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Abstract

Material recognition is an important subtask in computer

vision. In this paper, we aim for the identification of ma-

terial categories from a single image captured under un-

known illumination and view conditions. Therefore, we

use several features which cover various aspects of mate-

rial appearance and perform supervised classification us-

ing Support Vector Machines. We demonstrate the feasi-

bility of our approach by testing on the challenging Flickr

Material Database. Based on this dataset, we also carry

out a comparison to a previously published work [Liu et

al., ”Exploring Features in a Bayesian Framework for Ma-

terial Recognition”, CVPR 2010] which uses Bayesian in-

ference and reaches a recognition rate of 44.6% on this

dataset and represents the current state-of the-art. With our

SVM approach we obtain 53.1% and hence, significantly

outperform this approach.

Keywords: Material recognition, Texture classification,

SVMs

1 Introduction

Understanding materials enables us to interact with the

real world and influence our decisions in everyday life, e.g.

where to drive a bike on a wet muddy road or whether a

fabric in textile shop is smooth enough for cushion cover.

These daily examples show the importance of material

recognition for humans. In the fields of computer vision

and computer graphics, one goal is to develop systems

which can automatically perform this task. Identifying the

respective material of object surfaces for instance allows

to handle the object appropriately within a supply chain

or to select the corresponding appearance properties for

photo-realistic rendering.

For humans material recognition comes naturally. Since

one can touch and feel the material surface if it is smooth

or rough, hard or soft, take a look from different directions,

from close or far distance and observe if it is shiny or dull.

The key observation is that the visual appearance of a sur-
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Figure 1: We used Flickr Material Database [27]. This

database captures a wide range of appearance of 10 differ-

ent materials.

face in an image depends on several different factors such

as the illumination conditions, the geometric structure of

the surface sample at several spatial scales, and the surface

reflectance properties, often characterized by the bidirec-

tional reflectance distribution function (BRDF) [23] and

its variants [10, 15, 24].

In order to capture such characteristics recent investiga-

tions [20] combine a large number of different low-level

and mid-level features, which are commonly used in re-

lated areas such as object and texture recognition tasks,

in a Bayesian framework. The authors demonstrated that

their approach outperforms previous state-of-the-art meth-

ods [29] on a more challenging database [27].

Support Vector Machines (SVMs) [28, 7] have become

popular for classification tasks, since they offer advantages

such as, ease of generalization of the problem, its ability
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to handle high-dimensional feature spaces and the absence

of local minima [3]. As we want to focus on the com-

parison between the classification using the Bayesian ap-

proach in [20] and one based on SVMs, we combine the

idea of using the image features from [20] within a SVM

framework and exhaustively compare the achieved classi-

fication rates to the ones reported in [20]. For this, we

also evaluate our approach on the challenging MIT Flickr

Material Database [27]. We observe that with our system

the recognition rate improves from 44.6% to 53.1%. We

also evaluate our system on the KTH TIPS2 dataset [4].

The rest of this paper is organized as follows: In Sec-

tion 2, we describe the present state of methods used in

the area. In Section 3, we introduce feature pools used for

classification. In Section 4, we explain the support vec-

tor machine classification model in the context of material

recognition. Finally, in Section 5, we examine our system

on the Flickr Material Database and discuss the results. In

Section 6, we conclude.

2 Previous work

Learning high-level material categories such as foliage,

stone or metal is related to object and texture classification

but differs in several aspects. Several approaches address

material recognition by focusing on purely texture based

image features.

Texture has been defined in terms of dimensions like

periodicity, orientedness and randomness [21]. A recent

work on 3D textons [19] addresses material recognition

using multiple images of varying viewpoint and lightning

conditions. Cula and Dana [8] adapted the method of [19]

to 2D textons where each histogram is obtained from a

single image in the training set. For their evaluation they

used the CUReT database [10] consisting of images of

61 different texture samples under 205 different viewing

and illumination conditions. A high classification rate of

more than 95% is reported in [29] with 2D textons on the

CUReT dataset using the NN classifier. In [4] it is shown

that the SVM based classifier achieves 98.5% accuracy

on the KTH TIPS2 [4] database consisting of 11 material

categories with 4 texture samples in each category pho-

tographed under various conditions. Although texture is a

characterizing feature cue it is not sufficient for represent-

ing material properties completely. It might happen that

an object made of different materials has a similar or even

the same texture.

