Machine Learning — Lecture 10

AdaBoost
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

* Deep Learning
> Foundations
> Convolutional Neural Networks
- Recurrent Neural Networks e I
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Topics of This Lecture

* Recap: Nonlinear Support Vector Machines

* Ensembles of classifiers
> Bagging
> Bayesian Model Averaging

* AdaBoost
> Intuition
> Algorithm
> Analysis
> Extensions

(@))
S
| S
(O]
e
=
(@)]
k=
(e
| S
©
()
—
(O]
<
e
(@]
©
=

B. Leibe



RWNTH
Recap: Support Vector Machine (SVM)

* Basic idea

> The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

> Up to now: consider linear classifiers

wix+b=0

* Formulation as a convex optimization problem

> Find the hyperplane satisfying
1

. 2
arg min W]

under the constraints

tn(Wix, +b)>1 Vn

based on training data points x, and target values ¢, € {—1,1}
4
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Recap: SVM — Dual Formulation

* Maximize

N 1 N N
Ly(a) =) an— . > anamtntm(x,Xn)
n—=1

n=1m=1

under the conditions

IV
-

Vn

Qn

N
E a'ntn
n=1

|
-

* Comparison
- L, is equivalent to the primal form L., but only depends on a,,.
» L, scales with O(D?).
> L, scales with O(N®) — in practice between O(N) and O(N?).
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Recap: Nonlinear SVMs

* General idea: The original input space can be mapped to
some higher-dimensional feature space where the training
set is separable:
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Recap: The Kernel Trick

* Important observation
> ¢(x) only appears in the form of dot products ¢(x)o(y):

y(x) = wig(x)+b

N
— Z antn¢(xn)T¢(X) +b
n=1

- Define a so-called kernel function k(x,y) = ¢(x)"o(y).

> Now, in place of the dot product, use the kernel instead:

N
y(x) = Zantnk(xn,x)—l—b
n=1

> The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!
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e SVM Dual: Maximize

N NN
Lgy(a) = Z an — 5 S: y: U Ot tm k(X X0
n=1 n=1m=1

under the conditions

0:- a,- C
N
Zantn = 0
n=1

* Classify new data points using
N

y(x) = Z antnk(X,,x)+b

n=1
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Recap: Nonlinear SVM — Dual Formulation



Recap: SVM Loss Function

* Traditional soft-margin formulation

N
: 1 2 “Maximize
wERgflﬁrql@ERwL § HWH T an_:l g” the margin”

subject to the constraints _
J “Most points should

thy(x,) > 1—-&, be on the correct
side of the margin”

=8 ¢ Different way of looking at it

{-’- » We can reformulate the constraints into the objective function.
= N

()] . ]- 9

£ min — |[w||* +C E 1 —tay(xn)]

= weRD 2

o N Y  n=1 Y

z') G NG

= L, regularizer “Hinge loss”

:

where [z]. := max{0,z}.

Slide adapted from Christoph Lampert B. Leibe



RWNTH
Recap: Hinge Loss Analysis

n
E(Zn) Ideal misclassification error

Squared error
Hinge error

Robust to outliers!

Favors sparse
/ solutions!

Not differentiable! \

-2 -1 0

* “Hinge error” used in SVMs
- Zero error for points outside the margin (z, > 1) = sparsity
> Linear penalty for misclassified points (z, < 1) = robustness
> Not differentiable around z, = 1 = Cannot be optimized directly.
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Image source: Bishop, 2006
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Topics of This Lecture

* Ensembles of classifiers
> Bagging
> Bayesian Model Averaging

* AdaBoost
> Intuition
> Algorithm
> Analysis
> Extensions
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So Far...

* We've seen already a variety of different classifiers
. k-NN

> Bayes classifiers

> Linear discriminants

> SVMs

* Each of them has their strengths and weaknesses...

> Can we improve performance by combining them?

12
B. Leibe



Ensembles of Classifiers

* Intuition
» Assume we have K classifiers.
> They are independent (i.e., their errors are uncorrelated).
Each of them has an error probability p < 0.5 on training data.
— Why can we assume that p won'’t be larger than 0.57

Y

Then a simple majority vote of all classifiers should have a
lower error than each individual classifier...

Y
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Constructing Ensembles

* How do we get different classifiers?
> Simplest case: train same classifier on different data.

> But... where shall we get this additional data from?
— Recall: training data is very expensive!

* |dea: Subsample the training data

> Reuse the same training algorithm several times on different
subsets of the training data.

* Well-suited for “unstable” learning algorithms

> Unstable: small differences in training data can produce very
different classifiers

> Stable learning algorithms
— E.g., Nearest neighbor, linear regression, SVMs,...
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— E.g., Decision trees, neural networks, rule learning algorithms, ...

