Clicks as Queries: Interactive Transformer for Multi-instance Segmentation

Amit Kumar Rana*

Sabarinath Mahadevan*

Alexander Hermans

Bastian Leibe

RWTH Aachen University, Germany

firstname.lastname@Rrwth-aachen.de

Abstract

Transformers have percolated into a multitude of com-
puter vision domains including dense prediction tasks such
as instance segmentation and have demonstrated strong
performances. Existing transformer based segmentation
approaches such as Mask2Former generate pixel-precise
object masks automatically given an input image. While
these methods are capable of generating high quality masks
in general, they have an inherent class bias and are un-
able to incorporate user inputs to either segment out-of-
distribution classes or to correct bad predictions. Hence,
we introduce a novel module called Interactive Transformer
that enables transformers to predict and refine objects
based on user interactions. Subsequently, we use our In-
teractive Transformer to develop an interactive segmenta-
tion network that can generate mask predictions based on
user clicks and thereby widen the transformer application
domains within computer vision. In addition, the Interac-
tive Transformer can make such interactive segmentation
tasks more efficient by (i) imparting the ability to perform
multi-instances segmentation, (ii) alleviating the need to re-
compute image-level backbone features as done in existing
interactive segmentation networks, and (iii) reducing the re-
quired number of user interactions by modeling a common
background representation. Our transformer-based archi-
tecture outperforms the state-of-the-art interactive segmen-
tation networks on multiple benchmark datasets.

1. Introduction

Transformers have gained in popularity for various com-
puter vision tasks over the past few years [1,3,4,06, 13]. Due
to their ability to capture long-range dependencies and their
general flexibility, Transformers find applicability in a wide
range of 2D and 3D vision tasks. Mask2Former [3] has
shown that simple Transformer modules are very effective
in capturing good object representations, and can perform

“Equal contribution.

image and video level instance segmentation very well.

However, automatic instance segmentation methods like
Mask2Former have multiple limitations: (i) they are de-
signed to perform instance segmentation without the pos-
sibility for users to correct the output masks in case of bad
predictions, (ii) such automatic segmentation methods have
class biases, and hence tends to segment the object classes
that they have seen during training, and (iii) all objects are
segmented by default and hence it is not possible to select a
relevant subset of them without additional post-processing
steps. To alleviate these disadvantages while still leveraging
the capability of Transformers, we propose a novel formula-
tion called Interactive Transformer. Our Interactive Trans-
former can perform instance segmentation based on some
user guidance signal, while allowing refinement of initial
predictions where needed. It does so by dynamically gener-
ating queries to a Transformer module, that are conditioned
on the given user interactions at a given timestep.

To show the efficacy of our new module, we develop
an interactive segmentation network called DynaMITe that
can annotate the objects of interest in an image using user
clicks as guidance. The Interactive Transformer module
also enables us to remove two major problems with ex-
isting interactive segmentation networks [2, 12, 15,21,22]:
(i) they are designed to perform binary segmentation and
hence can process only one object at a time, and (ii) these
methods need to re-compute backbone features every time
they have to process a new user click, thereby limiting their
network sizes to achieve a good runtime performance. In
contrast, the Interactive Transformer in DynaMITe can in-
herently handle clicks from multiple instances and requires
only a forward pass through the transformer module for ev-
ery new user click. Transferring clicks into queries also al-
lows multiple objects in the image to interact through the
self-attention operation, and correspondingly learn a com-
mon background representation. This enables DynaMITe to
learn a better context from the input image as compared to
existing interactive segmentation models.

The classic interactive segmentation benchmarks focus

\
Do Ct4+1 —» — @
§ - . Click e
: Feature
Bl | Sampling
C] —»

Learnd BG @
Queries

Feature

Backbone — Decoder

Masked Cross-Att.