Although information about objects can lead us to the

right guess concerning the material from which it is made

of, sometimes it is really misleading. For example a cup

can be made of plastic, metal or glass. In case of an artistic

cup it can be carved out of wood or stone as well. This

demonstrates the difference between material recognition

and object recognition.

The appearance of a material in an image highly de-

pends on the environment illumination and surface re-

flectance properties described by the BRDF. Material

recognition might be trivial in case of a known BRDF. But

it is very difficult to estimate the BRDF of the material

from a single image without simplifying assumptions [11].

Moreover, the appropriate choice regarding the classi-

fication method is also an influencing aspect. While a

few approaches make use of a Nearest Neighbor (NN)

classifier (e.g. [29]), the methods we consider as state of

the art rely on a Bayesian framework [20] or SVMs [4].

SVMs have been proven to consistently achieve good per-

formance in complex real-world problems such as text [16,

12] and image classification [6] and bioinformatics [30]

and biosequence [2] analysis. This motivates us to involve

SVMs as classifier. However, most of the methods that ad-

dress material classification are evaluated on datasets such

as [10] that are not well-suited for this task as they do

not contain the large variations in appearance which oc-

cur in real-world scenes and for this, classification rates

usually are very high. Hence, the real performance differ-

ences cannot be seen in a reliable way. The reason for this

is that they have been acquired using a controlled setup.

In contrast, [20] show the performance of a Bayesian ap-

proach on the significantly more challenging MIT Flickr

Material Database [27]. However, they only compare their

method against the NN classifier and not against SVMs.

We believe that a real comparison between different mate-

rial classification approaches has to be carried out on such

a challenging dataset. Hence, we compare our SVM based

technique to the method described in [20].

3 Feature Extraction

For the development of a reliable image based material

recognition system it is important to consider image fea-

tures which are representative and discriminative. How-

ever, it seems to be impossible to capture the variety of ma-

terial characteristics in a single feature descriptor, as com-

monly used descriptors usually are restricted to a certain

material property such as color, texture or reflectance be-

havior. As the different material properties are not equally

descriptive for different material classes, a variety of fea-

tures have to be considered in order to derive information

about the different materials of an object. If the object

appears shiny one might think that it is made of glass or

metal whereas an object surface covered by minute fibers

appear rough and together with the underlying weave pat-

tern leads to a specific textured representation within an

image. Wood is recognized usually with its brown color.

In order to take several characteristic material properties

into account, we follow the idea of [20] and use a pool

of features which are covering different aspects of appear-

ance. In general, for a fixed camera and object position,

the image can be determined by 1) BRDF, 2) surface struc-

ture, 3) color, 4) object shape and 5) environment illumi-

nation. As we want to obtain hints on the performance of

the SVM classifier in comparison to the Bayesian frame-
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work proposed in [20] we extract the same image features.

Figure 2: Features used in the classification [20].

Color is an important cue for recognizing materials. For

example foliage is green, wood is usually brown and stone

has less saturated color whereas fabric, plastic and paper

have saturated color. To capture local color information,

we store the RGB values in a local 3×3 neighborhood and

concatenate them to a vector of dimension 27 as in [20].

Furthermore, every material has a peculiar texture.

Wood has a ringing pattern, whereas fabric has a weaving

pattern. Like [20] we use two sets of features to charac-

terize texture. The first feature is SIFT [22] which is com-

monly used as a texture feature and also serves for tasks

such as object and scene recognition. The second set of

features is responses of an image through a set of Gaus-

sian filters of different scale and orientation, also known

as Jet [17]. We consider 2 Gaussian derivative filters at

3 scales and 6 orientations, i.e. 2× 3× 6 = 36 rotational

variant filters, and 8 Laplacian of Gaussian and 4 Gaus-

sian filters, i.e. 8+4 = 12 rotational invariant filters. We

combine all the filter responses in a single vector of size

48.

In addition, it is important to capture features not only

on a meso-level but also on a micro-level. The human vi-

sual perception system can impressively abstract minute

details of texture, e.g. smoothness of metal and glass sur-

faces, grains in paper and stone, the fibers of the fabric and

crinkles in leather. For extracting micro texture of an im-

age we follow the idea in [1] where the image is smoothed

by a bilateral filter [13] and the residual is obtained by sub-

tracting the smoothed image from the original image. The

obtained residual image is used for further analysis as it re-

veals the information of texture on a finer scale. We derive

descriptors that capture such micro details by computing

SIFT and Jet over the residual image. For micro-texture,

the Jet filter bank is evaluated on the same set of orienta-

tions but on a different set of scales in comparison to the

Jet applied to the original image.

