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Abstract

Methods tackling multi-object tracking need to estimate
the number of targets in the sensing area as well as to esti-
mate their continuous state. While the majority of existing
methods focus on data association, precise state (3D pose)
estimation is often only coarsely estimated by approximat-
ing targets with centroids or (3D) bounding boxes. How-
ever, in automotive scenarios, motion perception of sur-
rounding agents is critical and inaccuracies in the vehicle
close-range can have catastrophic consequences. In this
work, we focus on precise 3D track state estimation and
propose a learning-based approach for object-centric rela-
tive motion estimation of partially observed objects. Instead
of approximating targets with their centroids, our approach
is capable of utilizing noisy 3D point segments of objects
to estimate their motion. To that end, we propose a sim-
ple, yet effective and efficient network, AlignNet-3D, that
learns to align point clouds. Our evaluation on two dif-
ferent datasets demonstrates that our method outperforms
computationally expensive, global 3D registration methods
while being significantly more efficient. We make our data,
code, and models available at https://www.vision.
rwth-aachen.de/page/alignnet.

1. Introduction
Multi-object tracking (MOT) is a well-established field

with a long research history. Originating in point-based
object tracking in aircraft and naval scenarios based on
RADAR sensors [35], it nowadays plays an essential role in
mobile perception for autonomous vehicles. Through track-
ing, intelligent vehicles can become aware of surrounding
object instances and estimate their current pose and extent
in 3D space and time, allowing them to predict future mo-
tion and to react in time to potentially harmful situations.

In the context of autonomous driving, the vast major-
ity of existing vision and LiDAR based methods focus
on the detection of targets in the scene and on the sub-

Figure 1: Given LiDAR segments of an object, captured at
different time-steps (some frames are highlighted for illus-
trative purposes), our method learns to align these segments
to estimate the relative motion. Shown above are all seg-
ments transformed to a common coordinate frame using our
predicted frame-to-frame alignments.

sequent data association [3, 5, 52, 50, 1, 23]. Recent
learning-based trends aim at learning data association affin-
ity functions [47, 39], at obtaining temporally-stable detec-
tions [10, 44, 19] and at tackling joint segmentation and
tracking [44]. Even though high-level path planning re-
quires motion perception in 3D space, the task of contin-
uous 3D state estimation of tracked targets is often ne-
glected in existing approaches. Methods based on network
flow [52, 39, 22, 31] only focus on discrete optimization
and do not estimate the continuous state of targets. Sev-
eral approaches cast state estimation as inference in linear
dynamical systems such as Kalman filters. Most often, the
target state is parametrized as a 2D bounding box in the
image domain (vision-based methods [20, 22, 23, 38]) or
approximated by the center of mass or 3D bounding box in
case of stereo-based [21, 29, 24, 9] or LiDAR-based meth-
ods [42, 30, 8, 18, 26]. While such coarse approximations
are perfectly reasonable in case the target is not in our direct
proximity, it is imperative that we estimate motion precisely
in the vehicle close-range – imprecisions in this range can
lead to catastrophic consequences.

An exception is the work of [16], which proposes to
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Figure 2: High-level overview of our approach. Given two
point clouds of an object at two different time-steps, we pre-
cisely estimate the relative motion of an object by aligning
their observed 3D point clouds.

estimate object velocity by sampling 3D positions on the
ground plane that yield small point-to-point distance errors
between consecutive LiDAR scans of objects and thus takes
full 3D shape measurements into account for trajectory es-
timation. However, this approach can fail in case it does not
have a good initial pose estimate.

In this work, we explicitly focus on the state estima-
tion task and assume that association between the point seg-
ments (i.e., point segment identity) is given. Instead of per-
forming direct optimization [16, 43, 53, 2], we propose a
learning-based approach, that optimizes weights of a neu-
ral network, such that, given two LiDAR point clouds, the
error in the estimated relative motion is minimized. Such
an approach has the advantage that it can improve its per-
formance with an increasing amount of training data. As
in [16, 43], our approach goes beyond simple centroid or
bounding-box based approximation and is capable of utiliz-
ing full (noisy and possibly imprecise) 3D point segments of
observed targets to precisely estimate the motion of objects.
Our main contribution is a simple, yet effective and efficient
3D scan alignment network – AlignNet-3D – that learns to
align point clouds in a data-driven fashion to estimate pre-
cise relative transformations between 3D point sets.

More precisely, given two LiDAR point segments that
measure object shape at different times, our network esti-
mates relative motion between scans (see Fig. 2) by learning
to align the observed point sets. Contrary to purely geomet-
ric methods, our method is robust to large temporal gaps,
as we experimentally demonstrate. This makes our method
applicable not only to object tracking but potentially also to
tasks such as 3D reconstruction and shape completion.

To study the alignment network problem in a well-
controlled setting, we generate a synthetic dataset for train-
ing and evaluation of our method by sampling points from
CAD models so that they mimic characteristics of the Li-
DAR sensor. To show that our method generalizes well to
real-world scenarios, we then evaluate our method on the
KITTI tracking [13] dataset. Our method outperforms sev-
eral variants of the ICP algorithm [2] and performs as well
as the computationally expensive global point cloud regis-
tration method [53], while being significantly faster. In ad-

dition, we obtain lower velocity estimation error compared
to a strong tracking-based baseline [16].