Multi-Scale
Features F

Self-Attention
Cross Attention

Encoder Decoder (Reﬁnement User Click)
Mt
Feature Fused
. —
Fusion Features

Executed once per image

Figure 1. DynaMITe consists of a backbone, a feature decoder, and an interactive Transformer. Point features at click locations at time ¢
are translated into queries which, along with the multi-scale features, are processed by a Transformer encoder-decoder structure to generate
a set of output masks M? for all the relevant objects. Based on M?, the user provides a new input click which is in turn used by the
interactive Transformer to generate a new set of updated masks M+, This process is iterated 7 times until the masks are fully refined.

on binary segmentation, where a single-instance is always
picked and annotated iteratively using refinement clicks.
Since our Interactive Transformer provides the capability
to perform multi-instance interactive segmentation, we also
propose a new multi-instance interactive segmentation task
(MIST), and an associated evaluation strategy. Correspond-
ingly, we evaluate DynaMITe on both MIST and the classic
benchmarks, and show that our Transformer-based formu-
lation that bootstraps queries from user-clicks outperform
the state-of-the-art methods in both tasks.

2. Interactive Transformer

Existing interactive segmentation methods [2,21,22] that
use a Transformer mainly use a SegFormer [23] backbone
as a feature extractor to obtain a localized feature map based
on click maps, that is updated when a user provides a new
refinement click. Such methods can still only process one
click at a time and perform the task sequentially per object,
thus preventing any interaction between the object instances
within an image. This limits the role of a transformer model
to being just a better backbone for interactive segmentation.

We instead formulate the user clicks as a spatio-temporal
sequence of data and translate them into queries that are
processed by our Interactive Transformer module. In our
formulation queries are derived from features at click lo-
cation, each being assigned to one object within the im-
age. These queries can interact between each other which
enables a common background modeling, thereby reduc-
ing redundancy in background clicks. Hence, given the in-
puts F and the corresponding set of clicks S at refinement
timestep t, our Interactive Transformer generates a disjoint
set of segmentation masks M’ = {M{, M, ..., M} for all
the relevant foreground objects at ¢.

Dynamic Query Bootstrapping. At every timestep ¢, the

queries Q* used by the Transformer are dynamically gener-
ated from input features F by sampling the point features at
every spatial location represented by the user clicks in S*.

1
4= 17 > fe, (1

fer

Here q; € Q' represent the queries for clicks ¢; € S,
and f € F are the feature maps at different scales. These
queries are thus dynamically updated throughout the itera-
tive process without the need to recompute F. In addition
to the dynamic queries, we include a set of K = 9 learn-
able queries for modeling the background without the use
of any user guidance. These static background queries learn
generic background representations, and are vital in reduc-
ing the background interactions that a user will have to per-
form. We also add a 3D positional encoding to ¢; where
the first two dimensions represent the spatial location of the
corresponding click in the image features and the third di-
mension represents the refinement timestep .

2.1. Network Architecture

Based on the Interactive Transformer design, we build
an efficient multi-instance interactive segmentation network
called Dynamic Query Bootstrapping for Multi-object In-
teractive Segmentation Transformer (DynaMlITe). Fig. 1
shows the overall architecture of DynaMITe which takes
an input RGB image Z € RH*Wx3 and the correspond-
ing set of user clicks 8¢ = {cy,ca,...,c;} at timestep
t € {1,...,T} as inputs. The user clicks in S* can ei-
ther be a positive click representing a foreground object or
a negative click representing the common background. St is
updated during the refinement process when the network re-
ceives a new interaction ¢, ; at the time step ¢ + 1. Unlike
previous works, DynaMITe can handle multiple instances at
once and hence the positive clicks in St can be on different

foreground objects. The backbone processes Z and extracts
low-level features, which are then up-sampled by the fea-
ture decoder to produce feature maps F = {fs2, fi6, fa}
at multiple scales. These feature maps, along with the as-
sociated user interactions, up to time ¢, are then fed to the
Interactive Transformer.