14



Constructing Ensembles

* Bagging = “Bootstrap aggregation” (Breiman 1996)
» In each run of the training algorithm, randomly select M samples
with replacement from the full set of N training data points.

> If M = N, then on average, 63.2% of the training points will be
represented. The rest are duplicates.

* Injecting randomness

> Many (iterative) learning algorithms need a random initialization
(e.g. k-means, EM)

> Perform mutliple runs of the learning algorithm with different
random initializations.
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Bayesian Model Averaging

* Model Averaging

> Suppose we have H different models h =1,...,H with prior
probabilities p(h).
> Construct the marginal distribution over the data set

p(X) = > _p(X|h)p(h)

* Interpretation

> Just one model is responsible for generating the entire data set.

» The probability distribution over h just reflects our uncertainty
which model that is.

> As the size of the data set increases, this uncertainty reduces,
and p(X|h) becomes focused on just one of the models.

B. Leibe
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Note the Different Interpretations!

* Model Combination (e.g., Mixtures of Gaussians)
> Different data points generated by different model components.

> Uncertainty is about which component created which data point.

= One latent variable z, for each data point:

p(X) = H p(Xn) = H ZP(XmZn)

* Bayesian Model Averaging
> The whole data set is generated by a single model.
> Uncertainty is about which model was responsible.
= One latent variable z for the entire data set:

p(X) — Zp(Xa Z)

B. Leibe
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Model Averaging: Expected Error

* Combine M predictors y, (x) for target output h(x).

> E.g. each trained on a different bootstrap data set by bagging.

> The committee prediction is given by
1 M
Yycom (X) = i ’mz:l Ym (X)

> The output can be written as the true value plus some error.
y(x) = h(x) + €(x)
> Thus, the expected sum-of-squares error takes the form

Ex = | {ym (%) = h(x)}’] = Ex [en(x)?]

B. Leibe
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Model Averaging: Expected Error

* Average error of individt&al models
1 2
Eay = M;Ex [€m (%)°]

* Average error of committee Ym(X) = h(X) + €, (%)
1Y 8 1Y 3
Sl (PR RS ER T

* Assumptions
. Errors have zeromean:  Ex [€,,(X)] =0
|

m(X)e; ()] = 0

1 s this

* Then: Bcom = M Eav 50 SClacyy, -

19

- Errors are uncorrelated:  [Ey

(@))
S
| S
(O]
e
=
(@)]
k=
C
| S
©
()
—
(O]
<
e
(@]
©
=

B. Leibe



Model Averaging: Expected Error

* Average error of committee

1

Ecom = MEAV

> This suggests that the average error of a model can be reduced by
a factor of M simply by averaging M versions of the model!

> Spectacular indeed...
> This sounds almost too good to be true...

* Anditis... Can you see where the problem is?

> Unfortunately, this result depends on the assumption that the
errors are all uncorrelated.

> In practice, they will typically be highly correlated.
> Still, it can be shown that

Ecom - Eay

B. Leibe
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AdaBoost — “Adaptive Boosting”

* Main idea [Freund & Schapire, 1996]
> Iteratively select an ensemble of component classifiers

> After each iteration, reweight misclassified training examples.
— Increase the chance of being selected in a sampled training set.
— Or increase the misclassification cost when training on the full set.

e Components
- h,(x): “weak” or base classifier
— Condition: <50% training error over any distribution
> H(x): “strong” or final classifier

e AdaBoost:

> Construct a strong classifier as a thresholded linear combination of
the weighted weak classifiers:

H(x) = sign Z Oy P (X)

B. Leibe
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AdaBoost: Intuition

O © Consider a 2D feature space
Weak ® ® 3 with positive and negative
Classifier 1 ~HNa----=""" |
@ o examples.
® o

Each weak classifier splits
the training examples with at
least 50% accuracy.

Examples misclassified by a
previous weak learner are
given more emphasis at
future rounds.
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Figure adapted from Freund & Schapire

Slide credit: Kristen Grauman B. Leibe
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AdaBoost: Intuition

Weak
Classifier 1

—
— -
i
—

Slide credit: Kristen Grauman

Weights
Increased

Weak
Classifier 2

B. Leibe

23

Figure adapted from Freund & Schapire



AdaBoost: Intuition

@) O Weights 1———.'.
(]

Classifier1 ~ _o_--=---"""

© o Weak }.__': O
O @) Classifier 2 q

- Weak " .
= classifier 3 .l‘ O

£ ° @

i The final classifier is a \ ®
i linear combination of .'1.

S the weak classifiers

|

()]

=

c

(@)

4y}

=

24
Figure adapted from Freund & Schapire

Slide credit: Kristen Grauman B. Leibe



AdaBoost — Formalization

* 2-class classification problem

- Given: training set X = {x, ..., Xy}
with targetvalues T ={t, ....ty } t, € {-1,1}.
- Associated weights W={wj, ..., w,} for each training point.

