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Topics of This Lecture Recap: Convolutional Neural Networks
* Recap: CNN Architectures g Ca:t. maps 16@10x10
o - S —
. 13Ye* £ ayer
* Residual Networks i rrr Il
» Detailed analysis I-
» ResNets as ensembles of shallow networks |—
* Visualizing CNNs \ T Fulcontecton | Galssen comectns
. Visualizing CNN features Gy b leicsa
» Visualizi . - -
2 sualzing responses =« Neural network with specialized connectivity structure
= » Visualizing learned structures = .
= = » Stack multiple stages of feature extractors
%, * Applications of CNNs %, » Higher stages compute more global, more invariant features
= . ) g
E - Object detection E . Classification layer at the end
o » Semantic segmentation o
% - Face identification § Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
§ é document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Recap: AlexNet (2012) Recap: VGGNet (2014/15)
‘ * Main ideas F e
. Deeper network [P | M | 1

o 36t

» Stacked convolutional [ wwiE T com et ;
layers with smaller S —
filters (+ nonlinearity) T T T ean T | e

» Detailed evaluation
of all components

N 3-256 | com
3256 | cond-2

pooling

* Similar framework as LeNet, but
» Bigger model (7 hidden layers, 650k units, 60M parameters)
» More data (10° images instead of 103)
» GPU implementation
» Better regularization and up-to-date tricks for training (Dropout)
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* Results o1 a2

» Improved ILSVRC top-5 | S
error rate to 6.7%. A1 | comdf13 | comd 12

com3-512 | com3-312 | com3-512
convi-512

oo )
FC-1096 Mainly used —
0056
FC-1000
“oft-nax

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012.

Jmage source: A Kizhevsky | Siiskever and G E Linion NIPS 201
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http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Recap: GoogLeNet (2014) Discussion
* |deas: * GoogLeNet
» Learn features at multiple scales » 12x fewer parameters than AlexNet
» Modular structure 1 1 = ~5M parameters
BEg R
gl & mg JEEE 1 ﬂi 1 » Where does the main reduction come from?
ST RYE Eﬂi gg SR = From throwing away the fully connected (FC) layers.
LR RR R IR s by T
0| ne » Effect
2 . Convolution 2 » After last pooling layer, volume is of size [7x7x1024]
g Inception ¢ oiies Pooling £ » Normally you would place the first 4096-D FC layer
H module Other H here (Many million params).
g e g » Instead: use Average pooling in each depth slice:
3 ] [o=] [ Auxiliary classification 8 = Reduces the output to [1x1x1024].
2 o . — [ outputs for training the o .
£ = - lower layers (deprecated) = = Performance actually improves by 0.6% compared to
< g when using FC layers (less overfitting?)
o) Incepion metae with dimension eduions s
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Topics of This Lecture Recap: Residual Networks
AlexNet, 8 layers + VGG, 19 layers i GoogleNet, 22 layers EE’EE
e Residual Networks (ILSVRC 2012) + (ILSVRC 2014) - (ILSVRC 2014) ===
2 3 e =
» Detailed analysis 2 "= -
. ResNets as ensembles of shallow networks + = —
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Recan: Residual Networks 8 Spectrum of Depth
5 layers: easy
AlexNet, 8 layers ; VGG, 19 layers L ResNet, 152 layers >10 layers: initialization, Batch Normalization
(ILSVRC 2012) (ILSVRC 2014) % (ILSVRC 2015) 30 layers: skip connections
>100 layers: identityskip connections
3 r» >1000 layers: ?
¢ Core component 3 shallower deeper
2 » Skip connections X 2
g bypassing each layer g
s . Better propagation of s
2 gradients to the deeper F(x) g
& layers £
g £ g
£ 2
5 Hx)=Fx)+x @ S
= 1 = 14
B. Leibe . de credit- Kaiming He B, Leibe




Spectrum of Depth

5 layers: easy

Initialization

22-layer RelU net:
good init converges faster

RWTHACHE

30-layer RelU net:
good initis able to converge

>10 layers: initialization, Batch Normalization
30 layers: skip connections
>100 layers: identity skip connections
r r >1000 layers: ?

