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Word Embeddings
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Important Announcement

Happy New Year everybody!
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Random Forests

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks e | casanc
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Topics of This Lecture

* Recap
> ResNets
> Applications of CNNs

Word Embeddings

> Neuroprobabilistic Language Models
> word2vec

> GloVe

> Hierarchical Softmax

Embeddings in Vision
> Slamese networks
> Triplet loss networks

Outlook: Recurrent Neural Networks

B. Leibe



Recap: Residual Networks

AlexNet, 8 layers % VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

ResNet, 152 layers
(ILSVRC 2015)

e Core component
> Skip connections

> This makes it possible

to train (much) deeper _
networks. H(x) = F(x) +x

(@)

i . X

g bypassing each layer

= - Better propagation of weight layer
(@)) .

£ gradients to the deeper F(x) Jrelu
S layers -

E weight layer
=

N

&

=
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RWTH
Recap: Analysis of ResNets

Building block
* The effective paths in ResNets — == |
are relatively shallow AT LA )
> Effectively only 5-17 active modules
O

* This explains the resilience to deletion |,

> Deleting any single layer only affects a

subset of paths (and the shorter ones . >

o less than the longer ones). o\ fi /2 O

3l « New interpretation of ResNets ea ESGSTERAMERC frpeR e
% » ResNets work by creating an ensemble : ““““““““““
= of relatively shallow paths B I
E > Making ResNets deeper increases the ‘; ------------------------
© size of this ensemble Forfo
f_é > Excluding longer paths from training e
= does not negatively affect the results. pathfenat .

Image source: Veit et al., 2016
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Recap: R-CNN for Object Detection

ConvNet

ConvNet

ConvNet

Slide credit: Ross Girshick B. Leibe



Recap: Faster R-CNN

* One network, four losses FERSR— S
> Remove dependence on loss regression loss
external region proposal
algorithm.
Classification Bounding-box _
loss regression loss Rol pooling

-~ Instead, infer region prOPOSfﬂS/JE
proposals from same
CNN. Region Proposal Network

> Feature sharing
> Joint training

— Object detection in
a single pass becomes
possible.

feature map
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Slide credit: Ross Girshick
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Topics of This Lecture

* Word Embeddings
> Neuroprobabilistic Language Models
> word2vec
> GloVe
> Hierarchical Softmax
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RWTH
Neural Networks for Sequence Data

* Up to now
> Simple structure: Input vector — Processing — Output

* In the following, we will look at sequence data
> Interesting new challenges

> Varying input/output length, need to memorize state,
long-term dependencies, ...

* Currently a hot topic
> Early successes of NNs for text / language processing.

> Very good results for part-of-speech tagging, automatic translation,
sentiment analysis, etc.

> Recently very interesting developments for video understanding,
Image+text modeling (e.g., creating image descriptions), and even
single-image understanding (attention processes).
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Motivating Example

* Predicting the next word in a sequence
> Important problem for speech recognition, text autocorrection, etc.

* Possible solution: The trigram (n-gram) method

> Take huge amount of text and count the frequencies of all triplets
(n-tuples) of words.

> Use those frequencies to predict the relative probabilities of words
given the two previous words

p(ws = clwy = b,w; =a)  count(abc)

p(ws = dlwy = b,w; =a) count(abd)

> State-of-the-art until not long ago...
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Problems with N-grams

* Problem: Scalability
» We cannot easily scale this to large V.

> The number of possible combinations increases exponentially
> S0 does the required amount of data

* Problem: Partial Observability
> With larger N, many counts would be zero.

> The probability is not zero, just because the count is zero!

= Need to back off to (N-1)-grams when the count for N-grams is
too small.

— Necessary to use elaborate techniques, such as Kneser-Ney
smoothing, to compensate for uneven sampling frequencies.

Slide adapted from Geoff Hinton B. Leibe
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RWNTH
Let’'s Try Neural Networks for this Task

“softmax” units (one per possible next word)

Internal NN structure

index of word at t-2 index of word at t-1

* Important issues
> How should we encode the words to use them as input?
> What internal NN structure do we need?

> How can we perform classification (softmax) with so many
possible outputs?
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RWNTH
Neural Probabilistic Language Model

“softmax” units (one per possible next word)

skip-layer K
connections

units that leafn to predict the output word from features of the input words

¢ 1

learned distributed learned distributed
encoding of word t-2 encoding of word t-1
1‘ table look-up 1‘ table look-up
index of word at t-2 index of word at t-1
e Core idea

> Learn a shared distributed encoding (word embedding) for the words
In the vocabulary.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language
Model, In IMLR, Vol. 3, pp. 1137-1155, 2003.