In summary, we make the following contributions: 1) we
propose an efficient, learning-based method for registration
of partially-observed 3D object shapes, captured with 3D
sensors. 2) to study this problem in a well-controlled set-
ting, we create a new synthetic dataset based on Model-
Net40 [46] by sampling points from CAD models so that
they mimic characteristics of the LiDAR sensor and new
evaluation metrics. We compare our method with global
registration methods and approaches for LiDAR-based state
estimation and demonstrate excellent performance on syn-
thetic, as well as real-world datasets. 3) we make our code,
experiments and synthetic dataset publicly available.

2. Related Work

Methods for multi-object tracking need to identify and
locate an unknown number of objects and their trajecto-
ries over time and to accurately estimate their current and
future states (e.g., position, velocity, orientation). Exist-
ing LiDAR [42, 30, 8, 18, 26, 11] and vision based meth-
ods [20, 22, 23, 38] mainly focus on the task of estimating
the number of targets and on the temporal association of
measurements [52, 39, 22, 31].

State Estimation. State estimation is often posed as in-
ference on a Markov chain using, e.g., Kalman filters [21,
29, 24, 9] or particle filters [27, 6, 12], with recent trends
towards data-driven sequence modeling using recurrent
neural networks, such as Long-Short Term Memory cells
(LSTMs) [38]. The majority of these methods for 3D ob-
ject tracking using LiDAR and RGB-D sensors approximate
the object state for trajectory estimation with centroids or
bounding boxes [42, 30, 8, 26, 29, 24]. This can lead to im-
precise trajectory and state estimation, especially in close
proximity of the vehicle, when objects are occluded and
measurements are truncated.

Exceptions are [16, 25, 43, 28], which utilize full 3D
point clouds, representing surface measurements of objects
in order to estimate the motion of targets precisely. Held
et al. [16] sample positions on a ground-plane estimate in
a coarse-to-fine scheme to obtain an estimate that mini-
mizes a point-to-point based distance error between point
sets. Mitzel et al. [25] and Os̆ep et al. [28] perform frame-
to-frame ICP-based alignment between a fixed-dimensional
representation of the tracked target and stereo measure-
ments of the object surface. Ushani et al. [43] simultane-
ously optimize the object trajectory and 3D object shape
over time using iterative batch optimization. All aforemen-
tioned methods optimize transformations directly, whereas
our method learns to align objects. Thus, it can benefit from
additional training data and learn to be robust against occlu-
sions and truncations.



Object Registration. The task of relative motion estima-
tion can be cast in terms of object registration. The most
commonly used algorithm for point set registration is the it-
erative closest point (ICP) algorithm [2]. The main idea be-
hind ICP is to minimize a sum-of-squared-distances (SSD)
error between the model and target point sets. This opti-
mization is performed iteratively by 1) finding closest point
pairs between the model and target and 2) estimating a
transformation that minimizes the overall distance between
these pairs. Existing methods mainly differ by different
strategies on point matching (e.g., closest point (point-to-
point), or using normal information (point-to-plane)) and
by their choice of error metric and optimization strategy (an
SSD based error leads to closed-form solutions [2]). For an
exhaustive overview of ICP variants, we refer to [36].

The ICP algorithm needs a good initial pose estimate in
order to converge to a correct solution. To alleviate this
problem, Rusu et al. [37] propose Global ICP. Here, first a
coarse alignment is estimated using RANSAC by matching
FPFH [37] features. However, this approach is too compu-
tationally demanding to be applicable for real-time track-
ing. Go-ICP [48] is a global registration method that over-
comes the need for initialization with a global branch-and-
bound search in SE(3), which guarantees the convergence
to a global optimum. On our data, the computation time
of the (single-threaded) implementation is up to 20 sec-
onds per transform, which is not suitable for a real-time
multi-object tracker. The Fast Global Registration (FGR)
approach by [53] provides good initializations for a local
ICP refinement, but it is still too slow to be applicable to
real-time multi-object tracking scenarios. We evaluate our
method against both local and global ICP as well as FGR.
Recent methods use learned features and feature matching
algorithms [51, 49, 7], still paired with iterative RANSAC
schemes.
Parallel Work. Most similar to our method is the re-
cently proposed data-driven [15] point cloud registration al-
gorithm. However, their approach is iterative, based on a
recurrent deep neural network. In contrast, we focus on
efficient registration for tracking scenarios. Instead of an
iterative registration scheme, we propose a single-stage ap-
proach, that first learns to coarsely align point sets by es-
timating their canonical orientation, followed by a refined
transformation estimation. Recent work of [14] leverages
shape completion for the task of 3D LiDAR-sequence seg-
mentation. Different to our method, their goal is to localize
the target (assuming segmentation given in the first frame)
in the following LiDAR scans. This is similar to the task of
video-object segmentation [4].