* Basic steps

- In each iteration, AdaBoost trains a new weak classifier h_,(x) based
on the current weighting coefficients W™,

> We then adapt the weighting coefficients for each point
— Increase w,, if x,, was misclassified by h, (x).
— Decrease w,, if x,, was classified correctly by h, (x).

> Make predictions using the final combined model

H(x) = sign (Z amhm(x)>

B. Leibe
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AdaBoost — Algorithm

1. Initialization: Set wg> — ]lvfor n=1,...,N.

2. Form=1,....M iterations

a) Train a new weak classifier h, (x) using the current weighting
coefficients W™ by minimizing the weighted error function
N

— Z wgm)l(hm(x) 7é tn) I(A) = {1. if A is true
— 0, else

b) Estimate the weighted_error of this classifier on X:

S V(b (x) # t)
R VA"

c) Calculate a weighting coefficient for h, (x):

Xy = 7
How should we

d) Update the weighting coefficients: do this exactly?

w,,(,berl) = 7
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RWTH
AdaBoost — Historical Development

* QOriginally motivated by Statistical Learning Theory
> AdaBoost was introduced in 1996 by Freund & Schapire.

> It was empirically observed that AdaBoost often tends not to overfit.

(Breiman 96, Cortes & Drucker 97, etc.)

> As a result, the margin theory (Schapire et al. 98) developed, which
IS based on loose generalization bounds.

— Note: margin for boosting is not the same as margin for SVM.
— A bit like retrofitting the theory...

> However, those bounds are too loose to be of practical value.

* Different explanation (Friedman, Hastie, Tibshirani, 2000)

> Interpretation as sequential minimization of an exponential error
function ("Forward Stagewise Additive Modeling”).

> Explains why boosting works well.
> Improvements possible by altering the error function.

B. Leibe
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RWNTH
AdaBoost — Minimizing Exponential Error

* Exponential error function

E = Z exp { —tn frn(Xn)}

- where f (x) is a classifier defined as a linear combination of base
classifiers hy(x):

fm(x) = % > ai(x)

e Goal

- Minimize E with respect to both the weighting coefficients «; and
the parameters of the base classifiers h(x).

B. Leibe
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RWNTH
AdaBoost — Minimizing Exponential Error

* Sequential Minimization

» Suppose that the base classifiers h (x),..
coefficients «,...,«,,_, are fixed.

(x) and their

°9 m1

= Only minimize with respect to o, and h, (x).

b= ZGXP{ tnfm(xn)} with fm :—Zalhl

al 1
— Z exp {—tnfm_l(xn) — §tnozmhm(Xn)}

B. Leibe
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AdaBoost — Minimizing Exponential Error

N
1
E = Z wflm) exp {—§tnamhm(xn)}

> Observation:

— Correctly classified points: ¢ h,(x,) = +1 = collectin 7,
— Misclassified points: t,h,(x,)=-1 = collectin F,

> Rewrite the error function as

E = e m/? Z wgm>

nETm

= (eo‘m/2 ) Zw(m)l m(Xn) 7 tn)

B. Leibe
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AdaBoost — Minimizing Exponential Error

N
1
E = Z w,,(zm) exp {—§tnamhm(xn)}

> Observation:
— Correctly classified points: ¢ h,(x,) = +1 = collectin 7,
— Misclassified points: t,h,(x,)=-1 = collectin F,

> Rewrite the error function as

B 5w 3 i

|

= (eo‘m/2 — e_o‘mﬂ) Zw,,(,bm)l( m(Xp) # tn) + e~ m/? Zw(m)

n=1

2

. 31
B. Leibe
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RWNTH
AdaBoost — Minimizing Exponential Error

J

L . OF
* Minimize with respect to f,,(x): 5~ o =0
E= ( am/2 _ am/2) Z’w(m) I(ho (%) # t) + ¢ /? Z’w(m)
- J -
h'd h'd
= const. = const.
= This is equivalent to minimizing
N
= S W I (B (%) # 1)

n=1

(our weighted error function from step 2a) of the algorithm)

= We’re on the right track. Let’s continue...

B. Leibe
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AdaBoost — Minimizing Exponential Error

oOF

* Minimize with respect to a5 — =0

E— ( am/2 _ am/2> Zwm) I(ho (%) # 1) + €=/ Zw(m)

N N
(Zeamﬂ ;/ am/2)zw<m>1 () £ 1) Ze—amﬂzww
n=1

2 weighted _ W m)f Xp,) _ e~ Cm/2
Io error (m) edm/2 1 g—0m/2
=

= 1

(@))] —

= e*m 41

@

9 . 1—e€,,

o = Update for the « coefficients: &y, = In { }
5 om

©

=
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RWNTH
AdaBoost — Minimizing Exponential Error

* Remaining step: update the weights
> Recall that

N
1
E = Z wq(,bm) exp {—§tnamhm(xn)}

n=1
g J

o
This becomes w{™ 1)

In the next iteration.