_ 18
Slide adapted from Geoff Hinton B. Leibe Image source: Geoff Hinton
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http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Word Embedding

* |dea X O] T
- X2 10 T
> Encode each word as a vector in a ¥ 16 ~—_
d-dimensional feature space. ’ _ h;lo
. : ><: h,|O
> Typically, V~ 1M, d € (50, 300) ar
%o A
* Learning goal 1 Wig= ) s :
- Determine weight matrix W, , that : - 9]
performs the embedding. % o -
./-V _______f..-f"
> Shared between all input words —

° |nput
> Vocabulary index x in 1-of-K encoding.
~ For each input x, only one row of Wy, ,is needed.
= W, , is effectively a look-up table.
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Image source: Xin Rong, 2015
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* Train on large corpus of data, learn W, , .
= Shown to outperform n-grams by [Bengio et al., 2003].

X 6\“&&“ . . .
o |6 — mapping to hidden units
1[0 e skip connections
D> e
wt_z YO hr’C:) “lolv
. Vi
H WVX d':{wfﬂ'} = O (V_—',
] //O\ Oy_g
xV O/ :
™~ i
X; 6\“*&\1&“ b w t
210 HE&"%_
= s e
5 Hooo > P o]y
§ Wg—1 O mlé
= j| Wyl halO Many parameters:
£ . / W,y gets huge!
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RWTH
Visualization of the Resulting Embedding

WINer
player nfl SOCCEeY
te badPehisddae iny
chub o4 baseball _
league olympic wirestling
champion spoxrts
STMENAY e ERARER AP =
finals championships
& olympics
i matches
()
2 b1 e GAMES
= medal teine ™
Is prize players
= award
§ awards fans
=
S
e (part of a 2.5D map of the most common 2500 words)

21

B. Leibe Image source: Geoff Hinton
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Visualization of the Resulting Embedding
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B. Leibe
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Visualization of the Resulting Embedding
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Popular Word Embeddings

* Open issue

> What is the best setup for learning such an embedding from large
amounts of data (billions of words)?

* Several recent improvements
> word2vec [Mikolov 2013]
> GloVe [Pennington 2014]
= Pretrained embeddings available for everyone to download.

B. Leibe
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word2vec

INPUT PROJECTION OUTPUT

* Goal e

> Make it possible to learn high-quality
word embeddings from huge data sets
(billions of words in training set).

SUM

Hj )

NV

* Approach e CBOW
> Define two alternative learning tasks -
for learning the embedding: I
= — “Continuous Bag of Words™ (CBOW) )
= — “Skip-gram”
i > Designed to require fewer parameters. wm[
-
© Skip-gram w(tH1)
()
-
e
= w(t+2)
o
©
=
26

B. Leibe Image source: Mikolov et al., 2015



word2vec: CBOW Model

Input layer

e Continuous BOW Model

> Remove the non-linearity
from the hidden layer

> Share the projection layer
for all words (their vectors
are averaged)

C = O OQ]

[O

Output layer

O == ) O O
= =
\
-

*'q

O == QO Q]
t—

o

— Bag-of-Words model Xop
(order of the words does not
matter anymore)

* Side note

> Summing the encoding vectors
for all words encourages the
network to learn orthogonal
embedding vectors for

different words. 27
B. Leibe
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RWNTH
word2vec: Skip-Gram Model

Output layer

O 0 0]

* Continuous Skip-Gram Model
> Similar structure to CBOW

> Instead of predicting the current
word, predict words
within a certain range of -
the current word. §

> Give less weight to the more
distant words

J"j,j

. O ==

Input layer

== OO0 Q]

L
o
o
=
3
=
(@]
‘s
o

Lo

* Implementation V-dim
- Randomly choose a number R € [1,C].

oo 0l

» Use R words from history and R words

from the future of the current word
as correct labels.

— R+ R word classifications for each input. CxV-dim
B. Leibe
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Interesting property

* Embedding often preserves linear regularities between
words

> Analogy questions can be answered through simple algebraic
operations with the vector representation of words.

* Example

> What is the word that is similar to small in the same sense as
bigger is to big?
> For this, we can simply compute
X =vec(“bigger’) — vec(“big”) + vec(“small”)
» Then search the vector space for the word closes to X using the
cosine distance.

= Result (when words are well trained): vec(“smaller”).

