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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

* Deep Learning
> Foundations
> Convolutional Neural Networks
- Recurrent Neural Networks e I
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Topics of This Lecture

* Recap: Support Vector Machines
> Lagrangian (primal) formulation
> Dual formulation
> Soft-margin classification

Nonlinear Support Vector Machines
> Nonlinear basis functions

> The Kernel trick

> Mercer’s condition

> Popular kernels

* Analysis
> Error function

* Applications

B. Leibe



RWNTH
Recap: Support Vector Machine (SVM)

* Basic idea

> The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

> Up to now: consider linear classifiers

wix+b=0

* Formulation as a convex optimization problem

> Find the hyperplane satisfying
1

. 2
arg min W]

under the constraints

tn(Wix, +b)>1 Vn

based on training data points x, and target values ¢, € {—1,1}
S
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RWNTH
Recap: SVM — Lagrangian Formulation

* Find hyperplane minimizing ||vv||2 under the constraints
th(Wix, +b)—1>0 Vn

* Lagrangian formulation
> Introduce positive Lagrange multipliers: anp >0 Vn

> Minimize Lagrangian (“primal form”)
N
1
L(W, b, a) — 5 ||WH2 - 7;:1: A {tn(WTXn T b) _ 1}

> l.e., find w, b, and a such that

N N
OL Z OL Z
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RWNTH
Recap: SVM — Primal Formulation "

* Lagrangian primal form

N
1
L, = 5 I = g A, {tn(wan +b) — 1}
n=1

N
1
= W2 =Y an {tay(xa) — 1)
n=1

* The solution of Lp needs to fulfill the KKT conditions

> Necessary and sufficient conditions

B. Leibe

é KKT:
§ tay(xn) =1 > 0 fx) >
'_% QA {tny(xn) - 1} = 0 Af(x) =
=




RWNTH
Recap: SVM for Non-Separable Data

* Slack variables
-~ One slack variable ¢, > 0 for each training data point.

* Interpretation
> & = 0 for points that are on the correct side of the margin.
- &, = |t, — y(x,)| for all other points.

Point on decision
boundary: ¢, =1

Misclassified point:
&, > 1

® o
> We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

B. Leibe
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RWNTH
Recap: SVM — New Dual Formulation

* New SVM Dual: Maximize

N 1 N N
Ly(a) =) an— . > anamtntm(x,Xn)
n—=1

n=1m=1

under the conditions o
O This is all

0- ap- that changed!

N
Zantn = 0
n=1

* This is again a quadratic programming problem
= Solve as before...
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Topics of This Lecture

* Nonlinear Support Vector Machines
Nonlinear basis functions

The Kernel trick

Mercer’s condition

Popular kernels

>
>
>
>
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CHEN
UNIVERSITY
So Far...

* Only looked at linearly separable case...

> Current problem formulation has no
solution if the data are not linearly
separable!

> Need to introduce some tolerance to
outlier data points.

= Slack variables. J

* Only looked at linear decision boundaries...
> This is not sufficient for many applications.

> Want to generalize the ideas to non-linear
boundaries.

15

B. Leibe Image source: B. Schoelkopf, A. Smola, 2002



Nonlinear SVM

* Linear SVMs
> Datasets that are linearly separable with some noise work well:
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Nonlinear SVM — Feature Spaces

* General idea: The original input space can be mapped to
some higher-dimensional feature space where the training
set is separable:
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Nonlinear SVM

* General idea
> Nonlinear transformation ¢ of the data points x:

xeRP ¢:RP - H
» Hyperplane in higher-dim. space H (linear classifier in H)

wlip(x)+b=0

— Nonlinear classifier in RP.

Slide credit: Bernt Schiele B. Leibe
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What Could This Look Like?

* Example:
- Mapping to polynomial space, x, y € R?:

> Motivation: Easier to separate data in higher-dimensional space.

> But wait — isn’t there a big problem?
— How should we evaluate the decision function?
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Image source: C. Burges, 1998
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RWNTH
Problem with High-dim. Basis Functions

* Problem
> In order to apply the SVM, we need to evaluate the function

y(x) =w' P(x) + b

> Using the hyperplane, which is itself defined as

N
N4 :Z antn(/b(xn)
n=1

= What happens if we try this for a million-dimensional
feature space ¢(x)?

> Oh-oh...

B. Leibe
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Solution: The Kernel Trick

* Important observation
> ¢(x) only appears in the form of dot products ¢(x)o(y):

y(x) = wig(x)+b

N
— Z antn¢(xn)T¢(X) +b
n=1

- Trick: Define a so-called kernel function k(x,y) = ¢(x)To(y).

> Now, in place of the dot product, use the kernel instead:

N
y(x) = Zantnk(xn,x)—l—b
n=1

> The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!

