is below a threshold 7, it is ignored and the
term is proportional to the distance from the center of the main
mode of tracker tr to detection d. In this case of a (almost)
motionless target, the function decays radially (Fig. 4).

Otherwise, the second term depends on the distance between
the detection d and the line vy, = (u, v) given by the position
of the tracker and the direction component of the velocity. The
variance for this term is chosen such that it is proportional to
the distance from the tracker to the detection projected to vy,..
Thus, a detection d; with the same distance to the line vy,
than another detection ds, but which is closer to the tracker
tr, gets a lower score. Hence, the isolines of Eq. (5) then form
a 2D cone (Fig. 4). Furthermore, the angle of the 2D cone is
made smaller the higher the speed of the target.!

Boosted Classifiers. To assess the similarity of a tracker-
detection pair, we use the algorithm from Grabner et al. [17].
We train a boosted classifier ¢;. of weak learners for each
tracking target against all others during run-time. Each weak
learner represents a feature computed for both a positive and
a negative training image (see Sec. 4.2 for a description of
the features). For each classifier, weak learners are selected
using AdaBoost. During evaluation, a classifier computes the
similarity between the input and all its weak learners using a
k-Nearest Neighbor classification approach.

1. The second term of Eq. (5) is equivalent to an angular error that
is correctly measured by the von Mises distribution, but can be closely
approximated by a Gaussian distribution in the 1D case [31].
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Positive training examples are patches sampled from the
bounding box of the associated detection (the sampling prob-
ability is higher the closer a patch is to the vertical cen-
ter line). The negative training set is sampled from nearby
targets, augmented by background patches. The classifier is
only updated if a detection does not overlap with another
detection. After each update step, we keep a constant number
of the most discriminative weak learners. Thus, the classifier is
continuously adapted, becoming more and more discriminative
(Fig. 5). This framework has several advantages: it allows us
to include different features, it automatically selects the most
discriminative feature set, and it provides a natural way to
adapt to appearance changes of the targets.

3.4 Observation Model

To compute the weight wy,.,, for a particle p of the tracker
tr, our algorithm estimates the likelihood of a particle. For
this purpose, we combine different sources of information,
namely the associated detection d*, the intermediate output
of the detection algorithm, and the output of the classifier c;,:

Wiy = B-Z(tr) - par(p — d*) +7 - de(p) - po(tr) +1 - cer(p)
————

detection

det. confidence classifier

where the parameters /3, 7, 1) are set experimentally and remain
fixed during tracking (see Sec. 3.5). Each term is described
below in detail.

Detection Term. The first term computes the distance be-
tween the particle p and the associated detection d*, evaluated
under a normal distribution par. Z(¢r) is an indicator function
that returns 1 if a detection was associated to the tracker and
0 otherwise by the data association procedure described in
Section 3.3. When a matching detection is found, this term
robustly guides the particles.

Detector Confidence Term. The second term evaluates
the intermediate output of the object detector by computing
the detector confidence density d.(p) at the particle position.
To estimate d.(p) for the ISM detector, we compute the local
density p in the Hough voting space using a cubic kernel
adapted to the target size and scaled with f = 1 — exp(—p)
to [0,1]. For the HOG detector, d.(p) corresponds to the
raw SVM output before applying non-maximum suppression,
which is also scaled to [0, 1].

Unfortunately, the detector confidence is not always reliable;
often, an erroneously high value is caused by background
structures (Fig. 2). To assess its reliability, our algorithm
therefore performs inter-object occlusion reasoning using the
following rationale: if another tracker ¢’ is nearby that is
associated with a detection, the detector confidence at this
image location and in its proximity is most probably caused by
the foreground and not by background structure. Consequently,
it is likely that the detector did not find both targets because
of the occlusion. In this case, we assume that the detection
confidence is meaningful in this image area and can be used
to guide the tracker. Hence, the function p,(tr) increases the
influence of the detector confidence for tracker ¢r in Eq. (6)

Fig. 6: Visualization of the detector confidence reliability
function, which returns for tracker a a higher value (right)
if another tracker b with associated detection is close.

the closer another tracker ¢r’ is:
1 it Z(tr)=1

tr—tr') else if IZ(tr') =1
tr,:lzrg%:lpfv(r r') else if SZ(tr") (7)

0 otherwise.

po(tr) =

Note that the region defined by ps is rather large, as shown in
Fig. 6, where the function is evaluated for person a entering
the scene from the right. Thus, the confidence map is only
completely ignored when no track passes by even close to the
corresponding image region, which is only rarely the case in
practice.

