Machine Learning — Lecture 15

Convolutional Neural Networks

05.12.2019

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

Machine Learning Winter ‘19

leibe@Uvision.rwth-aachen.de

Machine Learning Winter ‘19

Course Outline

¢ Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

¢ Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Random Forests

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks

B. Leibe

Topics of This Lecture

* Recap: Tricks of the Trade
» Initialization
» Dropout
» Batch Normalization

¢ Convolutional Neural Networks
» Neural Networks for Computer Vision
» Convolutional Layers
» Pooling Layers

¢ CNN Architectures
» LeNet
» AlexNet
» VGGNet
» GoogLeNet
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Recap: Data Augmentation
¢ Effect
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Augmented training data
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¢ During testing

» When cropping was used
during training, need to
again apply crops to get
same image size.
Beneficial to also apply
flipping during test.
Applying several ColorPCA
variations can bring another
~1% improvement, but at a
significantly increased runtime.
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(from one original image)
Jage souce: Lucas Beve
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Recap: Reducing the Learning Rate

¢ Final improvement step after convergence is reached

» Reduce learning rate by a
factor of 10.

Reduced

‘O- .
» Continue training for a few 5 leaming rate
epochs. o
» Do this 1-3 times, then stop £
training. 2
¢ Effect

Epoch

=4

¢ Be careful: Do not turn down the learning rate too soon!
» Further progress will be much slower/impossible after that.

» Turning down the learning rate will reduce
the random fluctuations in the error due to
different gradients on different minibatches.

de adapted from Geoff Hinton B, Leibe
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Recap: Normalizing the Inputs

¢ Convergence is fastest if

» The mean of each input variable
over the training set is zero. o

.
(ALY Mean
Cancallation

. > . »
» The inputs are scaled such that Yy
. e
all have the same covariance. Expansion
» Input variables are uncorrelated 4 R
if possible. Equaization
. .
> ede%ie >

¢ Advisable normalization steps (for MLPs only, not for CNNs)

» Normalize all inputs that an input unit sees to zero-mean,
unit covariance.

» If possible, try to decorrelate them using PCA (also known as
Karhunen-Loeve expansion).

B.Leibe |age souce: YannleCun et al Ffficient BackProp (199
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Recap: Commonly Used Nonlinearities

RWTHACHE
Extension: ReLU

¢ Sigmoid

* Another improvement for learning deep models
g(a)

» Use Rectified Linear Units (ReLU)
gla) = max {0,a}

ofa)

1
TFexpl—a}

* Hyperbolic tangent o | | ‘
gla) = tanh(a)
= 20(2a) -1 .

¢ Softmax

» Effect: gradient is propagated with
a constant factor
dgla) [ 1, e>0
da 0, else

¢ Advantages
» Much easier to propagate gradients through deep networks.
» We do not need to store the ReLU output separately

EXP{ —a,} — Reduction of the required memory by half compared to tanh!

gla) = T N
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= ReLU has become the de-facto standard for deep networks.

B. Leibe B. Leibe

RWTHAACHET

Extension: ReLU Further Extensions

* Another improvement for learning deep models
» Use Rectified Linear Units (ReLU)

gla) = max {0,a}

* Rectified linear unit (ReLU)
g(a) = max{0, a} sl

RWTH/ACHET
¢ Leaky ReLU
9(a) = max{fa,a}
» Avoids stuck-at-zero units

» Effect: gradient is propagated with

a constant factor
dgla) 1, a>0 T
da 0, else

* Disadvantages / Limitations
» A certain fraction of units will remain “stuck at zero”.

— If the initial weights are chosen such that the ReLU output is 0 for the
entire training set, the unit will never pass through a gradient to change
those weights.

» ReLU has an offset bias, since its outputs will always be positive

» Weaker offset bias

* ELU v <0

x=0

9(@) = {;‘; 1

Machine Learning Winter ‘19

» No offset bias anymore

» BUT: need to store activations
B. Leibe
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Topics of This Lecture Initializing the Weights
* Recap: Tricks of the Trade * Motivation
> Initialization . The starting values of the weights can have a significant effect
» Dropout

on the training process.