* Other example

> E.g., vec(“King”) — vec(“Man”) + vec(“Woman”) ~ vec(“Queen”)
B. Leibe
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Evaluation on Analogy Questions

semantic

syntactic

Type of relationship Word Pair | Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago [llinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

B. Leibe

Image source: Mikolov et al., 2015
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Results

Model Vector Training Accuracy [%] Training time
Dimensionality | words [days x CPU cores]
Semantic | Syntactic | Total

NNLM 100 6B 34.2 64.5 50.8 14 x 180
CBOW 1000 6B 57.3 68.9 63.7 2x 140
Skip-gram 1000 6B 66.1 65.1 65.6 25x 125

* Results

> word2vec embedding is able to correctly answer many of those

analogy questions.

> CBOW structure better for syntactic tasks

> Skip-gram structure better for semantic tasks

B. Leibe
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Problems with 100k-1M outputs

Input layer

0 0 Q]

* Weight matrix gets huge!

* Example: CBOW model e

> One-hot encoding for inputs

= Input-hidden connections are
just vector lookups.

Output layer

am OOO'
T HeXeXe]

> This is not the case for the Xor o
hidden-output connections!

> State h is not one-hot, and
vocabulary size is 1M.

— W', has 300x 1M entries

— All of those need to be
updated by backprop.

[eNeNe] (O

[ O nm
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Problems with 100k-1M outputs

: 9 Input layer
* Softmax gets expensive! o
» Need to compute normaliza- v A
tion over 100k-1M outputs -
°
Output layer
5 3
O O
O O
Y b J
Q . .
8 o
= . -
< : V-dim
(@) O
= o
E O
@® =
il) X O
o “Ck
< :
S
® O
o S
| 33
B. Leibe

Image source: Xin Rong, 2015



Solution: Hierarchical Softmax

n(w,,1)

* |dea
> QOrganize words in binary search tree, words are at leaves

- Factorize probability of word w, as a product of node probabilities
along the path.

- Learn alinear decision function y = v, ,-h at each node to decide
whether to proceed with left or right child node.

= Decision based on output vector of hidden units directly.
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Topics of This Lecture

* Embeddings in Vision
> Slamese networks
> Triplet loss networks
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Siamese Networks

| | 1 |
| x I | | | I
| © I | Iq_shared +| A |
= | = |~ (siamese) | << |
0 | 2 | Q|
| | IE | I = |
| © | © | ©
| E | '.E | unshared | c !
'E | | E (pseudo | E |
. c
I Q | | © siamese) S |
| &N | | .Q I | ol
- Y= Y= 1 = _ 1
patch 1 patch 2 patch 1 patch 2

* Similar idea to word embeddings

> Learn an embedding network that preserves (semantic) similarity
between inputs

> E.g., used for patch matching
B. Leibe

(0)]
S
| S
(O]
e
=
o
£
c
| S
©
()
1
(O]
£
e
o
©
=
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Discriminative Face Embeddings

* Learning an embedding using a Triplet Loss Network

> Present the network with triplets of examples
Negative Anchor Positive

> Apply triplet loss to learn an embedding f (-) that groups the positive
example closer to the anchor than the negative one.

| (%) — f(wf)||§ < |f@?) = f=M)3

Negative

Anchor LEARNING
Negative

Anchor
Positive Posntwe

= Used with great success in Google’s FaceNet face recognition
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RWTH
Triplet Loss — Practical Implementation

* Triplet loss formulation

"Ctri (9) - Z [ﬂl T Da._p — Dﬂ._?‘l]_l_

a,p,mn
Yo=—Up ?éyn

* Practical Issue: How to select the triplets?
> The number of possible triplets grows cubically with the dataset size.
> Most triplets are uninformative
= Mining hard triplets becomes crucial for learning.
= Actually want medium-hard triplets for best training efficiency

* Popular solution: Hard triplet mining
> Process the dataset to find hard triplets
> Use those for learning
> lterate
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Triplet Loss — Practical Implementation ( )

Embed data | |
with f, y

.

Mine hard
triplets

Update

embedding f, <

ot

* Popular solution: Hard triplet mining
> Process the dataset to find hard triplets
> Use those for learning

> lterate
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Topics of This Lecture

Recap
> ResNets
> Applications of CNNs

Word Embeddings

> Neuroprobabilistic Language Models
> word2vec

> GloVe

> Hierarchical Softmax

Embeddings in Vision
> Slamese networks
> Triplet loss networks

Outlook: Recurrent Neural Networks

B. Leibe

CHEN
UNIVERSITY
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RWTH
Outlook: Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt f Pt Pt
f f Pt Pt bt
* Up to now

> Simple neural network structure: 1-to-1 mapping of inputs to outputs

* Next lecture: Recurrent Neural Networks
> Generalize this to arbitrary mappings
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