The Interactive Transformer has an encoder-decoder
structure. The encoder follows the Transformer decoder
architecture from [3], and also uses their masked cross-
attention module to restrict the attention operation to the
predicted target region from the previous layers. It takes
as input the queries @Q® and the multi-scale feature maps
F, and generates descriptors for each click locations. The
keys and values for the encoder are derived from F at the
corresponding feature scale similar to [3]. The decoder on
the other hand uses the click descriptors generated by the
encoder to update the image features via cross-attention.
Hence, the click descriptors form the keys and values to
the decoder, while the queries are obtained by fusing the
multi-scale features F obtained from the feature extractor.

3. Experiments

We evaluate DynaMITe on an extensive range of datasets
across two interactive segmentation task settings: (i) the
well established single-instance setting using small-scale
datasets mostly containing one object instance per im-
age such as GrabCut [20], Berkeley [16], COCO MVal,
and DAVIS [18] and (ii) our novel multi-instance segmen-
tation task (MIST) on larger multi-instance datasets like
COCO [11], DAVIS17 [19], and SBD [7].

Implementation Details. We use either a Swin Trans-
former [9] or a SegFormer as backbone, with a multi-scale
deformable-attention Transformer [24] on top. The encoder
for our interactive Transformer has 9 transformer layers
while the decoder uses 5 cross-attention layers. We initial-
ize the backbone with ImageNet [5] pretrained weights, and
the entire network is trained end-to-end on the combined
COCO+LVIS [22] dataset with an input resolution of 1024
x 1024 px for 50 epochs. We use a batch size of 128 and
train it on 64 Nvidia A100 GPUs. We always train our net-
work for multi-instance segmentation, even when evaluated
in the single instance setting.

3.1. Comparison with the State-of-the-art

Single Instance Setting. In Tab | we compare our re-
sults against state-of-the art methods on the classic single-
instance interactive segmentation setting. Here, we follow
the same evaluation setting adopted in previous works [2,

,21,22], L.e. segment one instance at a time and then re-
fine it either until the mask has a satisfactory quality, or un-
til a specific click budget 7 = 20 has been exhausted [15].
We also use the average number of clicks per object (NoC)

metric, similar to previous works, for comparison. Under
this setting, DynaMITe outperforms all comparable state-
of-the-art networks, on a majority of the reported datasets.
This includes both methods that use Transformer back-
bones, as well the traditionally popular HRNet backbones.
Our method with a smaller backbone also performs compa-
rably with FocalClick [2] that uses a larger Segformer-B3
backbone. This shows the ability of our Interactive Trans-
former module to generalize to a task setting that it was not
specifically trained for.

Multi-instance Interactive Segmentation Task. For our
novel MIST, we use the following next-click simulation
strategy for automatic evaluation: (i) generate initial pre-
dictions for each object by placing a positive click in the
center, (ii) choose a random object from this prediction set
that has not achieved the required segmentation quality, and
(i) place a click on the largest error region for the chosen
object. The sampling process is repeated until either the en-
tire image is segmented, or until we exhaust an image-level
click budget 7 x |O|, where | O] is the number of foreground
objects in an image and 7 = 10. For this task, we use a new
metric called Normalized Clicks per Image (NCI), which is
obtained by normalizing the total number of clicks used for
an input image by the number of foreground objects in that
image. Additionally, we also mark the average number of
failed objects (NFO), number of failed images (NFI), and
the average IoU achieved at the end of the evaluation pro-
cess. As a baseline, we adapt state-of-the-art FocalClick [2]
to the MIST setting. Tab. 2 compares the performance of
DynaMITe against the adapted FocalClick. Our method
outperforms the baseline on all metrics for this task and
achieves a better final segmentation quality as shown by
the IoU values, highlighting the benefit of jointly predicting
multiple instance segmentations. For a more detailed expla-
nation on MIST, please refer to the supplementary material.