shallower deeper

= @
g 8
= * Deeper models are more powerful £
2 » But training them is harder. 21 » Importance of proper initialization (Recall Lecture 15)
c . . " <
3 » Main problem: getting the gradients back to the early layers s > Glorot initialization for tanh nonlinearities
E » The deeper the network, the more effort is required for this. é . He initialization for ReLU nonlinearities
E § = For deep networks, this really makes a difference!
= ‘ 15 = ; 16
ide adapted from Kaiming He B. Leibe de credit: Kaiming He B. Leibe
RWTH//CHE RWTH CHET
Batch Normalization Going Deeper
08 best of w/ BN w/o BN * Checklist
. £ > Initialization ok
SR E b - ~ Batch normalization ok
3 . Are we now set?
° = = = Incaption — Is learning better networks now as simple as stacking more layers?
==+ BN-Baseline
BN-x5
o BN-x30 o
= o BN-xS-Sigmoid =
= 4 Steps to match Inception| 3
é 10M 15M 20M 250 aom Iter é
j=} o
£ £
E L =
if| * Effect of batch normalization 8
2 » Greatly improved speed of convergence 2
'§ » Often better accuracy achievable é
= 17 = 18
B. Leibe Jage souce: lofte ed de credit Kaiming He B. Lelte
RWTH//CHE RWTH CHET
Simply Stacking Layers? Simply Stacking Layers?
CIFAR-10 ImageNet-1000
train error (%) test error (%) 56-layer
Wl 44-layer
WA 56-layer 32-layer
56-layer 20-layer
|
\"\_\w 1
A% 20-layer o 3
20-layer e
o 0 - - . o
;, : D ey ‘ ' ' T (ledy ‘ ;
g § * General observation
=l Experiment going deeper E » Overly deep networks have higher training error
§ . Plain nets: stacking 3x3 convolution layers § » A general phenomenon, observed in many training sets
E = 56-layer net has higher training error than 20-layer net Tg‘
= =
8 8
= 19 = 20
de credit Kaiming He B. Leibe de credit Kaiming He B. Leibe
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Why Is That???

* A deeper model should not have
higher training error!

» Richer solution space should allow it
to find better solutions

* Solution by construction

» Copy the original layers from a learned
shallower model
Set the extra layers as identity

Such a network should achieve at least
the same low training error.

v

v

* Reason: Optimization difficulties

» Solvers cannot find the solution when
going deeper...

ide credit: Kaiming He. B. Leibe

Deep Residual Learning

* Residual net

weight layer
weight layer

H(x)=F(x)+x &

F(x) identity

» H(x) is any desired mapping

.—Hope-the 2 weightdayersfit {3

» Hope the 2 weight layers fit F(x)
LetH(x) = F(x) +x

ide credit- Kaiming He B. Leibe

23

Network Design

* Simple, VGG-style design
» (Almost) all 3x3 convolutions
» Spatial size /2 = #filters - 2
(same complexity per layer)
» Batch normalization
= Simple design, just deep.

plain net

B. Leibe
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Deep Residual Learning
* Plain net

weight layer

any two
ked layers

weight layer

H(x)

» H(x) is any desired mapping
» Hope the 2 weight layers fit H(x)

; 22
ide credit: Kaiming He B. Leibe
. . \
Deep Residual Learning
e F(x) is aresidual mapping w.r.t. identity
x
F(x) identity
weight layer X
H(x) = F(x) +x S
relu
» If identity were optimal, it is easy to set weights as 0
» If optimal mapping is closer to identity, it is easier to find small
fluctuations
» Further advantage: direct path for the gradient to flow to the
previous stages B
4
de credit: Kaiming He B. Leibe

ImageNet Performance

25.8
152 layers

[221ayers | [1971ayers
67 73
3.57 l i I | slayers 8 layers shallow

ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'1Z  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
26

ide credit: Kaiming He. B. Leibe




Machine Learning Winter ‘19

Machine Learning Winter ‘19

PASCAL VOC Object Detection Performance

101 layers
A
K
86
Engines of K
o e 66 Ky
visual recognition 58 g
.
34 A‘J
- | 16 layers
‘ L
<hallow “. ... l
HOG, DPM AlexNet VGG ResNet
{RCNN) (RCNN) (Faster RCNN)*

PASCAL VOC 2007 Object Detection mAP (%)

27

ide credit: Kaiming He. B. Leibe

What Is The Secret Behind ResNets?
* Empirically, they perform very well, but why is that?

* He’s original explanation [He, 2016]

» ResNets allow gradients to pass through the skip connections in
unchanged form.