3. Method
We formulate track state estimation as a task of estimat-

ing a relative transform between two 3D point sets. These

n 
x 

3
n 

x 
3 2 
x 

n 
x 

10
24

R|t

MLP(512, 256,
2+2*#angle bins) 

n 
x 

3

n 
x 

10
24

n 
x 

3

n 
x 

10
24

(a) A high-level overview of our network. We transform two given
point segments using their (estimated) canonical pose and extract
their embeddings. Then, we concatenate both embeddings and use
an MLP to obtain a refined estimate of the alignment.
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(b) The CanonicalNet, a branch of the siamese network, estimates
a coarse amodal center of the object, followed by an estimate of
a refined object center and its orientation. Finally, we extract a
PointNet embedding of the normalized point cloud.

Figure 3: Our network architecture: (a) high-level overview
of the proposed siamese network and (b) sub-network for
canonical pose estimation.

two point sets correspond to a (sparse) measurement of the
surface of an object, captured at different time steps (see
Fig. 2). In this work, we assume we are given a segmen-
tation of the object, as well as the association between the
point segments, i.e., we assume we have a high-level tracker
that provides unique identity assignments to 3D point sets.
In this context, several existing methods can be used, both
LiDAR [11, 42] or RGB based [44]. As we mainly tar-
get (automotive) real-time tracking scenarios, we constrain
the pose transform prediction to translation on the ground
plane (equivalent to the xy-plane in all experiments) and
relative rotation around the z-axis. We train our network
(Sec. 3.1) using 3D point cloud pairs that represent object
surface measurements at different time steps, together with
a ground truth alignment in the form of a 2D ground plane
translation and a relative angle. Such training triplets can
be generated synthetically (using CAD models, e.g. [46]) or
from the real-world KITTI tracking dataset [13], where 3D
bounding boxes of objects and object identity information
are provided. We discuss datasets and training data genera-
tion in Sec. 4.1.

3.1. Network Architecture

Input to our network (Fig. 3a) are two 3D point clouds
that represent surface measurements of an object, captured
at two different time steps. To ensure both point clouds are
of the same size, we randomly sample n points from each
point cloud. Both point clouds are input to CanonicalNet
(Fig. 3b), two branches of a siamese network, which trans-
form the point clouds to a canonical pose and compute a
fixed-dimensional feature vector for each point cloud. To



obtain a refined alignment estimate, we concatenate em-
beddings of both point clouds and use a multi-layer percep-
tron (MLP) to produce the final transform.

To process the sparse point cloud data (within a branch of
the siamese network), we utilize the PointNet architecture
of [33]. In the following we denote a PointNet that consists
of a per-point MLP of layer sizes 64, 128 and 256, followed
by max-pooling, as PointNet(64, 128, 256). Multi-layer
perceptrons with 512 and 256 hidden layers are abbrevi-
ated as MLP(512, 256), or MLP0.7(512, 256) if a dropout
of 70% is applied after the last layer. All hidden layers use
the ReLU activation function.
CanonicalNet. We visualize our CanonicalNet architecture
in Fig. 3b. We first normalize the input point cloud by mov-
ing its centroid to the origin. Using T-CoarseNet (Point-
Net(64, 128, 256), followed by MLP0.7(512, 256)) we pre-
dict an amodal object center and bring the object closer to a
canonical pose by moving the predicted center to the origin.
After the coarse center estimate, we use T-FineNet (Point-
Net(64, 128, 512), followed by MLP0.7(512, 256)) to refine
the object center and additionally predict a canonical ori-
entation. To estimate orientation we use a hybrid approach
(similar to [32]) for angle prediction. Instead of directly re-
gressing the angle to the canonical orientation, we predict a
classification into one of 50 equidistant angle bins between
0 and 2π. Additionally, we predict an angle residual for ev-
ery angle bin, so that the final angle prediction is computed
as α = i · 2π

#bins + resi, where i is the predicted angle bin and
resi is the respective predicted residual. The output layer
size of an MLP predicting a translation and an angle is thus
2 + 2 · #bins. We re-normalize the point cloud by moving
the new amodal center to the origin, followed by a rotation
by −α. The final point cloud embedding is predicted by a
PointNet(64, 128, 1024) network.
Final Alignment. Finally, we concatenate the point
cloud embeddings computed by the siamese branches (see
Fig. 3a). We input the combined feature vector of size 2048
to a final MLP0.7(512, 256), which predicts refined trans-
lation and angle to precisely align the two point clouds in
their canonical pose estimates. During inference, with the
canonical transforms T1 and T2 computed by the siamese
branches and the final alignment Tf , we compute the over-
all alignment of the two input point clouds as T1TfT−1

2 .

3.2. Loss Function

All stages of our pipeline are fully supervised. In stage 1,
we predict an amodal center with our first transformer net-
work, T-CoarseNet (Fig. 3b). As target center we use the
center of the 3D bounding box in our datasets based on
KITTI, and the mesh origin in our synthetic datasets based
on ModelNet [46]. In stage 2, our second transformer net-
work, T-FineNet, predicts a refined amodal center and the
deviation from a canonical orientation. The target rotation

angle is the mesh or annotated 3D bounding box orientation.
In stage 3, we predict the remaining translation and rotation
needed to align the point clouds from the concatenated em-
beddings (see Fig. 3a). Here we penalize the deviation from
the ground truth remaining transform as follows.