» Weights should be chosen randomly, but in a way that the sigmoid
is primarily activated in its linear region.

» Batch Normalization

¢ Guideline (from [LeCun et al., 1998] book chapter)
» Assuming that

— The training set has been normalized

— The recommended sigmoid [ () = 1.7159 tanh ( x) is used
the initial weights should be randomly drawn from a distribution
(e.g., uniform or Normal) with mean zero and variance

2 1
Oy = Tm

where n;, is the fan-in (#connections into the node).
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Historical Sidenote
* Apparently, this guideline was either little known or

misunderstood for a long time
» A popular heuristic (also the standard in Torch) was to use

1 1
w~U |- ,—
VNin \/nin]

» This looks almost like LeCun’s rule. However...

* When sampling weights from a uniform distribution [a,b]
» Keep in mind that the standard deviation is computed as

1
2 — 2
=1 b-a)
» If we do that for the above formula, we obtain

2
212\ 11
7= ﬁ(mn) T 3
= Activations & gradients will be attenuated with each layer! (bad)

16
B. Leibe
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Glorot Initialization

¢ Breakthrough results

» In 2010, Xavier Glorot published an analysis of what went wrong in
the initialization and derived a more general method for automatic
initialization.

» This new initialization massively improved results and made direct
learning of deep networks possible overnight.

» Let’s look at his analysis in more detail...

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep
Feedforward Neural Networks, AISTATS 2010.

B. Leibe

Analysis

¢ Variance of neuron activations

» Suppose we have an input X with n components and a linear
neuron with random weights W that spits out a number Y.

» Whatis the variance of Y'?
Y =W X; + WoX, + -+ WXy,
» If inputs and outputs have both mean 0, the variance is
Var(W;X;)) = E[X;)*Var(W;) + E[W;)*Var(X;) + Var(W))Var(X;)
= Var(W)Var(X;)
~ Ifthe X; and W; are all i.i.d, then
Var(Y) = Var(W, Xy + WoX, + -+ + W, X,,) = nVar(W;)Var(X;)
= The variance of the output is the variance of the input, but scaled

by n Var(W,).

18

B. Leibe
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Analysis (cont'd)

* Variance of neuron activations

» if we want the variance of the input and output of a unit to be the
same, then n Var(W,) should be 1. This means
1 1
7. F)— - —
Var(Wy) = — = .
» If we do the same for the backpropagated gradient, we get
1

Tout

Var(W,) =

» As a compromise, Glorot & Bengio proposed to use
2

Var(W)= ————

Tin + Mout

= Randomly sample the weights with this variance. That's it.

B. Leibe
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Sidenote

* When sampling weights from a uniform distribution [a,b]
» Again keep in mind that the standard deviation is computed as

1
2 _ _ 2
o —12(b a)

Glorot initialization with uniform distribution
V6 V6 ]
Vi T Tout i + Nout
Or when only taking into account the fan-in
V3 V3
N
If this had been implemented correctly in Torch from the beginning,

the Deep Learning revolution might have happened a few years
earlier...

v

w-u-

v

w~U

v
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Extension to ReLU

¢ Important for learning deep models
» Rectified Linear Units (ReLU)
gla) = max {0,a}

» Effect: gradient is propagated with
a constant factor

g(a) [ 1, a>0
da 0, else

* We can also improve them with proper initialization
» However, the Glorot derivation was based on tanh units,
linearity assumption around zero does not hold for ReLU.
» He et al. made the derivations, derived to use instead
Var(W) = 2
nm

B. Leibe



jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

Topics of This Lecture

* Recap: Tricks of the Trade
» Initialization
» Dropout
» Batch Normalization

Machine Learning Winter ‘19
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Batch Normalization [loffe & Szegedy '14]

¢ Motivation
» Optimization works best if all inputs of a layer are normalized.