Classifier Term. For the third term of Eq. (6), the classifier
¢y trained for target ¢r (Sec. 3.3) is evaluated for the image
patch at the particle location with the corresponding size
(Fig. 3, right). This term uses color and texture information
to assess the new particle position and complements the terms
from the detector output. While other tracking methods are
purely based on such classifier output (e.g., [2], [17]), this adds
additional robustness to our particle filter approach, especially
during partial occlusions. In addition, the combination of
generic category knowledge and person-specific information
makes our approach more robust to classifier drift.

3.5 Implementation

Detectors. For all experiments, we employ either the HOG
detector [9] or the ISM detector [25], which are publicly
available and not trained specifically for our tracking scenarios
(c.fs [7], [33]). We apply the provided ISM model trained on
side-views of persons with size 80 x 200 pixels, operating on
Hessian-Laplace interest points. The HOG detector is trained
on the INRIA Person Dataset, resized to 48 x 96 pixels for a
better correspondence of the person size in the test data.

Algorithm Parameters. All parameters have been set
experimentally and most remained identical for all experiments
with different sequences. This was the case for the variances
o? in Egs. (4)—(7), for a in Eq. (4), for 3 and 7 in Eq. (6), and
for 7 in Algorithm 1. Only v was increased for one sequence
(TUD Crossing, see Section 5) to overcome very long-lasting
overlaps between detections by the detector confidence. 3,7y, n
were chosen experimentally and set such that the ratio between
the respective terms in Eq. (6) are approximately 20:2:1 for a
tracker with associated detection. Hence, if a reliable detection
is found, the first term of the observation model mainly
guides the particles, which is the case every 2—10 frames on
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average, depending on the sequence. During a typical tracking
cycle, the contribution of each of the individual observation
model terms to the total particle weight can however differ
significantly. We analyze the influence of each term to the
overall robustness in Sec. 5.

The initial target size corresponds to the size of the detection
(scaleges is the size compared to the detector training size).
The initial sample positions are drawn from a normal distribu-
tion with standard deviation o = 6 - scalege; pixels, centered
at the detection bounding box center. The standard deviations
for the position and velocity noise are set to 0 = 4 - scaleget
and o = 12- scaleye; pixels (i.e., about 10 and 30 pixels for a
target with a height of 180 pixels (scaleger = 2.5)). The initial
motion direction is set to be orthogonal to the closest image
border with magnitude v = 24 - scalege; pixels. To handle
abrupt motion changes in sports sequences, we increased o2
in Egs. (2)-(3) to make the motion model more flexible.

4 EXPERIMENTS

4.1 Datasets

There is no generally accepted benchmark available for multi-
person tracking. Therefore, most related publications have
carried out experiments on their own sequences, which we
have tried to combine. Thus, we evaluate on a large variety
of challenging sequences: ETHZ Central [26], TUD Campus
and TUD Crossing [1], i-Lids AB [18], [45], UBC Hockey [7],
[33], PETS’09 S2.L1-S2.L.3 [12], ETHZ Standing [14], and
our own Soccer dataset.”

These sequences are taken from both static and moving
cameras, and they vary with respect to viewpoint, type of
movement, and amount of occlusion. While some datasets
show rather classical surveillance and security scenarios from
an elevated viewpoint, others are captured at eye level and are
typical for robot / car navigation and traffic safety applications,
while some are sports sequences with abrupt motion changes
of the players and moving cameras. For all sequences, we
use only a single camera (c.f., [3]), we do not assume any
scene knowledge such as ground plane calibration (c.f., [14],
[26]) or scene-specific entry/exit zones (c.f., [18]), do not
employ an object detector specifically trained for a certain
application scenario (c.f., [7], [33]), and process the sequences
in a causal way (i.e., without using information from future
frames, c.f., [3], [14], [18]).