Translation and orientation deviations are penalized by
our loss function independently, which is heavily inspired
by [32]. For the translation deviation, the Huber loss func-
tion [17] with δ = 1 is used, except for the last stage, where
δ = 2, as in [32]. The Huber loss function Lδ(x) is defined
as 1

2x
2 for |x| ≤ δ and δ |x| − 1

2δ
2 otherwise. The trans-

lation loss is abbreviated as Ltransl. The angle loss Langle
comprises of the cross entropy loss Lcls for the angle bin
classification, and a Huber loss Lreg for the residual corre-
sponding to the ground truth angle bin. Residuals are pre-
dicted normalized within [−1, 1], corresponding to angles
in [−β/2, β/2] with the angle bin size β = 2π

#bins . The pre-
dicted normalized residuals are penalized by the Huber loss
function with normalized target residual angles and δ = 1.
The classification and regression losses are combined to

Langle = Lcls + 20 · Lreg. (1)

The overall loss is computed as:

L = Ltransl, overall + λ2 · Langle, overall, (2)

with

Ltransl, overall = λ1(Ltransl, s1 + Ltransl, s2) + Ltransl, s3, (3)
Langle, overall = λ1Langle, s2 + Langle, s3, (4)

where the individual losses of stage 1 and 2 are averaged
between the siamese branches. For the datasets based on
KITTI, the hyperparameters λ1, λ2 are set to 0.5 each.
λ1 weights the losses of the earlier stages, λ2 balances the
translation and angle losses. For the synthetic datasets, λ2
is set to 1.0.

3.3. Training

We train our network with the Adam optimizer for 200
epochs, with a learning rate of 0.005, which decays by
0.5 every 30 epochs. We use an input point cloud size
of n = 512 (randomly sampled from the original point
clouds), with a batch size of 128. We do not use any color
channels. During training, point clouds are augmented by
adding noise to every point and coordinate, sampled from
N (0, σ) with σ = 0.01, but clipped to [−0.05, 0.05]. We
use batch normalization for all layers, with batch norm de-
cay starting at 0.5, decaying by 0.5 every 30 epochs (al-
though clipped at 0.99). We have tuned all hyperparameters
on the validation sets, while reporting our numbers on the
test sets.



distance < 80m distance < 20m
2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R 2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R time/transform

Global ICP 4.00% 25.90% 35.30% 0.91m 41.19◦ 11.26% 52.81% 57.14% 0.58m 38.74◦ 2315.57ms
Global ICP+p2p 18.20% 32.30% 39.10% 0.90m 40.74◦ 42.42% 59.31% 61.04% 0.58m 37.35◦ 2341.20ms
ICP p2p 8.10% 14.30% 17.90% 0.41m 49.53◦ 13.42% 18.61% 22.08% 0.48m 49.22◦ 27.88ms
FGR 5.10% 12.30% 18.40% 0.44m 46.52◦ 18.61% 35.50% 41.56% 0.55m 36.43◦ 13.67ms
FGR+p2p 14.40% 21.10% 25.00% 0.48m 46.28◦ 40.26% 47.19% 50.22% 0.56m 36.14◦ 34.53ms
Ours 0.60% 34.90% 74.90% 0.19m 5.16◦ 0.43% 38.53% 77.92% 0.20m 4.73◦ 1.22ms
Ours+p2p 17.60% 48.50% 73.00% 0.21m 6.62◦ 25.54% 49.78% 73.16% 0.24m 8.16◦ 22.97ms

Table 1: Registration results on SynthCars, a dataset of simulated LiDAR scans of car meshes in random poses.

distance < 80m distance < 20m
2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R 2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R time/transform

Global ICP 3.40% 24.80% 33.50% 0.80m 40.68◦ 10.31% 53.36% 60.09% 0.56m 35.35◦ 2169.69ms
Global ICP+p2p 14.50% 32.30% 39.60% 0.79m 39.93◦ 38.12% 63.68% 66.82% 0.53m 33.25◦ 2188.65ms
ICP p2p 7.50% 16.50% 22.40% 0.38m 49.72◦ 15.25% 26.01% 31.39% 0.48m 48.11◦ 26.56ms
FGR 4.10% 11.60% 17.50% 0.42m 48.44◦ 16.59% 34.53% 42.15% 0.49m 38.56◦ 14.83ms
FGR+p2p 12.00% 20.80% 26.60% 0.45m 46.52◦ 35.87% 47.98% 52.91% 0.51m 36.41◦ 35.14ms
Ours 0.30% 16.00% 45.80% 0.29m 19.41◦ 0.45% 17.94% 50.22% 0.33m 16.44◦ 1.22ms
Ours+p2p 6.20% 30.10% 53.10% 0.31m 18.70◦ 10.76% 36.77% 61.43% 0.34m 15.09◦ 12.32ms

Table 2: Registration results on SynthCarsPersons, containing about 80%/20% simulated scans of car/person meshes.