3.2. Ablations

We ablate the impact of our design choices for our Inter-
active Transformer module in Tab. 3. For these ablations,
we use a Swin-T [8] backbone, and evaluate it on MIST.
First, we analyze the advantages of having an additional de-
coder in the Interactive Transformer. As it can be seen from
Tab. 3, removing this decoder reduces the performance of
DynaMITe from 2.74 NCI to 2.87 NCI and also increases
the number of failed objects by 79. Likewise, removing the
static background queries reduces the NCI from 2.74 to 2.80
and also increases the NFO from 561 to 655.

Positional Encoding: As clicks are interpreted as spatio-
temporal data, we add a 3D positional encoding to the query
features () and ablate its effect on the network performance
on the MIST in the second section of Tab. 3. Removing
the spatial and temporal positional encoding worsens the

GrabCut [20]

Berkeley [16]

SBD [7]

COCO MVal

DAVIS [18]

Method Backbone Train Data @85 @0] @85] @0] @85| @0] @8] @0, @8] @90,
RITM [22] hrnet32 COCO+LVIS 1.46 1.56 - 2.10 3.59 5.71 - - 4.11 5.34
f-BRS [21] hrnet32 COCO+LVIS 1.54 1.69 1.64 244 4.37 7.26 2.35 3.44 517 6.50
PseudoClick [12] hrnet32 COCO+LVIS - 1.50 - 2.08 - 5.54 - - 379 5.1
DynaMITe (Ours) hrnet32 COCO+LVIS 1.46 1.56 1.48 1.98 3.78 6.32 2.41 3.18 39 4.94
FocalClick [2] Segformer-BO COCO+LVIS 140 1.66 1.59 2.27 456 6.86 2.65 3.59 4.04 5.49.
DynaMITe (Ours) Segformer-BO COCO+LVIS 1.50 1.60 1.52 2.02 3.97 6.58 2.39 3.36 392 516
FocalClick [2] Segformer-B3 ~ COCO+LVIS 144 1.50 1.55 1.92 3.53 5.59 232 312 3.61 4.90
DynaMITe (Ours) Swin-T COCO+LVIS 1.48 1.58 1.34 1.97 3.81 6.38 2.31 3.21 3.81 5.00
DynaMITe (Ours) Swin-L COCO+LVIS 1.62 1.72 1.39 1.90 332 5.64 219 288 3.8 5.09

Table 1. NoC results on single-instance segmentation datasets grouped by the backbone used. Top results within a group are indicated in
red and the overall top results in bold. Within groups we obtain state-of-the-art or competitive results.

COCO SBD DAVIS17
Method Backbone NCI| NFO| NFI| IoUft NCI|/ NFO| NFI| IoUt NCI| NFO| NFI| IoU?
FocalClick [2] Segformer-BO 7.31 19422 3004 73.7 426 1115 599 873 46 802 562 84.6
DynaMITe (Ours) Segformer-B0 6.07 13404 2438 848 277 551 319 906 329 537 350 87.8
DynaMITe (Ours) Swin-T 6.04 12934 2451 850 270 522 322 907 3.13 520 348 88.0
DynaMITe (Ours) Swin-L 574 11976 2259 852 245 422 247 909 3.07 501 339 887

Table 2. Results on MIST using an IoU threshold of 85%. NCI: normalised clicks per image, NFO: number of failed objects, NFI: number
of failed images. All reported models are trained on COCO+LVIS. DynaMITe produces better segmentations while requiring fewer clicks.

NCI, NFO| NFI} A #
DynaMITe (Swin-T) 2.74 561 335
- Transformer decoder 2.87 640 376

2.80 655 356

- temporal positional encoding 2.90 631 386
- spatial positional encoding 2.75 548 330
- spatio-temporal positional encoding 2.92 637 394

- static background queries

Table 3. Ablation on the network design choices, always relative
to the top line. All runs are repeated 3 times with random sampling
and evaluated on SBD. All metrics use an IoU threshold of 85%.

network performance by 0.01 and 0.16 NCI respectively.
Not having any positional encoding performs the worst with
2.92 NCI as compared to 2.74 for the full network. Tem-
poral positional encodings seem to have a more significant
impact compared to the spatial counterpart.