We use the detectors originally used with these sequences:
we employ the ISM detector for ETHZ Central, TUD Cross-
ing, TUD Campus, ETHZ Standing and UBC Hockey. For
i-Lids, PETS’09 and Soccer, we use the HOG detector, since
it is not only trained on side-views of persons in contrast to
the ISM detector. For the PETS’09 dataset, the input images
are resized from originally 768 x 576 pixels to 1280 x 960
pixels, such that the size of the persons better corresponds to
the detector training size (analogously for the Soccer dataset).

2. The references indicate publications with state-of-the-art results. Please
watch our result videos: http://www.vision.ee.ethz.ch/~bremicha/tracking

4.2 Classifier Features

To select features for the boosted classifier (i.e., number,
type, combination of features), we evaluate the ability of the
classifiers to distinguish between the correct target and all
others. To this end, we compare the classifiers on different
sequences using annotated ground truth. Ideally, the classifier
returns a score of +1 for the target it is trained for, and —1 for
all other targets. Hence, the larger the difference between the
classifier score for a correct and the other targets, the better the
classifier can distinguish between them. In the Figures 7(a)-
7(d), we plot the difference of the classifier score on the
annotated targets and the highest score on all other targets.

We performed experiments with color histogram features in
RGB (red-green-blue), HS (hue-saturation), RGI (red-green-
intensity) and Lab space, and with texture features LBP (local
binary patterns) and Haar wavelets. Each feature is computed
on a patch with random size and position, sampled from within
the bounding box of a detection or tracker main mode.

In Fig. 7(a), we plot the score difference for 200 frames of
the TUD Crossing sequence [1], using 50 RGI color features
with 3 bins per color channel. The score difference is large
for most targets and throughout most frames. Importantly, it
is never negative, i.e., two targets are never mixed up. Some
targets are more difficult to distinguish than others because of
their (similar) clothing. The score difference declines some-
times when a new target enters the scene, against which the
other classifiers are not trained yet. Also, when the appearance
of a target changes (e.g., during an occlusion), the classifier
needs some time to adapt, causing the performance to drop.

In Fig. 7(b), we investigated the impact of different color
features on classification accuracy and speed, averaged over all
targets and frames. The accuracy increases if more bins are
used for the color histogram. However, also the computation
time (incl. training and testing) increases. As a compromise,
we chose the RGI feature with 3 bins per color channel.
Fig. 7(c) shows the evaluation for feature combinations and
numbers of features (i.e., weak learners). We use 50 features
per classifier. Fig. 7(d) shows the effect of combining different
features for different sequences. The combination of RGI and
LBP features often outperforms color or textural features alone
and other combinations. We use RGI and LBP features for all
sequences.

4.3 Qualitative Analysis

ETHZ Central. The output of the ISM detector is very noisy
for the ETHZ Central dataset (Fig. 8, top). The cars and road
markings produce many false positives, and pedestrians are
often not detected. Only a few detections consistently match
the targets throughout the sequence (e.g., the blue tracker in
Fig. 8, bottom, gets assigned a detection only every 30 frames).
Thus, the trackers often rely on the detector and classifier
confidence. Furthermore, there are many occlusions, e.g., when
people walk in parallel. Hence, the correct association of
detections to trackers is a key factor of our algorithm.

TUD Campus. The ISM detections are more accurate for
the TUD Campus dataset. On average, a tracker is associated
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Fig. 7: (a) Classifier evaluation on the TUD Crossing sequence with 50 RGI features and 3 bins per color channel. We plot
the difference between the classifier score on the correct target and the highest score on all other targets. (b) Evaluation of
performance (left scale) and computation time (bars, right scale) for different color features. (c) Evaluation of the number of
features per classifier. (d) Evaluation of feature combinations for some datasets.

Fig. 8: Result for the ETHZ Central dataset (top: final ISM de-
tections (green) and detector confidence (heat map)), tracking
result (bottom).

with a detection in every second frame. Since the different
persons have different sizes, it is easier to assign detections
to trackers (Fig. 9(a)). However, many long inter-object oc-
clusions occur, e.g., the cyan tracker fully occludes four other
persons temporarily. During these occlusions, the particles of
the other trackers are attracted by the high detector confidence
around the cyan target, until the other targets reappear.