4. Experimental Evaluation

To study object registration of partially observed objects
captured by a LiDAR, we first generate a synthetic dataset
by sampling points from CAD models. In this controlled
environment we can evaluate how well we can align point
clouds, sampled at different distances and viewpoints. To
evaluate our method on the real data, we extract LiDAR
segments using the KITTI tracking dataset [13]. We com-
pare our methods against the state of the art geometric reg-
istration methods Global ICP [37] and FGR [53], as well as
centroid-initialized local ICP [2] and ADH [16].

4.1. Datasets

Synthetic Scenes. To obtain an extensive and diverse
dataset of objects in arbitrary poses, we have created the
synthetic dataset SynthCars specifically to study 3D reg-
istration of LiDAR scans. To capture the characteristics
of objects observed by a LiDAR sensor in street scenes,
we simulate intersections of the rays characteristic to the
Velodyne 64E laser scanner1 using CAD models from the
ModelNet40 [46] dataset. We have hand-picked 100 car
meshes, which are transformed using the orientation esti-
mate provided by [41, 40]. Each mesh is additionally nor-
malized by moving it to its centroid, and by uniformly scal-
ing it to a maximum axis-aligned extent of 1. Each of the
10 000 synthetic scenes is created by placing one mesh at
a random pose in 2–80m distance from the origin (on the
ground plane), with a random heading around the z-axis.
The normalized mesh is scaled by a random factor between
2.5–4.5m. A second mesh is placed at up to 1m distance
to the first, with up to 90◦ relative rotation around the z-
axis. 8000 scenes are created for the training set, with
each mesh randomly chosen from the first 50 meshes; 1000

1The same LiDAR sensor was used to record KITTI.

are created for validation and test sets, respectively, with
the other 50 meshes. To simulate LiDAR noise, we add
Gaussian noise sampled fromN3(~0, diag (σ)) to each point,
with σ = max{0.005, 0.05 · d/80} at distance d, clipped
at [−0.05, 0.05].

To demonstrate that our method can align a variety of ob-
ject classes (even object classes not seen during training),
we have created SynthCarsPersons. Here we pick a
person mesh with 20% probability (with a scale from 1.6–
2m) and a car mesh otherwise. We use 40 hand-picked
meshes for the training set and 40 others for the valida-
tion/test sets. We create Synth20 by picking meshes ran-
domly from the first 20 classes of ModelNet40, with a scale
of 1–5m. For each class we use the 20 first meshes for
training and the remaining 20 for validation. Similarly we
create Synth20others from the remaining 20 classes to
study the transfer to unseen classes. We split all synthetic
datasets into 8000/1000/1000 scenes for training, validation
and testing.

KITTI. We use KITTI track labels in form of 3D bounding
boxes relative to the ego-vehicle in order to obtain 3D seg-
ments of objects, recorded in street scenes. They provide us
with both training labels and point cloud segmentation (we
extract all points within labeled 3D boxes). To compensate
for the slight differences in height of the objects scans, we
transform both point sets to a common ground plane.

For KITTITrackletsCars we extract point clouds
of the car and van category from successive frames
of the 21 KITTI tracking training sequences (this
excludes objects that re-appear after more than one
frame). The sequences are divided into training
and validation sequences, as in [44]. Sequences
{2, 6, 7, 8, 10, 13, 14, 16, 18} are further split into set
{13, 14, 16, 18} for the validation and {2, 6, 7, 8, 10} for the
test set, resulting in 20518/7432/1358 non-empty scenes.



distance < 80m distance < 20m
2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R 2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R time/transform

Global ICP 3.10% 16.70% 23.00% 0.70m 67.76◦ 8.65% 30.83% 34.96% 0.39m 55.16◦ 2141.82ms
Global ICP+p2p 10.70% 22.50% 28.20% 0.68m 68.61◦ 24.44% 38.35% 40.98% 0.36m 55.06◦ 2172.83ms
ICP p2p 7.20% 16.70% 22.20% 0.35m 51.81◦ 15.41% 24.44% 28.95% 0.37m 50.60◦ 21.31ms
FGR 1.90% 7.50% 13.00% 0.47m 61.01◦ 6.39% 15.41% 21.80% 0.40m 62.98◦ 18.44ms
FGR+p2p 8.70% 18.30% 23.80% 0.50m 61.41◦ 21.43% 31.95% 37.22% 0.45m 61.95◦ 37.84ms
Ours 0.50% 11.30% 24.60% 0.41m 93.81◦ 0.75% 15.04% 27.07% 0.37m 91.64◦ 1.22ms
Ours+p2p 9.50% 23.50% 30.40% 0.47m 92.20◦ 16.92% 30.83% 35.71% 0.42m 90.99◦ 23.35ms

Table 3: Registration results on Synth20, containing simulated scans of meshes of 20 different classes of ModelNet40 [46].
Here the angle deviation to the actual object headings is considered, instead of their heading axes.

distance < 80m distance < 20m
2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R 2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R time/transform