* Idea
» Introduce intermediate layer that centers the activations of
the previous layer per minibatch.
» l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients
» Complication: centering + normalization also needs to be done
at test time, but minibatches are no longer available at that point.

— Learn the normalization parameters to compensate for the expected
bias of the previous layer (usually a simple moving average)

* Effect

» Much improved convergence (but parameter values are important!)
» Widely used in practice

Machine Learning Winter ‘19
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Neural Networks for Computer Vision

¢ How should we approach vision problems?

e Face Y/N?

¢ Architectural considerations
» Inputis 2D = 2D layers of units
» No pre-segmentation = Need robustness to misalignments
» Vision is hierarchical = Hierarchical multi-layered structure
» Vision is difficult = Network should be deep
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Dropout [Srivastava, Hinton ’12] Topics of This Lecture
¢ Convolutional Neural Networks
» Neural Networks for Computer Vision
» Convolutional Layers
» Pooling Layers
a) Standard Neural Net h) After applying dropout.
= =
& ¢+ ldea 5
g » Randomly switch off units during training (a form of regularization). g
2 » Change network architecture for each minibatch, effectively training 2
£ many different variants of the network. £
% » When applying the trained network, multiply activations with the %
£ probability that the unit was set to zero during training. £
é = Greatly improved performance é
B. Leibe 26 B. Leibe 2
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Why Hierarchical Multi-Layered Models?

* Motivation 1: Visual scenes are hierarchically organized

Object Face
Object parts Eyes, nose, ...

|

Primitive features Oriented edges

! !

Face image

Input image
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ide adapted from Richard Tirper B Leibe
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Why Hierarchical Multi-Layered Models?

* Motivation 2: Biological vision is hierarchical, too

Object Face Inferotemporal
T T cortex
Object parts Eyes, nose, ... V4: different
textures
@ Primitive features Oriented edges V1: simple and
' T T complex cells
£ i i Photoreceptors,
2 Input image Face image ¢
2 retina
g -
-
£
=
8
=
30
de adapted from Richard Turner B. Leibe

Why Hierarchical Multi-Layered Models?

* Motivation 3: Shallow architectures are inefficient at
representing complex functions
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An MLP with 1 hidden layer
can implement any function
(universal approximator)

However, if the function is deep,
a very large hidden layer may
be required.

Machine Learning Winter ‘19
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de adapted from Richard Turner, B. Leibe
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Convolutional Neural Networks (CNN, ConvNet)

€3:1. maps 16@10x10
weur Gi: feature maps s
o3 6@28:28

AL

\
' Convols

1. maps 16@5x5

S2.1.maps Cilayer g,
6@14x14 Ir |'r G Fe:taper QUTPUT

O\

= — |
| Fullconfection | Gaussian comnections
Full connection

¢ Neural network with specialized connectivity structure
» Stack multiple stages of feature extractors
» Higher stages compute more global, more invariant features
» Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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lide credit- Svetlana | azebnik 8. Leibe

RWTHACHE
Hubel/Wiesel Architecture

* D. Hubel, T. Wiesel (1959, 1962, Nobel Prize 1981)

» Visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells

Hubel & Weisel
topographical mapping

featural hierarchy

Machine Learning Winter ‘19
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de credit- Svetlana | azebnik Rob Eergu: B. Leibe
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What's Wrong With Standard Neural Networks?
* Complexity analysis
» How many parameters does D
this network have?
4l =30+ D
D2
» Forasmall 32x32 image
6] = 3-32" + 32% = 3. 10% )
D2
[}
" ¢ Consequences
£ . Hard to train n?
2 » Need to initialize carefully
5 » Convolutional nets reduce the
'{:E, number of parameters!
s
34
de adapted from Richard Turper B. Leibe
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Convolutional Networks: Intuition

¢ Fully connected network
» E.g. 1000x1000 image
1M hidden units
= 1T parameters!