TUD Crossing. In contrast, most persons in the TUD
Crossing dataset have a similar size (Fig. 9(b)); thus, the
detection sizes are not useful to simplify data association.
Additionally, most persons walk at similar speeds, so this cue
also cannot be used to resolve ambiguities. By increasing the
influence of the detector confidence term (i.e., v in Eq. (6),
as described in Sec. 3.5), all persons are however successfully
tracked through the long inter-object occlusions.

AVSS i-Lids AB Medium. Due to the elevated camera
viewpoint, the persons occlude each other frequently, and their
visible sizes differ substantially (Fig. 9(c)). This makes the
sequence challenging for both the detector and the tracker.
The classifier and detector confidence terms are therefore
particularly important. They keep the particles from drifting
and locking onto other targets. Furthermore, a persistent fore-
ground object (a pillar) occludes many targets immediately
after entering the scene. This makes the initialization more
difficult, as the classifiers are trained with only few samples
before the target is occluded. However, even though no scene-
specific information is used, the tracker manages to handle

Fig. 10: The resulting trajectories for the PETS’ 09 tasks S2.L1,
S2.L.2 and S2.L3 (false positives denoted by red arrow).

these problems in most cases. The HOG detector causes many
false positives when many people enter the scene that are
already partially occluded (e.g., if a train arrives), making
initialization difficult. Because of these frequent inter-object
occlusions, a part-based detector trained on individual body
parts would be advantageous for this sequence.

PETS’09. The PETS’09 dataset is recorded from several
synchronized cameras, from which we only use one (view 1).
In contrast to the first task S2.L.1, only two (predetermined)
targets need to be tracked for the tasks S2.L.2 and S2.L3.
Since our algorithm automatically initializes for all detected
targets, we manually select the corresponding trajectories
for the evaluation after running our algorithm completely.
In Fig. 9(d)—(f) and Fig. 10, we show the results and all
trajectories, respectively.

For S2.L1, all persons are tracked. The HOG detector finds
about 80% of all persons throughout the sequence, while about
50% of all detections are false positives. Although the size of
the targets changes significantly, no identity switches occur
(Fig. 10). A second challenge are the significant complete
and partial occlusions caused by the traffic sign and by other
tracking targets, which are handled robustly (Fig. 9(d)). Third,
the motion of some targets is highly dynamic, as they are
suddenly stopping, moving backwards, or in circles. Over the
whole sequence (of about 90 seconds), our method returns 4
short false positive trajectories (marked by the red arrows in
Fig. 10), which are caused by erroneously initialized trackers
due to persistent false positive detections at the image borders.
For most targets that temporally leave the field of view and
re-enter the scene, the respective tracker can be re-activated
(e.g., in Fig. 9(d), the purple target in the first and second
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(c)f

(d)

Fig. 9: Tracking output on the TUD Campus (a), TUD Crossing (b), AVSS i-Lids AB Medium (c), PETS’09 S2.L.1 (d), S2.L2
(e), S2.L3 (f), UBC Hockey (g), and Soccer dataset (h).For visualization purposes, the shown trajectories are computed by
averaging over the last three positions of the tracker bounding box. However, only the bounding boxes are used for evaluation.
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Fig. 11: Particle filter output (particles and main modes) and
HOG detections (green) for PETS’09 S2.L1 (top) and S2.1.2
(bottom). The tracking algorithm recovers after the occlusion
(top) and the appearance change (bottom).

image, and the cyan target in the third and fourth image).

The sequences S2.L.2 and S2.1.3 mainly pose two additional
challenges. First, target appearance changes heavily, caused by
different lighting conditions in different image areas, or when
a target turns with respect to the camera position. Second,
the persons in the crowd walk very closely together, regularly
occluding each other. Our algorithm manages to robustly
handle most of these problems. As can be seen from Fig. 10,
one target person leaves and later re-enters the scene. Here,
the respective tracker could not be re-activated because the
classifier score is too low.