Global ICP 2.70% 15.90% 22.60% 0.81m 70.02◦ 8.07% 30.04% 34.98% 0.53m 53.24◦ 2185.02ms
Global ICP+p2p 12.60% 23.90% 27.90% 0.82m 70.59◦ 31.39% 39.46% 40.36% 0.55m 52.54◦ 2207.81ms
ICP p2p 7.90% 19.30% 23.20% 0.47m 52.62◦ 13.45% 24.66% 27.80% 0.52m 50.80◦ 27.64ms
FGR 1.30% 8.10% 14.10% 0.61m 66.73◦ 4.48% 16.59% 26.91% 0.65m 74.55◦ 22.77ms
FGR+p2p 9.60% 21.30% 25.00% 0.64m 68.18◦ 22.87% 36.32% 40.81% 0.65m 75.68◦ 48.60ms
Ours 0.30% 10.20% 25.20% 1.00m 91.50◦ 0.00% 10.31% 27.80% 0.53m 88.21◦ 1.22ms
Ours+p2p 12.20% 28.30% 35.00% 1.04m 91.98◦ 23.32% 37.67% 43.05% 0.65m 88.84◦ 27.12ms

Table 4: Registration results on Synth20others, with simulated scans of the remaining 20 classes of ModelNet40 [46].
Again, the deviation to the actual object headings is used.

Similarly we create KITTITrackletsCarsPersons
using car, van and person classes. It contains
28463/10003/2069 scenes. The KITTI dataset is cap-
tured at 10 Hz, therefore frame-to-frame pose and view-
point changes are minor. We therefore create the more
challenging variants KITTITrackletsCarsHard and
KITTITrackletsCarsPersonsHard by taking ob-
ject scans with large temporal gaps – 10 or more frames
difference and a minimum of 45◦ rotation around the z-axis.

4.2. Baselines

We compare our method against a set of local and global
point cloud registration methods. We have simplified the
registration task to a 2D translation and a z-axis rotation.
To ensure a fair comparison we have constrained all base-
line methods to only predict transformations of this limited
search space.
Local ICP. For a simple, yet common baseline, we
use the point-to-point ICP algorithm [2] implemented in
Open3D [54]. We have modified the minimization step by
projecting all corresponding points to the ground plane, so
that only rotations around the z-axis are computed. We ini-
tialize the transform with a translation aligning the point
cloud centroids, and use a search radius of 0.1m for finding
point correspondences. This configuration is also used for
refining the initialization provided by the global registration
methods (denoted in all tables by +p2p).
Global ICP. For the baseline of Global ICP [37], we again
use an implementation of Open3D [54] with its recom-
mended configuration. Due to its computation time, this
method is not applicable to real-time tracking. It is nonethe-
less interesting to analyze its registration performance. We
therefore report all numbers, but do not compare them in
detail to the other methods.

Fast Global Registration. Fast Global Registration
(FGR) [53] serves as a strong baseline, providing good ini-
tializations for a local ICP refinement, although still being
an order of magnitude slower than our method. It also uses
FPFH features, computed as in Global ICP [37].

4.3. Evaluation Protocol

Synthetic Data and KITTI Tracklets. As we restrict our
task to proposing a xy-plane translation and a z-axis ro-
tation, we evaluate these predictions and their errors sepa-
rately. We compute the root mean squared error (RMSE)
for the respective deviations from the ground truth. Addi-
tionally, we evaluate both jointly to investigate how many of
the predicted transforms are correct under the regime of dif-
ferent translational and rotational thresholds. We therefore
report the number of correct predictions within the transla-
tion/angle bins 2cm,1◦; 10cm,5◦ and 20cm,10◦.

For the datasets restricted to the car category we no-
ticed that the absolute angle deviation often converged to
about 90◦. That is because cars, especially sparsely sam-
pled cases due to a large distance, appear symmetric along
their heading axis. This is not only a problem during eval-
uation, where cars with indistinguishable heading can lead
to large angular errors (180◦). It is also a problem for the
loss computation during training. Therefore on all datasets
with cars and persons we train our networks with the loss
computed with the minimum angle to the orientation axis.
During evaluation we also only take the smallest angle to
the orientation axis as angle deviation. Only on Synth20
and Synth20others we train and evaluate for aligning
the actual object headings.

When objects are recorded using a high frame rate, no
object is expected to turn more than 90◦ from frame to
frame. Therefore the predicted object heading axes can be



distance < 80m distance < 20m
2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R 2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R time/transform

Global ICP 16.27% 67.89% 77.47% 0.67m 6.65◦ 17.46% 84.62% 91.72% 0.47m 5.47◦ 1766.97ms
Global ICP+p2p 27.47% 71.58% 78.65% 0.66m 6.60◦ 36.98% 89.64% 93.49% 0.45m 4.85◦ 1773.58ms
ICP p2p 25.85% 67.67% 80.19% 0.25m 2.77◦ 36.98% 86.69% 93.20% 0.11m 1.58◦ 6.09ms
FGR 7.51% 52.28% 72.31% 0.51m 8.71◦ 10.06% 70.12% 86.69% 0.26m 7.76◦ 14.56ms
FGR+p2p 22.90% 64.95% 77.69% 0.49m 7.57◦ 35.80% 87.28% 94.08% 0.25m 5.70◦ 20.76ms
Ours 6.41% 50.96% 82.77% 0.31m 8.53◦ 9.76% 65.38% 94.08% 0.16m 3.47◦ 1.22ms
Ours+p2p 21.65% 64.95% 81.74% 0.31m 8.66◦ 35.21% 87.87% 94.38% 0.14m 3.57◦ 7.00ms
Ours from scratch 5.45% 53.98% 73.05% 0.36m 7.55◦ 7.10% 73.37% 87.87% 0.17m 3.39◦ 1.22ms
Ours from scratch+p2p 20.03% 62.81% 72.97% 0.36m 8.07◦ 32.25% 82.54% 87.87% 0.16m 3.09◦ 12.14ms