@
O
O

* ldeas to improve this
» Spatial correlation is local
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Jmage source. Yann 1 eCu

ide adapted from Marc’Aurelio Ranzatg B Leibe



http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Machine Learning Winter ‘19

Machine Learning Winter ‘19

UNIVERS!
Convolutional Networks: Intuition |

¢ Locally connected net
» E.g. 1000x 1000 image

1M hidden units
10x 10 receptive fields

= 100M parameters!

\() * Ideas to improve this

» Spatial correlation is local
» Want translation invariance

37

de adapted from Marc'Aurelio Ranzato B. Leibe Jmage source: Yann LeCuy

Convolutional Networks: Intuition

¢ Convolutional net
» Share the same parameters
across different locations

» Convolutions with learned
kernels

Learn multiple filters
» E.g. 1000x 1000 image
100 filters
10x10 filter size
= 10k parameters

* Result: Response map
» size: 1000x1000x 100

» Only memory, not params!
39

B. Leibe Jmage source. Yann LeCu

lide adapted from Marc'Aurelio Ranzatg
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Convolution Layers

Example

2 image: 32x32x3 volume

Hidden neuron

in next layer Before: Full connectivity

32x32x3 weights

Now: Local connectivity

One neuron connects to, e.g.,
5x5x3 region.

= Only 5x5x3 shared weights.

3

* Note: Connectivity is
» Localinspace  (5x5 inside 32x32)
» But full in depth (all 3 depth channels)

41

lide adapted from FeiFei | i Andrei Karnath 8. Leibe
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Convolutional Networks: Intuition

¢ Convolutional net

» Share the same parameters
across different locations

» Convolutions with learned
kernels

38

B. Leibe Image source: Yann LeCu

ide adapted from Marc'Aurelio Ranzato

Important Conceptual Shift

* Before
output layer
input
layer hidden layer
¢ Now: Y y

40
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ide credit- FeiFei | i Andrei Karpath
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Convolution Layers

depth dimension
——— .

00000

before: “hidden layer of 200 neurons”
now: “output volume of depth 200"

* All Neural Net activations arranged in 3 dimensions

» Multiple neurons all looking at the same input region,
stacked in depth

42

ide adapted from EeiFeili Andrei Karpath B Leibe
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Convolution Layers

2 Naming convention:

..

DERTH

SN

* All Neural Net activations arranged in 3 dimensions
» Multiple neurons all looking at the same input region,
stacked in depth
» Form a single [1x 1 xdepth] depth column in output volume.

43
de credit FeiFei || Andrej Karpath B. Leibe

* Replicate this column of hidden neurons across space,
with some stride.

46
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Convolution Layers
Example:
7x7 input
assume 3x3 connectivity
stride 1

de credit FeiFei |i Andrei Karpath B Leibe
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RWTHAACHE
Convolution Layers
Example:
7x7 input
assume 3x 3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.

48

lide credit: FeiFei 1 i Andrei Karpath 8. Leibe
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Convolution Layers
Example:
7x7 input
assume 3x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.

45
de credit FeiFei || Andrej Karpath 8. Leibe

RWTHAACHET
Convolution Layers
Example:
7x7 input
assume 3x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.

a7
de credit: FeiFei 1§ Andrei Karpath B, Leibe
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RWTHAACHE
Convolution Layers
Example:
7x7 input
assume 3x 3 connectivity
stride 1

= 5x5 output

¢ Replicate this column of hidden neurons across space,
with some stride.

49

ide credit: FeiFeil i Andrei Karpath B Leibe
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Convolution Layers Convolution Layers
Example: Example:
7x7 input 7x7 input
assume 3x3 connectivity assume 3x3 connectivity
stride 1 stride 1

= 5x5 output = 5x5 output

What about stride 2? What about stride 2?

* Replicate this column of hidden neurons across space,

* Replicate this column of hidden neurons across space,
with some stride.

with some stride.

