
Experiments
Synthetic Data

• 8000/1000/1000 scenes (train/val/test)
• Simulated Velodyne 64E laser scanner (same as 

in KITTI) with CAD models of ModelNet [7]
• Each scene: Two objects at 2-80m distance
• Up to 1m translation and 90° relative rotation
• Gaussian Noise proportional to distance
• Variants: SynthCars, SynthCarsPersons, 
Synth20, Synth20others
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Motivation
While the majority of trackers focus on data asso-
ciation, precise state (3D pose) estimation is often 
only coarsely estimated by approximating targets 
with centroids or (3D) bounding boxes. 

Training
• Input point cloud size n : 512
• Color channel on KITTI is not used
• Batch size: 128

KITTI Tracking Data
• KITTICars: 20518/7432/1358 scenes of 

frame-to-frame car pairs of KITTI Tracking [2]
• Ground truth transform and tracklets are ob-

tained from annotated 3D bounding boxes
• KITTICarsPersons: 28463/10003/2069 

scenes of car and pedestrian
• KITTI[...]Hard: More challenging variants 

with at least 10 frames distance and 45° angle 
difference
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Simplification!
      Only x, y, α

Loss
• T-CoarseNet, T-FineNet and the final transform 

prediction are all fully supervised
• Translational and angular losses are penalized 

separately, as in [5]
• Huber loss on translation deviation
• Angle prediction: 50 angle bins + 50 residuals
• Angle loss: Langle=Lcls + λ·Lreg

Cross entropy loss on angle 
class prediciton

Huber loss on residual to 
ground truth angle bin
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In automotive scenarios, motion perception of sur-
rounding agents is critical and inaccuracies in the 
vehicle close-range can have catastrophic conse-
quences. Instead of approximating targets with 
their centroids, our approach is capable of utiliz-
ing noisy 3D point segments of objects to estimate 
their motion.
The task of Precise 3D Tracking is, given an exist-
ing tracker (providing tracklets with identity asso-
ciations), similar to 3D point cloud registration. We 
simplify the general 3D registration task to predict-
ing a restricted rigid transform on the ground plane 
(x, y, α).
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Existing methods for point cloud registration in-
clude variants of Iterative Closest Points (ICP) [1], 
which often get stuck in local minima. Global reg-
istration methods improve on this, but are too slow 
for most multi-object tracking applications. With 
AlignNet-3D, we aim to predict good alignments 
with a fast, end-to-end trainable one-stage predic-
tion.

• Input to the network are the two point cloud 
tracklets

• Two siamese branches bring them into canon-
ical poses, for which an embedding is then 
computed

• T-CoarseNet predicts a canonical center of 
the de-meaned input point cloud

• T-FineNet predicts another canonical center 
and canonical orientation of the trans-
formed point cloud

• Both sub-networks are supervised with the 
ground truth pose of the input point cloud

• The final transform prediction is supervised by 
the remaining ground truth transform

Results on SynthCars

Results on Synth20

Results on Synth20others

Results on KITTICars

Results on KITTICarsHard

Comparison to sequence level trackers 
Centroid-KF and ADH [3]

d. < 80m d. < 20m d. < 5m
RMSE v RMSE v RMSE v time/transf.

Centr. Kalman Filter 2.568m/s 1.251m/s 1.604m/s 0.004ms
ADH 2D [3] 2.691m/s 1.139m/s 1.023m/s 0.253ms
ADH 2D (parallel) 2.691m/s 1.139m/s 1.023m/s 0.066ms
ADH 3D [3] 2.682m/s 1.132m/s 1.002m/s 0.418ms
AlignNet-3D 1.834m/s 0.851m/s 0.732m/s 1.220ms
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Shown on top are tracklets obtained from a KITTI tracking [2] trajectory (4 of the 35 point clouds are highlighted 
for illustrative purposes). Below, all tracklets were brought to the same reference frame via frame-to-frame align-

ments (left: accumulated error, right: non-accumulated error)
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