In Fig. 11, we show a sequence of frames to illustrate
how the algorithm handles situations with severe occlusions
(top: S2.L1) and appearance changes (below: S2.1.2). First, all
trackers are associated with a detection (Fig. 11, top, image
a). The person represented by the blue tracker then moves
towards the road sign and becomes occluded (b). Since no
detection is available, the particles propagate towards nearby
areas of high detector confidence (i.e., to the target of the red
tracker). After 50 frames, the person reappears from behind the
road sign (c) and is represented by the respective tracker again
(d), thanks to the classifier. In the second example (Fig. 11,
bottom), the blue person is occluded (image b) while entering a
brightly illuminated image area, thus changing its appearance.
As a result, the classifier is not updated and does not adapt.
However, because of the particle filter’s multi-modality, some
particles remain on the correct target (c), and the tracker
recovers (d).

UBC Hockey. In contrast to the typical pedestrian se-
quences shown before, sports videos impose additional dif-
ficulties to a tracking algorithm. First, the camera is usually
not static, i.e., it is not clear from the 2D image information
alone whether the motion is caused by camera movement or
by a moving target. Second, player motion may change more
abruptly, which makes data association more challenging.
Furthermore, the hockey players’ appearance differs substan-
tially from the dataset used to train the detectors. The final
detections are therefore very unreliable, and the detector and
classifier confidence is primarily used for tracking. Although
the players’ appearance (i.e., their jersey color) is very similar,
mismatches are avoided thanks to the gating function used for
data association (Sec. 3.3).

Soccer. In an even more challenging setting, the Soccer

Fig. 12: For the ETHZ Standing dataset, the trackers often in
the right part of the image (bottom), because the ISM detector
confidence is very high on background structures (top).

dataset was recorded with a strongly moving camera that
additionally zooms in. The player sizes therefore change
considerably (Fig. 9(h)). The players are interacting and look
similar, making data association difficult. Fortunately, two
nearby targets are often from rivaling teams, hence the colors
of their jerseys are different. As can be seen from Fig. 9(h), the
classifiers are not very robust in the beginning of the sequence,
causing identity switches. However, after a while, the tracker
finds and differentiates all targets, even during a fast pan of
the camera.

ETHZ Standing. Fig. 12 (bottom) shows the result for
the ETHZ Standing sequence, illustrating the limitations of
the method. The ISM detector confidence is very high on
background structures (Fig. 12, top), producing regular false
positive detections. Hence, the trackers fail to robustly find
the targets after the long occlusions, or they are not properly
terminated and drift to these image regions. Here, scene
knowledge or depth information probably is necessary for
robust tracking (as used by others, e.g., [14]).

Summary. We have demonstrated on a variety of sequences
that the tracker robustly handles different challenges. The
remaining failures occur mainly when the detector output is
extremely noisy during initialization, termination, and long
occlusions. Other cases are when partially occluded targets
enter the scene, or when the appearance of a target changes
while it is not detected (e.g., during an occlusion).

4.4 Quantitative Analysis

We use the CLEAR MOT metrics [4] to evaluate the tracking
performance. This returns a precision score MOTP (intersec-
tion over union of bounding boxes) and an accuracy score
MOTA (composed of false negative rate, false positive rate,
and number of identity switches). The results for the sequences
discussed in Sec. 4.3 are shown in Tab. 1. Where available,
the results of the state-of-the-art methods are also shown.

As for the precision (MOTP), we consider a score of
above 50% as reasonable for tracking. The same threshold
is used to accept detections for the prominent Pascal VOC
challenge [34]. The accuracy (MOTA) consists of the false
negative (FN) and false positive (FP) rate, and the number of
identity switches (ID Sw.). The false negatives occur when
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Dataset MOTP MOTA FN FP
ETHZ Central 70.0% 729%  26.8% 0.3%
Leibe et al. [26] 66.0% 338% 51.3% 14.7%
UBC Hockey 57.0% 76.5% 22.3% 1.2%
Okuma et al. [33] 51.0% 67.8% 31.3% 0.0%
i-Lids Easy 67.0% 781% 16.4% 5.3%
i-Lids Medium*> 66.0% 76.0% 22.0% 2.0%
Huang et al. [18] - 684% 29.0% 13.7%
Wu and Nevatia [45] - 553% 37.0% 22.8%
TUD Campus 67.0% 733%  26.4% 0.1%
TUD Crossing 71.0% 84.3% 14.1% 1.4%
Soccer 67.0% 85.7% 7.9% 6.2%
PETS’09 S2.L.1 56.3% 79.7 % - - -
PETS’09 S2.L1%** 56.7% 74.9% - - -
Yang er al. [47] 53.8% 75.9% - - -
Berclaz ef al. [3]° ca. 60% ca. 66% - - -
PETS’09 S2.L.2 51.3% 50.0 % - - -
PETS’09 S2.L.3 52.1% 67.5% - - -