Table 5: Registration results on KITTITrackletsCars, containing consecutive LiDAR scans of cars, extracted from
KITTI tracking [13].

distance < 80m distance < 20m
2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R 2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R time/transform

Global ICP 15.47% 68.25% 81.44% 0.53m 5.66◦ 15.44% 76.17% 90.72% 0.29m 5.14◦ 1593.29ms
Global ICP+p2p 23.05% 72.02% 83.23% 0.52m 5.34◦ 24.38% 82.89% 94.52% 0.28m 4.03◦ 1597.91ms
ICP p2p 22.43% 70.28% 84.78% 0.20m 4.06◦ 25.95% 83.11% 95.30% 0.07m 3.41◦ 5.45ms
FGR 9.82% 53.68% 72.68% 0.40m 11.11◦ 11.07% 60.63% 79.64% 0.14m 11.46◦ 15.08ms
FGR+p2p 19.73% 66.97% 81.43% 0.38m 7.73◦ 23.15% 80.65% 93.29% 0.10m 5.62◦ 20.45ms
Ours 3.77% 45.48% 66.51% 0.29m 22.02◦ 4.70% 42.51% 59.17% 0.22m 27.73◦ 1.22ms
Ours+p2p 16.24% 58.29% 71.19% 0.29m 18.98◦ 17.56% 60.74% 70.47% 0.20m 22.22◦ 7.30ms

Table 6: Registration results on KITTITrackletsCarsPersons.

trivially converted to object headings by flipping all orien-
tation predictions with more than 90◦ difference. For the
more challenging dataset KITTITrackletsCarsHard,
where this assumptions does not hold, a classification out-
put could be added to predict whether to flip the prediction
heading. To overcome the symmetry of sparse car scans, the
associated image patch could be used to classify whether the
object points into one direction or the other.

To separately evaluate the performance of all methods
in close proximity, where a precise alignment is especially
important, we additionally report all numbers for the subset
of scenes that are within a 20m range (specifically, where
the ground truth center of the first point cloud is at most
20m away from the scanner position).

4.4. Discussion

Synthetic Scenes. Our method produces high-quality ini-
tial alignments in just over a millisecond per transform.
This is (on all datasets) at least 10 times faster than the
fast global registration method FGR. For SynthCars
and SynthCarsPersons our method obtains the low-
est RMSE compared to the geometric baselines, for far a
away and close by objects (see Tables 1 and 2). Moreover,
we achieve the best results in all but the hardest transla-
tion/angle bins for SynthCars. A refinement with local
ICP is able to produce very precise alignments for good ini-
tializations (manifesting as a high percentage of alignments
within 2cm/1◦), while the less precise initializations within
20cm/10◦ can diverge to local minima and have a negative
impact on the performance.

Experiments on Synth20 and Synth20others
show that our method is able to generalize to a large va-
riety of object classes. As can be seen in Tables 3 and 4, our

models (with refinement) perform about as good or better
than the baselines within the 10cm/5◦ and 20cm/10◦ thresh-
olds. Here we evaluate the angle deviation to the actual
heading, not just the heading axis. For this experiment we
have trained models with a loss function that penalizes the
angle to the actual heading angle. The root mean squared
angle deviation of our method is about 90◦, indicating that
our method has problems predicting the orientation of these
objects. Several classes in ModelNet dataset are symmetric
(e.g. bathtub, bed, desk) and the additional sub-sampling re-
quired for our approach increases the orientation ambiguity.

KITTI Tracklets. For all datasets generated from KITTI
recordings we pre-train our models on the respective syn-
thetic datasets. As can be seen in Tables 5 and 6, the results
of all methods indicate that for KITTITrackletsCars
and KITTITrackletsCarsPersons, a local geomet-
ric method is fast and very accurate. We attribute this
to the fact that frame-to-frame displacements (recorded
under high frame rate) are relatively small, especially
rotations. The significant overlap of successive point
clouds forms perfect conditions for the local ICP method,
which eliminates the need for global registration methods.
Nonetheless, on KITTITrackletsCars, our method
shows similar or better performance compared to FGR.
With the local refinement, we achieve the best overall re-
sults for some of the less challenging translation/angle
bins. In Table 5 we additionally show results without pre-
training on SynthCars, which indicate that pre-training
boosts the performance on KITTITrackletsCars,
most notably within the 20cm/10◦ thresholds. For
KITTITrackletsCarsPersons, the best performing
method is FGR. The higher angular RMSE error (compared
to KITTITrackletsCars) indicates that our method



distance < 80m
2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R

Global ICP 0.00% 0.00% 0.00% 38.34m 70.78◦

Global ICP+p2p 0.00% 0.00% 0.00% 38.34m 70.76◦

ICP p2p 0.00% 0.00% 0.00% 0.51m 68.66◦

FGR 0.00% 0.00% 0.00% 0.48m 70.82◦

FGR+p2p 0.00% 0.00% 0.00% 0.51m 68.96◦

Ours 0.00% 1.80% 14.48% 0.48m 31.08◦
Ours+p2p 0.05% 1.14% 9.44% 0.52m 33.11◦

Table 7: Registration results on KITTITracklets-
CarsHard, with cars captured with more than 10 frames
difference and at least 45◦ angle difference.