Machine Learning Winter ‘19
Machine Learning Winter ‘19

50
ide credit: FeiFei| i Andrej Karpathy B. Leibe

de credit FeiFei || Andrej Karpath 8. Leibe
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. UNIVERSITY] . UNIVERSITY]
Convolution Layers Convolution Layers
0/0/0(0|0

Example: 0 Example:

7x7 input 0 7x7 input

assume 3x3 connectivity 0 assume 3x 3 connectivity

stride 1 stride 1

= 5x5 output 0 = 5x5 output

What about stride 2?
= 3x3 output

What about stride 2?
= 3x3 output

* Replicate this column of hidden neurons across space,

¢ Replicate this column of hidden neurons across space,
with some stride.

with some stride.

* In practice, common to zero-pad the border.
» Preserves the size of the input spatially.

Machine Learning Winter ‘19
Machine Learning Winter ‘19
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lide credit: FeiFei 1 i Andrei Karnath B. Leibe

ide credit Eeifei | Andrei Karpath B. Leibe

RWTHACIE
. . UNIVERSITY
Effect of Multiple Convolution Layers

RWTHACIE
o . ... UNIVERSITY
Activation Maps of Convolutional Filters

HEISEREEONCIIA NN SEO AR NRENE NI ERS
5x5 filters

Low-Level Mid-Level| |High-Level Trainable
- - -
Feature Feature Feature Classifier
N

Each activation map is a depth
slice through the output volume.

Activation maps

Feature vi: ion of ¢ i net trained on from [Zeiler & Fergus 2013]
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lide adapted from FeiFei | i Andrei Karnath B. Leibe ide credit- Yann 1 eCun B Leibe
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Convolutional Networks: Intuition

¢ Let's assume the filter is an
eye detector
» How can we make the

detection robust to the exact
location of the eye?

56

B. Leibe Jmage source: Yann LeCu

de adapted from Marc'Aurelio Ranzato
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A ] )
Max Pooling
Single depth slice
X 11124
max pool with 2x2 filters
5|67 8 and stride 2 6|8
3/12(1/|0 3| 4
1,213 4
- @ .
Y
¢ Effect:
» Make the representation smaller without losing too much information
» Achieve robustness to translations
’ 58
lide adaoted from EeiFei 1§ Andrei Karpath B. Leibe
RWTHAACHET]
. . . : \
CNNSs: Implication for Back-Propagation
¢ Convolutional layers
» Filter weights are shared between locations
= Gradients are added for each filter location.
’ 60
B. Leibe
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Convolutional Networks: Intuition

¢ Let's assume the filter is an
eye detector
» How can we make the

detection robust to the exact
location of the eye?

¢ Solution:

» By pooling (e.g., max or avg)
filter responses at different
spatial locations, we gain
robustness to the exact spatial
location of features.

57
de adapted from Marc’Aurelio Ranzato B. Leibe Jmage source: Yann L eCuy
) ] )
Max Pooling
Single depth slice
X 11124
max pool with 2x2 filters
5|67 8 and stride 2 6|8
3/12(1/|0 3| 4
1,213 4
- @ .
Y
* Note
» Pooling happens independently across each slice, preserving the
number of slices.
59
ide adapted from FeiFeili Andrei Karpath B. Leibe
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Topics of This Lecture

* CNN Architectures
» LeNet
» AlexNet
» VGGNet
» GoogLeNet

B. Leibe
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CNN Architectures: LeNet (1998)

Clitotwamaps O mape 16@10x10.
INPUT 3o

a2 SO 521 maps I-
@404

et R R
Comvoke Convol Ful comection

TWTHAACHE
ImageNet Challenge 2012

g IM&AGENET
» ~14M labeled internet images o ) L- I

» 20k classes

» Human labels via Amazon
Mechanical Turk

CNN Architectures: AlexNet (2012)