TABLE 1: CLEAR MOT [4] evaluation results, showing
precision (MOTP), accuracy (MOTA), false negative rate (FN),
false positive rate (FP), and the number of ID switches (ID
Sw.). Where available, state-of-the-art results are also shown.

persons are annotated but not detected. This happens for
persons that are very close to another person (ETHZ Central,
TUD Crossing), that are sitting (ETHZ Central), or that are
partially outside of the image (i-Lids). False positives are
caused by trackers that drift during an occlusion (e.g., due
to the pillar in i-Lids) or that lose their target (e.g., due to
strong camera motion in the Soccer dataset). If a target leaves
the scene while a new target enters, the tracker may switch
their identities, which happens only rarely thanks to the online
trained classifiers. The remaining identity switches are due to
cases where a person that was only shortly visible is occluded
(e.g., in i-Lids) or for newly appearing persons with similar
appearances that are close together (e.g., in Soccer). In these
cases, the motion model and classifier for the targets are not
sufficiently adapted yet. A low number of ID switches is one
of the most important properties of a good tracking algorithm.

We compare our method with the state-of-the-art results
reported for these sequences (Tab. 1): On ETHZ Central with
Leibe et al. [26] (using provided trajectories), on UBC Hockey
with Okuma et al. [33] (obtained using their publicly available
Matlab code on their data), and on i-Lids as reported by
Huang et al. [18]%. In all those cases, our precision and
accuracy results outperform the previously published results,
even though our algorithm does not use global optimization
(c.f., [18], [26]), nor a detector specifically trained for the
appearance in the sequence (c.f., [33]), camera calibration

3. [18] did not report all CLEAR MOT evaluation numbers. We tested on i-
Lids Easy and the first half of i-Lids Medium, for which we added annotations
for fully visible, sitting persons, reported as i-Lids Medium*. For the second
half, many persons are only partially visible, and the HOG detector therefore
did not yield reasonable results. In contrast, [18] used the part-based detector
of [45], which works better for such situations but is not publicly available.
Thus, a direct comparison is not possible.

4. Without re-using previous trackers for re-entering targets, from [5].

5. The numbers are extracted from Fig. 3 of the PETS 2009 report [12].

Fig. 13: Visualization of detector output (top), classifier out-
put for the yellow target (middle), and particle filter output
(bottom; dashed bounding boxes are detections associated to
the tracker with the respective color).

(c.f., [26]), or a scene model (c.f., [18]).

The evaluation of the PETS’09 tracking results was per-
formed by the organizers of the workshop [12], who did
not provide the scores for FN, FP and ID switches. Sur-
prisingly, our algorithm outperforms the multi-camera system
of Berclaz ef al. [3] in terms of accuracy, even though the
latter uses 5 camera views, scene-specific knowledge (a ground
plane), and delivers the results with a temporal delay. As ex-
pected, Berclaz et al. achieve a slightly higher precision score.
Our method also outperforms the well-engineered system of
Yang et al. [47] that is based on background modeling and
relies on a static background. As shown in Tab. 1, the accuracy
score drops by about 5% when trackers are immediately
terminated and not reused for re-entering targets (due to the
higher number of identity switches).

Summary. Both accuracy and precision of our method are
reasonably high. The algorithm outperforms other state-of-the-
art methods, even though many of them rely on simplifying
assumptions or additional information, limiting their applica-
bility. Our method relies only on information from the past
and is thus suitable for time-critical, online applications.

4.5 Runtime Performance

The entire system is implemented in C++, without taking
advantage of GPU processing. On a workstation with an Intel
Core2Duo 2.13GHz and 2GB of memory, we achieve pro-
cessing times of 2-0.4 frames per second (given the detector
output), depending on the number of detections and targets
in a sequence. While the current bottleneck is the detection
stage, we want to point out that for the HOG detector, real-
time GPU implementations exist [37], [44]. As not all speedup
possibilities are explored yet, the current run-time raises hope
that real-time experiments will not be too far away.