» This makes it possible to effectively train deeper networks.
= Secret of success: depth is good

* More recent explanation [Veit, 2016]
» ResNets actually do not use deep network paths.
» Instead, they effectively implement an ensemble of shallow
network paths.
= Secret of success: ensembles are good
A, Veit, M. Wilber, S. Belongie, Residual Networks Behave Like Ensembles
of Relatively Shallow Networks, NIPS 2016 29
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Effect of Deleting Layers at Test Time

Top-1 error when dropping any single block s Error when deleting layers
from 200-laysr residusl nstwark on Imagehs H

o1} T.-
I
|

i

F-- -

top 1 emor

na--f it ,ﬁ : 1?. qH .
A I T\ _Tvlw.H ot
JONA.| " | I R AT
“"'_-eé&?ﬁl_:-:ml-r

17 3 45 67 8 91011121314151617161920

0 o
dropped layer index Nurmbsr of layers dleted

¢ Experiments on ImageNet classification
» When deleting a layer in VGG-Net, it breaks down completely.
» In ResNets, deleting a single layer has almost no effect
(except for the pooling layers)
» Deleting an increasing number of layers increases the error smoothly

= Paths in a ResNet do not strongly depend on each other.
31

ietal 201
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Topics of This Lecture
* Residual Networks
» Detailed analysis
» ResNets as ensembles of shallow networks
B. Leibe 2
RWTHC

Idea of the Analysis

Effect of deleting layer f,

o

Ordinary feedforward network

Residual network Unraveled view
* Unraveling ResNets
» ResNets can be viewed as a collection of shorter paths through
different subsets of the layers.

» Deleting a layer corresponds to removing only some of those paths
30
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Which Paths Are Important?

sg1s  distribution of path length

o tolal gradient magnitude per path length

number of paths

total gradient magnitude

o 10 = 0 0 50
path length

o 10 20 0 r 30
path length

* How much does each of the paths contribute?
» Distribution of path lengths follows a Binomial distribution
» Sample individual paths and measure their gradient magnitude
= Effectively, only shallow paths with 5-17 modules are used!
= This corresponds to only 0.45% of the available paths here.

32
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http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf

RWTH//CHE RWTH/ACHET
UNIVERSITY| . . UNIVERSITY]
Summary Topics of This Lecture
Buttngbock
* The effective paths in ResNets e
. S S
are relatively shallow OLLIo=CL)o- (L )0
» Effectively only 5-17 active modules
* This explains the resilience to deletion
~ Deleting any single layer only affects a ¢ Visualizing CNNs
subset of paths (and the shorter ones . Visualizing CNN features
® less than the longer ones). ()0 ® . Visualizing responses
e . . s total gradient magnitude per path length ES . Vi izi
£« New interpretation of ResNets totel gradint magritude por path longl 3 Visualizing learned structures
i » ResNets work by creating an ensemble i
£ of relatively shallow paths £
3 » Making ResNets deeper increases the 3
= size of this ensemble z
zf‘g » Excluding longer paths from training T e e e = é
= does not negatively affect the results. puntenatn 33 = 2
lmage sou it etal 201 B. Leibe
RWTH/CHET RWTH CHET
. .. UNIVERSITY| . L. UNIVERSITY]
Visualizing CNNs Visualizing CNNs
Max Unpooling O ! w Max Pooling
Unpocled Maps | Rectified Feature Maps
Rectified Linear Rectified Linear
Function J Function
Rectified Unpaoled Maps | Feature Maps
Convolutional —‘ ﬁ Convolutional
" DeconvNet Filtering {F7} Filtering [F] ConvNet .
e Reconsiruction | | Layer Below Pooled Maps ¥ Layer 2
2 2
: : T
E R Ao Poaled Maps o \ reconstruction of image patches  top 9 image patches that cause
£ % z from that unit maximal activation in layer 2 unit
s Unpnnlmg Pooling g (indicates aspect of patches
4 Max Lo ’ — which unit is sensitive to)
.E “Switch, 5 o .E
“é S e § M. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Neural Networks,
= Mg Tenue e - —| ECCV 2014. .
lage souce: M Zeiler B Fergu; de credit Richard Turper B. Lelte Jage souce M Zeler B Ferol
UNIVERSITY| UNIVERSITY]

Visualizing CNNs Visualizing CNNs
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Layer 4 Layer 5
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https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

RWTH//ACHEN RWTH//ACHET]
Inceptionism: Dreaming ConvNets Inceptionism: Dreaming ConvNets

* Results

optimize
with prior

* ldea
» Start with a random noise image.

» Enhance the input image such as to enforce a particular response
(e.g., banana).