S =iyl

\/ = \ s \ense
{1) . éﬁ A,
[],. . = 1}

,\’
\’/

87 97 N 78 Max ] |
Max g5 Max pooling 2090 25d8

* Early convolutional architecture 2 * Challenge (ILSVRC)
» 2 Convolutional layers, 2 pooling layers £ » 1.2 million training images
» Fully-connected NN layers for classification E,, > 1000 classes 5 . ovPROS
» Successfully used for handwritten digit recognition (MNIST) = - Goal: Predict ground-truth [Deng etal., |
§ class within top-5 responses
° ) .
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to £ » Currently one of the top benchmarks in Computer Vision
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998. ‘E.a’
62 63
lide credit- Svetlana | azebnik B. Leibe B. Leibe

ILSVRC 2012 Results
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pociing pooling
o 2
¢ Similar framework as LeNet, but S
» Bigger model (7 hidden layers, 650k units, 60M parameters) é
~ More data (10¢ images instead of 103 2
. ¢ a9 ) =« AlexNet almost halved the error rate
» GPU implementation s 16.4% s 26.2% for th b h
~ Better regularization and up-to-date tricks for training (Dropout) o - ) oenror (.top» ) vs. 26. ° or the next best approac
£ = A revolution in Computer Vision
A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep S . ) . ) ) .
Convolutional Neural Networks, NIPS 2012. o g » Acquired by Google in Jan ‘13, deployed in Google+ in May 13
" A drizheyclas | dsks WGE ik MBS 201 B. Leibe
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CNN Architectures: VGGNet (2014/15) CNN Architectures: VGGNet (2014/15)
Image ipot ¢ Main ideas [ i
A[exNet‘ Conv | : Convolutional layer . Deeper network o
=(lello|l=|lo A g Pool | : Max-pooling layer » Stacked convolutional | cmsar | o
E (15121212 |18|5|%|3 A layers with smaller B —
eyl e £ 4 4 filters (+ nonlinearity)
33 3 F 3 3 3 Softmax | : Softmax layer » Detailed evaluation
veeNet . 47 T of all components
| | 1
o o =
SIEE(IE(IEIE(IE(IEIIEIIEIIE(IE(IEIEIE|=3]73 5| © Results e
; £ - Improved ILSVRC top-5
& 5 5 5 5 § & ) 0
2 2 2 2 2 3 3 = error rate to 6.7%.
3 ® & 3 & 3 3 £
% Tt Mainly-used
K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale £ T
Image Recognition, ICLR 2015 é% sl
} 67 68
B. Leibe . e ok B. Leibe .
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http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/pdf/1409.1556

Comparison: AlexNet vs. VGGNet

* Receptive fields in the first layer

» AlexNet: 11x11, stride 4

» Zeiler & Fergus: 7x7, stride 2

» VGGNet: 3x3, stride 1
¢ Why that?

v

If you stack a 3x3 on top of another 3x3 layer, you effectively get
a 5x5 receptive field.

With three 3x 3 layers, the receptive field is already 7x7.
But much fewer parameters: 3-32 = 27 instead of 72 = 49.

In addition, non-linearities in-between 3x 3 layers for additional
discriminativity.

Voo

v
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UNIVE
CNN Architectures: GoogLeNet (2014/2015)

= e = o] [
[=]

(a) Inception module, naive version (b) Inception module with dimension reductions

* Main ideas
» “Inception” module as modular component
» Learns filters at several scales within each module

C. Szegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions,
arXiv:1409.4842, 2014, CVPR15, 2015.
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VGG (1 net, mulii-ciop & dense eval) 244 | 71 | 70 |
1 a1 4 [VGG (ILSVRC submission, 7 nets, dense eval.) 47 T 75 i 73 ]
Bl Eﬂi H-Ei gal- GoogLeNet (Szegedy et al. 2014) (L net) B 75
a |  EEEN T GoogLeNet (Szegedy et al, 2014) (7 nets) = %
m m EE gﬂ m.m nﬂ MSRA (He et 2014) (11 nets) - - 8.1
gafaafq B SRA (He et al., 2019) (1 net) 79 A 01
narad 2 [Clarifai (Russakovsky et al . 2014) (mulfiple nets) - - 17
[ SR E] [Clarifai (Russakovsky et al., 2014) (1 net) - - 125
eiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 7
: Zeiler & F Zeiler & F 3013116 7 K
- Convolution oW [ Zeiler & Tergus (Zetler & Feigus, 2013) (1 net) 60 T6.1
¥ Inception : Pooling Bl | OverFeat (Semmaet et al . 2014) (7 nets) 310 132 136
8 module +copies B0 | OverFeat (Senmanet et al., 2014) (1 net) 357 14.2 -
= oth E=N | Krizhevsky et al (Krizhevsky et al, 2012) (5 nets), 381 16.1 164
;cn er %, Krizhevsky et al. (Krizhevsky et al. 2012) (I net) 107 183 -
g g
= =
= Aucxiliary classification = s
g y . 5 * VGGNet and GooglLeNet perform at similar level
2 outputs for training the = i )
g lower layers (deprecated) £ » Comparison: human performance ~5% [Karpathy]
é é 10/2014/09/02/what-i-I d-i ing-against t
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Results on ILSVRC

Method Ttop-1 val_emor (%) [1op-3 val,_ertor (%) top-3 test error (%))
VGG (2 nets. multi-crop & dense eval) | 237 | i | 6.8
|
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Newer Developments: Residual Networks
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Newer Developments: Residual Networks

AlexNet, 8 layers ; VGG, 19 layers - ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) I (ILSVRC 2015)
¢ Core component
» Skip connections x

bypassing each layer

Better propagation of

gradients to the deeper F(x)

layers

» We'll analyze this
mechanism in more
detail later...

v

weight layer

H(x)=F(x)+x

B. Leibe



http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/43022.pdf
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Understanding the ILSVRC Challenge

* ine th f th
oo reee - IMJAGENET
» 1000 categories 2/ O 2

» 1.2M training images
~ 50k validation images

RWTH/ACHEN
UNIVERSITY
ImageNet Performance

25.8
152 layers
A
\‘ 16.4
\ RSt
[ 221ayers | [ 191ayers
' 67 7.3

¢ This means...

o o ~ Speaking out the list of category
5 5 names at 1 word/s...
£ £ i
= 3.57 o | 8 layers 8 layers shallow = -takes 15mins.
g . =--C ., o . o _. 77777 . g . Watching a slideshow of the validation images at 2s/image...
3 ILSVRC'IS  ISVRC'14  ILSVRC'IA  ILSVRC'I3  ILSVRC'12  ILSVRC'IL  ILSVRC'10 3 ~takes a full day (24h+).
2 Reshet  GoogleNet VGG HMexhet 2 . Watching a slideshow of the training images at 2s/image...
£ £
2 ImageNet Classification top-5 error (%) 8 ...takes a full month.
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More Finegrained Classes
PASCAL ILSVRC
m"e grouse panndée
2 2 )
“E 'E Egyptancat  Persian cat Siamese cat . tabby
£ £ g - o
= =
2 2
£ < B E -
E E : ‘h_.l B
2 o dog dalmatian  keeshond miniature schnauzer standard schnauzer giant schnauzer
S i
3 ]
= =
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Quirks and Limitations of the Data Set References and Further Reading
* LeNet
» Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based
learning applied to document recognition, Proceedings of the IEEE
86(11): 22782324, 1998.
¢ AlexNet
» A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification
with Deep Convolutional Neural Networks, NIPS 2012.
o o
S 8 ° VGGNet
o Q
§ * Generated from WordNet ontology § » K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for
B . Some animal categories are overrepresented El Large-Scale Image Recognition, ICLR 2015
£ . E.g., 120 subcategories of dog breeds = * GoogLeNet
Q Q
é é » C. $zegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions,
5] = 6.7% top-5 error looks all the more impressive 5 arxiv:1409.4842, 2014.
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http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/pdf/1409.1556
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/43022.pdf
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References and Further Reading

* ResNet

» K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016.
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http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