5 DISCUSSION

We first discuss how the different observation model terms
assist in handling difficult situations. Then, the influence of
each term is evaluated quantitatively. Third, we demonstrate
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Observation Models MOTP MOTA FN FP ID Sw
(a): Det+Conf+Class  70.0%  72.9% 268% 0.3% 0
(b): Det+Conf 64.0%  54.5% 282% 17.2% 5
(c): Det+Class 65.0%  553% 31.3% 13.4% 0
(d): Conf+Class 68.0%  49.0% 377%  13.1% 5
(e): Det 67.0%  40.9% 30.7%  28.0% 10
(f): Conf 64.0%  47.6% 33.0% 19.1% 8
(g): Class 48.0%  25.3% 46.2%  27.9% 17
(h): N=25 63.0%  45.0% 334% 21.4% 6
(i): N=15 53.0%  23.4% 41.4% 34.7% 12
(j): N=10 51.0%  -5.6% 50.8%  53.9% 23
(k): N=5 40.0%  -59.4% 53.6% 104.7% 31
(1): N=1 36.0% -104.1% 574% 1448% 52
(m): 7 = 0.5 69.0%  60.1% 314% 8.4% 3
(m): 7=0.2 65.0%  32.0% 345%  332% 5

TABLE 2: CLEAR MOT evaluation results on the ETHZ
Central dataset, using (a-g) different observation models (see
also Fig. 14), (h-1) different numbers of particles N for a
tracker, or (m-n) different values for parameter 7. For the
original result (a), the complete observation model and the
parameters N=100 and 7 = 1 are used.

the contribution of the particle filter. Last, we show how track-
ing performance varies when relying on discrete detections.

Handling Difficult Situations. In Fig. 13(a)—(d), we
show the detector output (top), classifier output for one target
(middle), and particle filter output (bottom) for frames 18, 105,
151 and 175 of the PETS’09 S2.L3 sequence. In Fig. 13(a),
good detections are available as both tracking targets are
fully visible (top). Two trackers (yellow, magenta) have been
initialized, and detections are associated to them (bottom),
hence primarily guiding the trackers.

In contrast, one target is fully occluded by the other in
Fig. 13(b). The detection is associated to the correct tracker
(magenta, bottom). The particle weights for the yellow tracker
are primarily computed from the detector confidence, since
another tracker (magenta) is nearby and associated with a
detection, keeping the particles from drifting (Fig. 13, bottom).

Occasionally, as in Fig. 13(c), the target of the yellow
tracker becomes partially visible. However, the detector cannot
accumulate enough evidence to detect the target, and it issues
many detections on the approaching crowd (top). The data
association algorithm manages to distinguish between the tar-
gets using the classifier. Thus, the detections are not wrongly
associated to the yellow tracker, preventing the algorithm from
switching identities. Moreover, the yellow tracker accurately
locates the partially visible target (bottom), thanks to the
classifier confidence output (middle). The particles are guided
temporally by the detector confidence (Fig. 13, top), until a
high-confidence detection is associated again (Fig. 13(d)).

In such situations, both a pure classifier based tracking
approach (e.g., [2], [17]) and a pure detector confidence based
approach (e.g., [8], [27], [46]) would probably fail, resulting
in lost targets and identity switches.

Robustness of Observation Model. We demonstrate the
influence of each observation model term by evaluating all
possible combinations of terms on the ETH Central dataset.

Fig. 14: Tracking output on ETHZ Central with different
observation models, acc. to Tab. 2 (original result in Fig. 8).

To this end, the respective weights 3, y, v in Eq. (6) were set
to zero, while the others remained identical. Table 2 and the
respective rows in Fig. 14 show the results (Tab. 2(a) repeats
the original result from Fig. 8).