» Combine with prior constraint that image should have similar
statistics as natural images.

= Network hallucinates characteristics of the learned class.

Machine Learning Winter ‘19
Machine Learning Winter ‘19

RWTH//CHE RWTH CHET
Inceptionism: Dreaming ConvNets Topics of This Lecture
= o
3 3
£ £
2 =1« Applications of CNNs
g g . .
iE i » Object detection
@ © . .
o ° » Semantic segmentation
2 2 » Face identification
< S
8 8
= =
https://www.youtube.com/watch?v=IREsx-xWQO0g “ B. Leibe a2
RWTH//CHE RWTH CHET
The Learned Features are Generic Transfer Learning with CNNs
—m% 1 Train on —mE 2 |f small dataset: fix all
conv-64 conv-64 .
=y ImageNet Y vyelghts (treat CNN as
maxpool maxpool fixed feature extrac-
. state of the art conv128 o128 tor), retrain only the
T level (pre-CNN) goury:326 conv-128 classifier
g maxpool maxpool
{B conv-256 conv-256
conv-256 conv-256
maxpool maxpool
35 === Our Model
g’_ ——Bo etal ‘a_’ conv-512 conv-512
= = Schin etal . conv:512 conv-512
£ 5 2 maxpool maxpool l.e., swap the Softmax
= 0 10 20 30 40 50 80 =
= Training Images per-ciass = conv-512 conv-512 layer at the end
2 i 2 conv-512
=+ Experiment: feature transfer ) _mapoot
% » Train AlexNet-like network on ImageNet % L
;‘:f » Chop off last layer and train classification layer on CalTech256 % FC;HW
softmax
< = State of the art accuracy already with only 6 training images! < “
B. Leibe lage souce: N Zeiler B Fergu; de credit Andrei Karpath, B. Leibe



https://www.youtube.com/watch?v=IREsx-xWQ0g

T

1. Train on
ImageNet

Transfer Learning with CNNs

image
conv-64
conv-64
maxpool

3. If you have medium
sized dataset,
“finetune” instead: use

FC-A096
FC.a086
FC1000
softmax

Machine Learning Winter ‘19

ide credit. Andre] Karpath

conv-128 the old weights as
initialization, train the
full network or only
some of the higher

layers.

<conv:256

Retrain bigger portion
of the network

45

* One network, four losses
» Remove dependence on
external region proposal
algorithm.

» Instead, infer region
proposals from same
CNN.

» Feature sharing

» Joint training

= Object detection in
a single pass becomes
possible.
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More Recent Version: Faster R-CNN

Bounding-box

regression los

proposals ;

Region Proposal Metwork ¢

ide credit- Ross Girshick.

49

Faster R-CNN (based on ResNets)

Machine Learning Winter ‘19

perso

handbag - 0.66

|
chair | 0.757!

CVPR 2016.

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition,
51

B. Leibe
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Other Tasks: Detection

R-CNN: Regions with CNN features

NS
_______________ CNNiNg :
__tvmonilor? no.

3. Compute 4. Classify
CNN features regions

1. Input
image

2. Extract region
proposals (~2k)

* Results on PASCAL VOC Detection benchmark
» Pre-CNN state of the art: 35.1% mAP  [Uijlings et al., 2013]
33.4% mAP  DPM

» R-CNN: 53.7% mAP

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation, CVPR 2014 48

Faster R-CNN (based on ResNets)

person : 0.9

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition,
50

CVPR 2016. o Leibe
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TWTH G
Most Recent Version: Mask R-CNN

Classification Scores: C
Box coordinates (per class): 4 * C
e
3 ] l - ' S— .
. 4 CNN
p '! Rol Align Conv Conv
256x 14x 14 256X 14x 14 Predict a mask for

each of C classes

Cx14x14

K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.