3.3. Qualitative Results

Fig. 2 shows several qualitative results produced by
DynaMITe. The first row shows examples where a single
click per object suffices to create well-defined segmenta-
tions for all objects. The second and third row show exam-
ples where some refinement clicks are needed to arrive at
the final masks. While manually annotating images, one can
notice that DynaMITe mostly works with few clicks to cre-
ate sharp masks and potential mistakes are often fixed with
few refinement clicks. Notice for example the single refine-
ment click on one of the zebra’s occluded legs in Fig. 2(b)
correctly fixed both legs. We refer the reader to the supple-
mentary material for more qualitative results.

(b) Examples r ing refinement clicks.

Figure 2. Qualitative examples showing the annotation process
with DynaMITe for high-quality masks obtained with a single
click per object and for cases that require additional refinements.
Clicks are represented with colored dots.

4. Conclusion

We have introduced a novel Interactive Transformer
module that can segment and refine object masks based
on user clicks. To achieve this, queries to the Trans-

former are dynamically initialized from the corresponding
click-features. We show its effectiveness by developing a
multi-instance interactive segmentation architecture called
DynaMITe. Unlike existing works, DynaMITe can process
user clicks for multiple instances at once without the need
to re-compute image-level features and achieves state-of-
the-art results on multiple interactive segmentation bench-
marks. These results are enabled by the Transformer atten-
tion operations, highlighting another interesting use-case.

Acknowledgements. This project was funded, in parts,
by ERC Consolidator Grant DeeVise (ERC-2017-COG-
773161) and BMBF project NeuroSys-D (03ZU1106DA).
Several experiments were performed using computing re-
sources granted by RWTH Aachen University under project
rwth1239, and by the Gauss Centre for Supercomputing e.V.
through the John von Neumann Institute for Computing on
the GCS Supercomputer JUWELS at Jiilich Supercomput-
ing Centre. We would like to thank Ali Athar, and Idil Esen
Zulfikar for helpful discussions.

References

[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020. 1

[2] Xi Chen, Zhiyan Zhao, Yilei Zhang, Manni Duan, Donglian
Qi, and Hengshuang Zhao. Focalclick: Towards practical
interactive image segmentation. In CVPR, 2022. 1,2, 3,4, 6

[3] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In CVPR,
2022. 1,3

[4] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-
illov. Per-pixel classification is not all you need for semantic
segmentation. In NeurlPS, 2021. 1

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 3

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 1

[7] Bharath Hariharan, Pablo Arbeldez, Lubomir Bourdev,
Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In ICCV, 2011. 3,4

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3

[9] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local
relation networks for image recognition. In /ICCV, 2019. 3

[10] Theodora Kontogianni, Michael Gygli, Jasper Uijlings, and
Vittorio Ferrari. Continuous adaptation for interactive object
segmentation by learning from corrections. In ECCV, 2020.
6

(11]

(12]

(13]

(14]

(15]

(16]

(7]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and
C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In ECCV, 2014. 3

Qin Liu, Meng Zheng, Benjamin Planche, Srikrishna
Karanam, Terrence Chen, Marc Niethammer, and Ziyan Wu.
Pseudoclick: Interactive image segmentation with click imi-
tation. In ECCV, 2022. 1, 4

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV,2021. 1

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 6

Sabarinath Mahadevan, Paul Voigtlaender, and Bastian
Leibe. Iteratively trained interactive segmentation. In British
Machine Vision Conference (BMVC), 2018. 1, 3, 6

Kevin McGuinness and Noel E O’connor. A comparative
evaluation of interactive segmentation algorithms. Pattern
Recognition, 2010. 3, 4

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In 3DV, 2016. 6

Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams,
Luc Van Gool, Markus Gross, and Alexander Sorkine-
Hornung. A benchmark dataset and evaluation methodology
for video object segmentation. In CVPR, 2016. 3, 4

Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beldez, Alexander Sorkine-Hornung, and Luc Van Gool. The
2017 davis challenge on video object segmentation. arXiv,
2017. 3