Overall, the performance is highest when using all terms,
and it decreases the more terms are removed. When removing
the classifier term, three effects can be observed (Tab. 2(b),
Fig. 14(b)): target localization is not as precise as before; some
targets are lost (e.g., the blue tracker), which increases the false
positive and false negative rates; and the number of identity
switches increases, as new trackers are initialized for lost
targets. If the detector confidence term is removed instead (c),
the number of false negatives is higher. In contrast, the number
of identity switches and false positives remain lower, as the
classifier confidence helps distinguish the targets. Tab. 2(d)
and Fig. 14(d) show that without the discrete detections, more
targets are missed, while the precision of the targets that are
tracked remains quite high.

When relying only on the discrete detections alone, the
tracker fails regularly, especially in the case of frequent oc-
clusions and ambiguities (e). The number of false positives is
lower (f) when using only the detection confidence instead, as
the tracker is not immediately misguided by wrong detections.
However, the tracker hardly recovers after failure. Finally,
the performance is lowest when relying on the classifier
term alone (g), probably because the classifiers are primarily
trained to distinguish between the tracking targets, not between
background and targets.

Number of Particles. To demonstrate the contribution
of the particle filter, we evaluate the algorithm on the ETH
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Central dataset and decrease the number of particles /N from
originally 100 to 25, 15, 10, 5, and 1. As can be seen from
the results in Tab. 2(h)-(1), especially the false positive rate
and the number of identity switches drastically increase, as
many targets are lost and thus new trackers are initialized.
Therefore, the capability of a particle filter to estimate a
multi-modal distribution seems to be important for correctly
tracking targets in such challenging scenarios. Although other,
probably more powerful statistical frameworks exist, we refer
to specific papers on this topic, as a detailed evaluation of
different frameworks is beyond the scope of this paper.

Trust in Detections. As described in Sec. 3.5, our algo-
rithm uses only few discrete detections for tracking. Since the
detector output is often very noisy and thus not reliable, our
algorithm aims at selecting those detections that are a good
match. In Tab. 2(m)-(n), we show how tracking performance
varies as a function of the detection threshold 7 from Algo-
rithm 1 (all other experiments are carried out with 7 = 1).
As more detections are associated to trackers by decreasing
7 to 0.5 and 0.2, the number of misguided trackers increases,
which can be seen from the false positive rate.

6 CONCLUSION

We have presented a novel method for online multi-object
tracking-by-detection, exploring the capabilities of an ap-
proach that relies only on 2D image information from one sin-
gle, uncalibrated camera, without any additional scene knowl-
edge. The main challenge for tracking algorithms are unreli-
able measurements, i.e., in the case of tracking-by-detection,
false positives and missing detections. The contribution of our
work is thus to explore how this unreliable information source
can be used for robust multi-person tracking. The key factors
of our algorithm are: (1) careful selection and association of
final detections using target-specific classifiers trained during
run-time, (2) utilization of the continuous output of detector
and classifier, and (3) robust combination of unreliable infor-
mation for multi-person tracking using particle filtering.
While the data association algorithm handles false positive
detections, different observation model terms help overcome
problems with missing detections. They are complementary,
as they are trained on different features and training data.
While instance-specific information is beneficial to resolve
ambiguous situations between different targets, class-specific
knowledge helps differentiate between object and background.
For this purpose, the detector confidence term guides
the particles of the filter primarily when no discrete high-
confidence detection is issued by the detector. Although this
is beneficial for situations with missing detections, it can also
misguide trackers to image areas with high confidence on
background structures. On the other hand, the classifier term
helps localize particles more accurately, adapting online to
the appearance of the targets. However, the classifier requires
some amount of training data to work reliably and hence does
neither help in situations shortly after initialization nor if the
appearance of a target changes heavily during occlusions.
Our experiments have shown that the method achieves a
good performance on a large variety of application scenarios,

outperforming other state-of-the-art algorithms, some of which
rely on scene-specific information, multiple calibrated cam-
eras, or global optimization. To increase the robustness during
partial occlusions, a part-based detector would be beneficial.
Also, the detector could be trained for specific applications and
the motion model could be specialized, e.g., for applications
in sports television broadcasting. Furthermore, if applied to a
specific scenario, scene-specific information could be used to
help resolve ambiguities, restricting motion to a ground plane
or providing information about obstacles. Finally, the method
could be enhanced by taking advantage of a more sophisticated
estimation framework than particle filtering.
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