Materials can be molded to any arbitrary shape to create

different objects, but still the outline shape of an object and

its material category are often related, for e.g. fabric and

glass have a curvy structure whereas metal, wood, stone

can have straight edges and sharp corners. The edges and

corners can be acquired from edge maps. We extract such

edge maps by applying the canny edge detectors [14] to the

base image. Furthermore, we only consider edges having

a certain minimum length. Corresponding examples are

shown in Figure 3. The curvature along these edges can

be used to represent the orientation of the outline shape

of a certain material, we calculate this specific descriptor

by sampling the edges at three different scales (see Fig-

ure 4(a)), which results in a 3D-vector. As we are inter-

ested in a dense sampling, we calculate such a descriptor

for every second pixel along the edges.

(a) Curvature (b) Edge-Slice(HOG) (c) Edge-Ribbon(HOG)

Figure 4: Curvature is calculated over three different scale,

Edge-Slice and Edge-Ribbon are calculated in 6 cells [20]

at edges.

Furthermore, reflectance behavior is also an important

cue for classifying material categories. Water and glass

are translucent, metal is shiny, wood and stone are dull

and opaque. Such properties can be observed in form of

distinctive intensity changes at the edges in an image. We

follow [20] in computing histograms of oriented gradients

(HOG) [9] in the vicinity of the edges. More precisely,

we first select a slice of a certain width along the normal

direction of the edge and compute the gradient at all of

the pixels inside the slice. In order to calculate HOG, the

slice is divided into 6 cells where the gradient orientation

is quantized into 12 bins. We combine the histogram of

all 6 cells in a vector of length 72, which will be referred

as Edge-Slice [20]. In addition, we use the same method

and employ a slice along the tangent direction of the edge

in order to obtain the Edge-Ribbon feature [20](see Fig-

ure 4(b) and 4(c)).

So far, we described all the features which we use to

characterize material appearance due to different proper-

ties. Figure 2 shows a flowchart how the features are

generated. Among these features color, SIFT and Jet are

low level features and can be calculated directly from the

image. In contrast, curvature, Edge-Slice, Edge-Ribbon,

micro-SIFT and micro-Jet are mid level features which

depend on the edge map and the base image respectively

(see Figure 3). In order to capture the relevant informa-

tion appropriately, we calculate color, SIFT, micro-SIFT,

Jet and micro-Jet on a evenly sampled grid in the image
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(a) Original (b) Base image(bilateral filter) (c) Edge map(Canny) (d) Residual (a)-(b)

Figure 3: Example images of how features are calculated in our system. From top to bottom the rows show examples

for fabric, glass and wood. On image (a) we apply bilateral filtering [13] to obtain the base image (b). We run the Canny

edge detector [14] on the base image and compute edge maps. Curvature, Edge-Slice and Edge-Ribbon are extracted as

a feature from the edge map. Subtracting (b) from (a), we get the residual image (d) that depicts micro structures of the

materials which are captured by micro-SIFT and micro-Jet features.

areas where the material has been annotated. The remain-

ing features are sampled at every second pixel along the

edges.

4 Classification with SVMs

Once the features have been calculated we want to build a

robust material recognition system. For this, we first apply

a quantization of the features to form characteristics clus-

ters whose centers are denoted as visual words. In the next

step, we use SVMs for material classification based on the

given inputs. In the following, we will describe these steps

in more detail.

4.1 Feature quantization and visual words

Before we start classifying our features we need to group

alike features to reduce the massive data into few repre-

sentative visual words. From training images we estimate

visual words which we can expect being present in the test

data as well. We use k-means clustering for the quanti-

zation. After quantizing individual features into k visual

words, the distribution of visual words per image is cal-

culated for all of the different features by assigning each

pixel in the image the nearest visual word index and cal-

culating the histogram over the frequency of the visual

words. Figure 5 shows some clusters for different feature

types.