distance < 80m
2cm,1◦ 10cm,5◦ 20cm,10◦ RMSE t RMSE R

Global ICP 0.00% 0.00% 0.00% 35.16m 69.31◦

Global ICP+p2p 0.00% 0.00% 0.05% 35.16m 69.27◦

ICP p2p 0.00% 0.00% 0.05% 0.48m 67.91◦

FGR 0.00% 0.00% 0.00% 0.46m 69.61◦

FGR+p2p 0.00% 0.00% 0.05% 0.49m 68.23◦

Ours 0.00% 1.78% 11.16% 0.46m 38.63◦
Ours+p2p 0.00% 1.45% 8.77% 0.49m 40.56◦

Table 8: Registration results on KITTITracklets-
CarsPersonsHard.

d. < 80m d. < 20m d. < 5m
RMSE v RMSE v RMSE v time/transf.

Centr. Kalman Filter 2.568m/s 1.251m/s 1.604m/s 0.004ms
ADH 2D [16] 2.691m/s 1.139m/s 1.023m/s 0.253ms
ADH 2D (parallel) 2.691m/s 1.139m/s 1.023m/s 0.066ms
ADH 3D [16] 2.682m/s 1.132m/s 1.002m/s 0.418ms
Ours 1.834m/s 0.851m/s 0.732m/s 1.220ms

Table 9: Comparison of our method to ADH [16] and
centroid-based Kalman filter.

occasionally fails to identify a person’s heading correctly.
More challenging settings for KITTITracklets-

CarsHard and KITTITrackletsCarsPersons-
Hardwith larger translation and rotation gaps lead to vastly
different angles of observation and point cloud densities.
In this case all geometric methods struggle to correctly
align the point clouds. In contrast, our learning-based
method can learn to be robust against varying densities and
larger gaps. A refinement of our predictions with local ICP
leads to lower scores, implying that these scenarios are so
challenging that ICP cannot correctly align point clouds
even when a coarse initialization is provided.

We conclude that when relative motion and point cloud
density does not change significantly even local registra-
tion methods perform comparatively well to our approach.
Our method performs significantly better in harder scenar-
ios with larger temporal gaps. We note that even though
harder cases appear infrequently in a real-world setting, it
is important that tracking methods are robust to such cases
as failures can lead to catastrophic consequences.
Comparison to ADH. To compare to ADH [16] and their
baseline (centroid-based Kalman filter) we have extended
their evaluation script to our KITTITrackletsCars
dataset. For this evaluation, only velocity needs to be es-

timated. We simply adapt our inference to output frame-
to-frame velocities from the predicted translations, assum-
ing known time difference between two scans. We average
each translation with those of the two adjacent frames to
smoothen out small translation errors. Note that all variants
of [16] use a motion model, whereas our method does not
condition its estimate on the past evidence. Table 9 summa-
rizes our results. Our method outperforms variants and the
baseline of [16] by a considerable margin in terms of RMSE
(0.732m/s vs. 1.002m/s in the 5m range), especially for ob-
jects observed in farther ranges (1.834m/s vs. 2.682m/s).
However, our method is slower. We notice that the simple
Kalman filter baseline is more accurate compared to ADH
for objects with up to 80m distance, however in the near-
range ADH is significantly more accurate.

4.5. Timings

All of our timings have been conducted on a machine
with an Intel i7-3770 CPU, an Nvidia GTX 1080 Ti and 32
gigabytes of RAM. For all timings, only the computation
time was measured, excluding time for data loading. All
ICP baselines run multi-threaded on the CPU. The reported
times are averaged over the whole test set. Our method can
run most operations on the GPU, benefiting from massive
parallelization. The time per transform is computed by di-
viding the mean batch processing time by the batch size.
Our method is most efficient for an inference batch size of
32, with about 1.22ms per alignment (this is the reported
time in all our tables). It is also a realistic number of ob-
jects to track simultaneously. Batch sizes 8, 16 and 64 are
not much slower with 1.93ms, 1.45ms and 1.34ms.

5. Conclusion
We have presented an efficient, data-driven point cloud

registration algorithm for real-time object tracking applica-
tions. Our siamese network predicts a coarse alignment by
transforming both point clouds to an amodal canonical pose
and concatenates point cloud embeddings to predict a fi-
nal alignment. We experimentally demonstrated that our
method is computationally efficent and robust to large ro-
tations and significantly different point densities. In fu-
ture work, we plan to investigate whether more sophisti-
cated point cloud processing architectures such as [34, 45]
could improve our performance and to perform sequence
level learning using recurrent neural networks.
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