52

ide credit: FeiFeili



http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/pdf/1703.06870.pdf

Mask R-CNN Results YOLO / SSD

* Detection + Instance segmentation

= @ Input image Divide image into grid
5 H] 3xHxW 7x7
= £ . . .
H = * Idea: Directly go from image to detection scores
o o
£ = * Within each grid cell
© ©
S 3 » Start from a set of anchor boxes
% E » Regress from each of the B anchor boxes to a final box
§ § » Predict scores for each of C classes (including background)
54
dgure credit: K. _He G_Gkioxari, P _Dollar, R, Girshick ide credit: Feifeilj
RWTH//CHE RWTH CHET
YOLO Object Detection Performance
& PASCAL VOC i
o Fastr RCHN
g racthn
E 6% Before deep convnets
§ A
B 50% r a \ e |
| |
& ao% a A Y
g A Using deep convnets
5 30% A
@ ] E 20% i &
= = g
E é E 10%
2 = o
=) o %
E E 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
E g year
@ o
£ =
5 S
=8 J. Redmon, S. Diwvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, 2
5 5 5 55 58
Real-Time Object Detection, CVPR 2016. e credit- Ross Girshick 8. Leibe
RWTH//CHE RWTH CHET
Semantic Image Segmentation CNNs vs. FCNs
“tabby cat”
forward /inference * CNN St
backward learning a E,Es%““%‘“f"‘h“ﬁ“*x"@ Ll by
of
\
/ /‘ ) - 7 « ECN convolutionalization
[ [ ( [[:_f(‘ﬂ tabby cat heatmap
b b oo A@baﬁs‘?" 21
s
2 2 =5
2 2
= £
2 2
2 2
=1 Perform pixel-wise prediction task € .
E Usuall pd i IIZ lly C lutional Networks (FCNs) § * Intuition
» Usually done using Fu onvolutional Networks 5 ) . . . T
e v . 9 v . z » Think of FCNs as performing a sliding-window classification,
= — All operations formulated as convolutions = .
S R, S producing a heatmap of output scores for each class
S — Advantage: can process arbitrarily sized images g
59 60
lmage source L ong Shelbamer _Darell

lmage souce: |ong, Shelhamer, Darell



https://pjreddie.com/media/files/papers/yolo_1.pdf

* Encoder-Decoder Architecture
» Problem: FCN output has low resolution
» Solution: perform upsampling to get back to desired resolution
» Use skip connections to preserve higher-resolution information

Machine Learning Winter ‘19

Image source: Newell et al

Other Tasks: Face Identification

i

T Human crapped (87 5%)

—— DeapFace-ensameie (97 35%)

—— DeapFacesingle (97.00%)

———TL Jeirt Baysian (95 33%)

—— High-dimansianal LBP (35 17%)

——— Temovs-Pete + Atribute (33 30%)
combined Joirt Baysian (52 42%)

00 008 610 515 3 05 6% o 040 048 080
13158 positye rate
Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-
Level Performance in Face Verification, CVPR 2014

ide credit- Svetlana | azebnik
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Extension: Triplet Loss Networks
* Learning a discriminative embedding

» Present the network with triplets of examples
Negative Anchor Positive

» Apply triplet loss to learn an embedding f(-) that groups the positive

Anchor y
Positive Positive

= Used with great success in Google’s FaceNet face identification

2 example closer to the anchor than the negative one.
5 2 2
- 15 ) = £z < 1f ) = £l
=

2 Negative BN

E Anchor__g LEARNING e
< [ = Negative
£

=

8

=

65
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Semantic Segmentation

* Current state-of-the-art
» Based on an extension of ResNets

Machine Learning Winter ‘19

[Pohlen Hermans Mathias, | eibe. CVPR 2017]

Learning Similarity Functions

* Siamese Network

» Present the two stimuli to two
identical copies of a network
(with shared parameters)

» Train them to output similar
values if the inputs are
(semantically) similar.

Patches

* Used for many matching tasks
» Face identification
» Stereo estimation
» Optical flow

Siamese network

I1D(x1) = D(xa)|l2

1(x1,%2,4)

Machine Learning Winter ‘19
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References and Further Reading

* ResNets

» K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016.

» A, Veit, M. Wilber, S. Belongie, Residual Networks Behave Like
Ensembles of Relatively Shallow Networks, NIPS 2016.
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https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf
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References: Computer Vision Tasks

* Object Detection

5

v
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R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature
Hierarchies for Accurate Object Detection and Semantic
Segmentation, CVPR 2014.

S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks, NIPS 2015.
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once:
Unified Real-Time Object Detection, CVPR 2016.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C-Y. Fu, A.C.
Berg, SSD: Single Shot Multi Box Detector, ECCV 2016.
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References: Computer Vision Tasks
* Semantic Segmentation
Semantic Segmentation, CVPR 2015.

Network, arXiv 1612.01105, 2016.

B. Leibe

» J. Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for

» H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid Scene Parsing

RWTHACHE
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https://research.google.com/pubs/DumitruErhan.html
https://research.google.com/pubs/ChristianSzegedy.html