> Therefore
1
wf,bmﬂ) — w,,(,bm) exp {—§tnamhm(xn)}

= w™ exp {am I (hm(X,) # tn)}

= Update for the weight coefficients.

B. Leibe
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AdaBoost — Final Algorithm

. Initialization: Set wq(%l) — ]lv)r n=1,...,N.

. Form=1,...,.M iterations

a) Train a new weak classifier h, (x) using the current weighting
coefficients W by minimizing the weighted error function
N

T =Y W™ I(hy(x) # t,)

b) Estimate the weighte_d error of this classifier on X:

S o T () # t)
e ZN (m)

n 1

c) Calculate a weighting coefficient for h, (x):

]-_ m
am:ln{ ‘ }
€m

d) Update the weighting coefficients:
wf%mﬂ) — wq(,bm) exp{aml (hm(x,) # tn)}

B. Leibe
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AdaBoost — Analysis

 Result of this derivation

> We now know that AdaBoost minimizes an exponential error
function in a sequential fashion.

> This allows us to analyze AdaBoost’'s behavior in more detail.
> In particular, we can see how robust it is to outlier data points.
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RWNTH
Recap: Error Functions

t, € {_]_’ 1} E(Zn) Ideal misclassification error

Not differentiable!

\’

) — o’ 1 7" #n = tny(Xn)

* Ideal misclassification error function (black)
> This is what we want to approximate,
> Unfortunately, it is not differentiable.
> The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 37

Image source: Bishop, 2006
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Recap: Error Functions

E(Zn) Ideal misclassification error
Squared error

tn, € {—1,1}

Sensitive to outliers!

Penalizes “too correct”
data points!

N e
- [
-2 ol 0 \\

* Squared error used In Least-Squares Classification
> Very popular, leads to closed-form solutions.
> However, sensitive to outliers due to squared penalty.
> Penalizes “too correct” data points
— Generally does not lead to good classifiers. 38

Image source: Bishop, 2006

2"' Zn = tny(Xn)
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RWNTH
Recap: Error Functions

E(Zn) Ideal misclassification error
Squared error
Hinge error

Robust to outliers!

Favors sparse
/ solutions!

Not differentiable! \

-2 -1 0

* “Hinge error” used in SVMs
- Zero error for points outside the margin (z, > 1) = sparsity
> Linear penalty for misclassified points (z, < 1) = robustness
> Not differentiable around z, = 1 = Cannot be optimized directly.
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Image source: Bishop, 2006
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Discussion: AdaBoost Error Function

n
E(Zn) Ideal misclassification error

Squared error
Hinge error
Exponential error

) — 7™ #n = tnY(Xn)

* Exponential error used in AdaBoost
> Continuous approximation to ideal misclassification function.
> Sequential minimization leads to simple AdaBoost scheme.
> Properties?
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Image source: Bishop, 2006
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RWTHAACHEN
Discussion: AdaBoost Error Function

RSITY
&

E(Zn) Ideal misclassification error
Squared error
Hinge error

.. _ Exponential error
Sensitive to outliers!

) — 7™ #n = tnY(Xn)

* Exponential error used in AdaBoost
> No penalty for too correct data points, fast convergence.
> Disadvantage: exponential penalty for large negative values!
— Less robust to outliers or misclassified data points!
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Image source: Bishop, 2006
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Discussion: Other Possible Error Functions

n
E(Zn) Ideal misclassification error

Squared error
Hinge error
Exponential error
Cross-entropy error

E=— Z{t" Iny, + (1 —t,)In(1 —yy,)}

) — o1 2 = tay(%n)

* “Cross-entropy error” used in Logistic Regression
> Similar to exponential error for z>0.
> Only grows linearly with large negative values of z.

— Make AdaBoost more robust by switching to this error function.
“ ” . 42
= "GentleBoost B. Leibe Image source: Bishop, 2006
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Summary: AdaBoost

* Properties
> Simple combination of multiple classifiers.
> Easy to implement.

> Can be used with many different types of classifiers.
— None of them needs to be too good on its own.
— In fact, they only have to be slightly better than chance.

Commonly used in many areas.
Empirically good generalization capabilities.

Y

Y

* Limitations
> QOriginal AdaBoost sensitive to misclassified training data points.
— Because of exponential error function.
— Improvement by GentleBoost
> Single-class classifier
— Multiclass extensions available
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References and Further Reading

* More information on Classifier Combination and Boosting
can be found in Chapters 14.1-14.3 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

* A more in-depth discussion of the statistical interpretation
of AdaBoost is available in the following paper:

> J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a
Statistical View of Boosting, The Annals of Statistics, Vol. 38(2),
pages 337-374, 2000.
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http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf