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
“grabcut”: Interactive foreground extraction using iterated
graph cuts. In SIGGRAPH, 2004. 3, 4

Konstantin Sofiiuk, Ilia Petrov, Olga Barinova, and Anton
Konushin. f-brs: Rethinking backpropagating refinement for
interactive segmentation. In CVPR, 2020. 1,2, 3,4, 6
Konstantin Sofiiuk, Ilia Petrov, and Anton Konushin. Re-
viving iterative training with mask guidance for interactive
segmentation. arXiv preprint arXiv:2102.06583, 2021. 1, 2,
3,4,6

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and ef-
ficient design for semantic segmentation with transformers.
In NeurIPS, 2021. 2

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. /CLR, 2020. 3

Supplementary Material

I. Additional Implementation Details

As explained in 2, DynaMITe takes an image as input,
and generates a set of output masks probabilities Y =
{Y{,Y4,...,Y,!} by multiplying the instance encoder’s out-
put Q!,,, with the output feature map F2/, at timestep ¢.
Here, each Y; represents a set of object probabilities for
0; € {O,bg}, where bg represents the background. The
final segmentation masks M are then obtained by first tak-
ing a max per pixel over each Y}, and then an argmax over
the entire Y.

Training. During training, we apply a weighted sum of the
binary cross-entropy loss and the dice loss L = A Lpce +
A2 Lgice [17] on the individual mask probabilities. The net-
work is trained end-to-end using the AdamW [14] optimizer
with a batch size of 128 and an initial learning rate of 5e —4,
which is then decayed by 0.1 after 44 and 48 epochs respec-
tively.

II. Multi-instance Interactive Segmentation
(MIST)

Existing interactive segmentation approaches address
multi-instance segmentation as a sequence of single-
instance tasks. lLe., they pick one instance at a time, and
then refine it either until the mask has a satisfactory quality,
or until they have exhausted a specific click budget 7 for that
object. If there are multiple foreground objects in a single
image, these methods generate overlapping object masks
which have to be merged as an additional post-processing
step in order to obtain the final masks. Also, since these
objects are processed individually with disjoint click sets,
some clicks can be redundant at an image-level. Hence, in
this work we propose a novel multi-instance interactive seg-
mentation task (MIST), where the goal of a user is to jointly
annotate multiple object instances in the same input image.

Given an input image and a common set of user clicks,
MIST expects a corresponding method to generate non-
overlapping instance masks for all relevant foreground ob-
jects. A major difference in this setting is that the back-
ground, and the corresponding negative clicks, are now
common for all object instances. MIST is a more challeng-
ing problem compared to the classical single-instance set-
ting, since every refinement step can now lead to a positive
click on any of the relevant objects or to a negative (back-
ground) click. Thus, extending an existing single-instance
interactive segmentation method to MIST is not trivial.

Automatic Evaluation. It is also important to note that
the user click patterns for MIST may differ considerably
between users. As a result, simulating MIST for auto-

matic evaluation is a challenge of its own. In contrast
to single-instance interactive segmentation benchmarks that
have converged onto a deterministic next-click simulation
strategy [2, 10, 15,21, 22], the refinement focus in MIST
may jump from one object to another in an arbitrary se-
quence, unless users are instructed to process the objects
in a specific order. Since it is hard to predict what next-
object/next-click selection strategies users will end up pick-
ing in an actual interactive segmentation application, and
since that choice will in turn depend on their impression
of which strategies work best with the given segmentation
method, it is not practical to assume a single, deterministic
next-click simulation strategy. Instead, we postulate that a
method that performs MIST should ideally be robust against
varying click patterns and next-object selection strategies.

We start by adding a single positive click to each of the
foreground objects in that image to get an initial prediction.
For evaluating FocalClick, we choose the next object for
refinement with quality closest to the desired segmentation
quality i.e choose the object that has the best IoU, compared
to the ground truth mask. To showcase the robustness of
our method against varying click patterns, we select a ran-
dom object for refinement in each step while evaluating our
method. We also tried the same strategy for FocalClick but
since it is not designed for multi-instance segmentation, this
setting gives poor results. In each of the refinement steps,
only the objects that have not yet achieved the required seg-
mentation quality will be sampled. Next, we place a sim-
ulated click c¢; on the largest error region of o;. c¢; can
now be (i) a positive click on o;; (ii) a negative click on
the background; or (iii) a positive click on another o;. This
process is repeated either until all the relevant objects are
segmented, or until the image-level click budget 7 is fully
spent.

II1. Runtime and Memory Analysis

As discussed in 2, DynaMITe translates each click into
a query to our Interactive Transformer module. Hence, the
number of queries processed by the transformer increases
over time during the iterative refinement process. In Fig-
ure 3, we analyze the impact of such a growing query pool
in terms of runtime and GPU memory consumed during in-
ference. Both the runtime and the memory increases as the
transformer receives more queries, but the scale-up is quite
slow and falls within a reasonable limit for practical usage.
As shown in Fig. 3a and Fig. 3b, the runtime increases from
17ms to 34ms as the number of clicks increases from 1 to
200, and the memory used increases from around 800MB
to 3.2GB. For a large scale dataset like COCO with an av-

35 A

334

31+

29+

271

25

milliseconds

234

214

19 4

17 4

GPU Memory(GB)

3.0

2.5+

2.0

1.5

1.0+

15 T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200
Number of clicks

(a) Runtime Analysis

T T T T y T T T T T T
o] 20 40 60 80 100 120 140 160 180 200
Number of clicks

(b) Memory Analysis

Figure 3. Runtime and memory scaling with respect to the number of clicks for the interactive transformer.

(a) Ground truth b)r=1

c)r=3 dT=5

Figure 4. A qualitative example of a negative result. Even though both the board and the ropes of the kite are segmented badly, the board
can be recover with few additional clicks. After a total of 15 clicks the refinement is not able to segment the ropes though. Given that
the refinement clicks are sampled based on a maximum distance transform, no clicks are sampled for the very thin structure, even though

DynaMITe might actually be able to segment such structures.

erage of 7.3 instances per image, DynaMITe would need
about 47 queries (since NCl is 6.4) in the final refinement
step and hence the average maximum runtime for a refine-
ment step would be about 23.5ms. The values reported for
both of these experiments in Fig. 3 are an average over the
entire GrabCut dataset on an Nvidia 3090 GPU with 24GB
of memory.

IV. Qualitative Results

We first show an interesting failure case in Fig. 4, where
DynaMITe fails to capture the thin ropes of the kite. Al-
though DynaMITe can segment fairly thin structures in
practice, the automatic click sampling fails to sample the
necessary additional clicks for DynaMITe to segment the
ropes in this particular case, due to the use of a maximum
distance transform. In Fig. 5, we show additional multi-
instance segmentation results for sequential segmentation
process using DynaMITe. Here we follow the random strat-
egy, where we first sample a single click per object, after
which we iteratively select a random object to refine. In
most cases, DynaMITe starts out with a high average loU
after a single click per object and the resulting masks are

often arguably better than the corresponding ground truth
segmentation, e.g. row 3, 5, and 6. Nevertheless, in most
cases we can also adjust to arbitrary mistakes present in the
ground truth annotations.

(a)“Ground truth b)r=1 =3 - dr=5

Figure 5. Qualitative examples based on our automatic random click sampling strategy. We show the ground truth and how the segmentation
looks after a click budge of 7 * |O|. For 7 = 1 we click on each object exactly once. The bottom left corner of each image shows the
average IoU.

	. Introduction
	. Interactive Transformer
	. Network Architecture

	. Experiments
	. Comparison with the State-of-the-art
	. Ablations
	. Qualitative Results

	. Conclusion
	. Additional Implementation Details
	. Multi-instance Interactive Segmentation (MIST)
	. Runtime and Memory Analysis
	. Qualitative Results