To generate a common visual word dictionary, for all

the different types of features, suppose there are m fea-

tures in the feature pool (e.g. color, SIFT, Jet) and m cor-

responding dictionaries {Di}
m
i=1. Each dictionary has Vi

codewords (e.g color has 150, SIFT has 250), i.e. |Di| =
Vi. Since the features are quantized separately the words

generated by the i-th feature are {w
(i)
1 , .....,w

(i)
Ni
}, where,

w
(i)
j is an index representing j-th cluster center of i-th fea-

ture, w
(i)
j ∈ {1,2, ...Vi} and Ni is the number of words. In

order to combine two features, the corresponding dictio-

naries are simply put together. For example, a document

of m sets of words

{w
(1)
1 , ....,w

(1)
N1
},{w

(2)
1 , ....,w

(2)
N2
}, .....,

{w
(m)
1 , ....,w

(m)
Nm

} (1)

can be combined to one set

{w
(1)
1 , ....,w

(1)
N1
,w

(2)
1 +V1, ....,w

(2)
N2

+V1, .....,

w
(m)
1 +

m−1

∑
i=1

Vi, ....,w
(m)
Nm

+
m−1

∑
i=1

Vi} (2)

with a joint dictionary D = ∪iDi, |D| = ∑
m
i=1Vi. In case

of combining color (V1 = 150) and SIFT (V2 = 250) the
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(a) Original (b) Color (c) SIFT (d) Jet (e) micro-SIFT (f) micro-Jet

Figure 5: Visualization of quantized features. After finding k cluster centroids of individual features, each pixel is

assigned an index of the closest visual word. In order to visualize how the cluster centers are distributed in an image,

the corresponding indices are color coded by RGB values. Same colors indicate that feature vectors corresponding to the

pixels lie in the same cluster.

first 150 entries of the dictionary (of size V1+V2 = 400)

are codewords of color and the next 250 entries represent

codewords of SIFT. This way we can reduce the multi-

dictionary problem to a single dictionary problem.

4.2 Support Vector Machines

Being robust to noise [25] and being capable to general-

ize in case of a small training set [26], SVMs have be-

come a popular and commonly used classifier for recog-

nition tasks. A single SVM constructs a hyperplane or

set of hyperplanes in a high-dimensional space and allows

to distinguish between two linearly separable sets of sam-

ples. In order to deal with our multiple classes given in

the used data sets, there is a need for using an SVM for-

mulation which is capable of dealing with more than two

classes. This can be achieved by either using several pair-

wise classifiers arranged in trees [18], where each of the

nodes represents an SVM, or by using an one-vs-others

approach, where multiple SVMs are trained and each of

them separates a single class from all remaining ones. We

follow the first strategy and use the implementation in [5].

As SVMs perform a supervised learning, objects with

known class labels are used as samples for the train-

ing phase. We use the training data {xi,yi} with i =
1, . . . , l where xi represents the histogram of visual words

per image for a single feature type or a feature combi-

nation and yi describes the corresponding material cat-

egory in { f abric, f oliage, . . . ,water,wood}, i.e. yi ∈
{1,2, . . . ,10}. As kernel function, we use the Gaussian

RBF kernel

K(xi,x j) = e
−‖xi−x j‖

2

2σ2
. (3)

5 Results

We run our system on two data sets namely MIT Flickr

Material Database [27] and KTH TIPS2 database [4].

First, we tested our system on the KTH TIPS2 database.

In this database there are 11 different materials namely

Crumpled aluminum foil, Cork, Wool, Lettuce leaf, Cor-

duroy, Linen, Cotton, Brown bread, White bread, Wood,

Cracker. There are 44 different material samples present

in the database in total. For each sample, images are taken

at 9 scales, 3 poses and 4 different illumination condi-

tions, hence there are 44×9×3×4= 4752 images in this

database.

We extract the same features and feature combinations

as in [20] for this database and the results are plotted

in Figure 8. The highest recognition rate is achieved by

99.4%.

As mentioned before, we do not consider this dataset

to be challenging enough to derive statements on perfor-

mance differences within complex scenes. For this, we

consider the MIT Flickr Material Database [27], where

there are 10 material categories namely fabric, foliage,

glass, leather, metal, plastic, paper, stone, wood, water.

Each category contains 100 images. 50 images show

close-up views of the materials and 50 show an object

made of the corresponding material. This dataset contains

also annotations where this specific material is located in

the image domain. Only pixels inside these areas are con-

sidered for feature calculation. For training, we randomly

choose 50 images per category and test the system on the

rest. For reliable results, we take 25 images showing close-

up views and 25 images showing the full object made of

the material. In addition, the training/testing process is re-

peated 5 times for different, randomly chosen training sets

and the classification rates are averaged.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 6: The per-class recognition rate (both training and test) with different sets of features for the MIT Flickr Material

Database [28], using the classification approach proposed in [20]. In each plot, the left, darker bar means training, the

right and the lighter bar means test. The two numbers right after the feature set label denote the recognition rate on the

entire training set and on the entire testing set.

Figure 7: The recognition rate of a randomly chosen split of training-testing shown for each single feature and some of the

feature combinations. Only the test rate per material category is mentioned, since the training rate with learned parameters

is very high and hence not of our interest. The highest recognition rate (53.6%) is achieved when all the features are used.

We extract the features color, SIFT, Jet, micro-SIFT and

micro-Jet on every 5-th pixel inside the given mask where

the material is present. Edge-Slice, Edge-Ribbon and cur-

vature are calculated on every second pixel on the edges in

the edge map. After calculating the features we perform

k-means clustering separately for each feature. We use

exactly the same number of clusters for each feature type

(150 for color, 250 for SIFT, 200 for Jet, 250 for micro-

SIFT, 200 for micro-Jet, 100 for curvature, 200 for Edge-

Slice, 200 for Edge-Ribbon).

After forming the dictionary for each feature we learn

visual word histograms based on the training images using

SVMs. First we train and test with single features and then

we combine the features as in [20]. We observe that our

best performing single averaged feature (SIFT = 42.2%)

has a recognition rate which is very close to the best per-

formance (44.6%) stated in [20]. Among all features and

feature combinations, in every trail we achieve the best

rates (53.2%, 53.6%, 53.8%, 53.6%, 51.6%) when all the

features are combined. A comparison of average recogni-

tion rates of individual features and feature combinations

is tabulated in Table 1. It can be seen that for most of the

features there is an improvement in recognition accuracy

of about 4 to 5 %. For the individual features, micro-SIFT

and micro-Jet and the combination of all the features there

is a significant improvement in the classification accuracy.

The confusion matrix in Figure 9 shows the accuracy of the

classification of individual material categories. The rates

of misclassification are also shown.

6 Conclusions

In this paper, we addressed the problem of material recog-

nition using various image features in combination with

a SVM framework and compared it to the Bayesian ap-

proach proposed in [20]. The recognition rate achieved by

our system is 53.1% in average on the MIT Flickr Mate-

rial Database and 99.4% on the KTH TIPS2 database. The

reason for the huge difference in recognition rate between

the two datasets is due to the larger intra-class variations
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Figure 8: The recognition rate of a randomly chosen split of training-testing for KTH TIPS2 database is shown for each

single feature and some of the feature combinations. Only the test rate per material category is mentioned, since the

training rate with learned parameters is nearly 100% for this dataset. The highest recognition rate (99.4%) is achieved

when all the features are used.

Figure 9: Confusion matrix for the Flickr Material

Database. Diagonal entries shows the percentage with

which each category is recognized. Rates are color coded

using gray scale values (black = 100% and white = 0%).

Each row sums to 100%.

in the Flickr Material Database. In contrast, KTH TIPS2

comprises images of the same material taken in different

view and lighting conditions in the same material cate-

gory. We showed that with the same pool of features as

given in [20], SVM classifies materials with a higher rate

in comparison to the Bayesian approach of [20]. We have

also analyzed the contribution of each feature in our sys-

tem to the performance gain. Future developments should

consider exploring different and better characteristic fea-

tures for materials. Improvements by integration of differ-

ent classification techniques can also be investigated.

Feature Ce Liu et.al

Our model

(avg. of

5 iterations)

Color 32.6 % 37.6%

Jet 29.6 % 34.0%

SIFT 35.2 % 42.2%

Curvature 26.4 % 21.6%

Micro-Jet 21.2 % 36.5%

Micro-SIFT 28.2 % 42.0%

Edge-Ribbon 30.0 % 36%

Edge-Slice 33.0 % 34.6%

Color+SIFT 43.6 % 48.6%

Color+SIFT+Edge-Slice 44.6 % 49.1%

Color+SIFT+Edge-Slice
42.0 % 49%

+Edge-Ribbon

All 38.8 % 53.1%

Table 1: Performance comparison between [20] and our

system.
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