B. Leibe
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Back to Our Previous Example...

e 2nd degree polynomial kernel:

_ . 5 -
L1 U1
(%) d(y) = | V2r172 || V20192
2 2
- T L Y ]

= 2797 + 221 T2Y1 Y0 + T35

= (x'y)? = k(x,y)

- Whenever we evaluate the kernel function k(x,y) = (x"y)?, we

iImplicitly compute the dot product in the higher-dimensional feature
space.
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Image source: C. Burges, 1998
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SVMs with Kernels

* Using kernels
> Applying the kernel trick is easy. Just replace every dot product by a
kernel function...
T
x'y — kixy)
> ...and we’re done.

> Instead of the raw input space, we’re now working in a higher-
dimensional (potentially infinite dimensional!) space, where the data
IS more easily separable.

* Wait — does this always work?

> The kernel needs to define an implicit mapping
to a higher-dimensional feature space ¢(x).

> When is this the case?
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Which Functions are Valid Kernels?

* Mercer's theorem (modernized version):
> Every positive definite symmetric function is a kernel.

* Positive definite symmetric functions correspond to a
positive definite symmetric Gram matrix:

- K(XpX1) | K(XpX) | K(X1.X3) e K(X1:Xp)
5 K(X2X1) | K(X2:X) | K(Xz:%5) K(X,X,)
<

= K=

=4

(e

5

z') k(Xn’Xl) k(Xn’XZ) k(Xn1X3) oo k(Xn,Xn)
<

;‘é (positive definite = all eigenvalues are > 0)

Slide credit: Raymond Mooney B. Leibe



Kernels Fulfilling Mercer's Conditon

* Polynomial kernel
k(x,y) = (x'y + 1)

* Radial Basis Function kernel

X — 2
k(X, y) = exp {— ( gf) } e.g. Gaussian
20

* Hyperbolic tangent kernel

k(x, y)jp#xkf e.g. Sigmoid

—

Actually, this was wrong in

the original SVM paper...
(and many, many more...)
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Example: Bag of Visual Words Representation

* General framework in visual recognition
> Create a codebook (vocabulary) of prototypical image features
> Represent images as histograms over codebook activations
.~ Compare two images by any histogram kernel, e.g. x? kernel

(hj — h})ﬁ)

hi + b
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Nonlinear SVM — Dual Formulation .

e SVM Dual: Maximize

N NN
Lgy(a) = Z an — 5 S: y: U Ot tm k(X X0
n=1 n=1m=1

under the conditions

0:- a,- C

_ N
% Z ant, = 0

g n=1

=| * Classify new data points using

3 N

£ y(x) = Z antnk(X,,x)+b
cE% n=1

. 29
B. Leibe
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SVM Demo

| 5| sumn_tay

Chanige |Run| Clear | Save | Load I-t1-d1-r1-c1DDDEI

Applet from libsvm

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
B. Leibe
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http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Summary: SVMs

* Properties
> Empirically, SVMs work very, very well.

> SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.

> SVMs can be applied to complex data types beyond feature vectors
(e.g. graphs, sequences, relational data) by designing kernel
functions for such data.
> SVM techniques have been applied to a variety of other tasks
— e.g. SV Regression, One-class SVMs, ...
> The kernel trick has been used for a wide variety of applications. It
can be applied wherever dot products are in use
— e.g. Kernel PCA, kernel FLD, ...

— Good overview, software, and tutorials available on http://www.kernel-
machines.org/
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http://www.kernel-machines.org/
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Summary: SVMs

* Limitations
> How to select the right kernel?
— Best practice guidelines are available for many applications

> How to select the kernel parameters?
— (Massive) cross-validation.

— Usually, several parameters are optimized together in a grid search.

Solving the quadratic programming problem
— Standard QP solvers do not perform too well on SVM task.
— Dedicated methods have been developed for this, e.g. SMO.

Speed of evaluation
— Evaluating y(x) scales linearly in the number of SVs.

Y

Y

— Too expensive if we have a large number of support vectors.
= There are techniques to reduce the effective SV set.
Training for very large datasets (millions of data points)
— Stochastic gradient descent and other approximations can be used

Y

B. Leibe
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Topics of This Lecture

* Recap: Support Vector Machines
> Recap: Lagrangian (primal) formulation
> Dual formulation
> Soft-margin classification

* Nonlinear Support Vector Machines
> Nonlinear basis functions
> The Kernel trick
> Mercer’s condition
> Popular kernels

* Analysis
> Error function

* Applications
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SVM — Analysis

* Traditional soft-margin formulation

N
: 1 2 “Maximize
wERgflﬁrql@ERwL § HWH T an_:l g” the margin”

subject to the constraints _
J “Most points should

thy(x,) > 1—-&, be on the correct
side of the margin”

=8 ¢ Different way of looking at it

{-’- » We can reformulate the constraints into the objective function.
= N

()] . ]- 9

£ min — |[w||* +C E 1 —tay(xn)]

= weRD 2

o N Y  n=1 Y

z') G NG

= L, regularizer “Hinge loss”

:

where [z]. := max{0,z}.
37

Slide adapted from Christoph Lampert B. Leibe



RWNTH
Recap: Error Functions

t, € {_]_’ 1} E(Zn) Ideal misclassification error

Not differentiable!

\’

) — o’ 1 7" #n = tny(Xn)

* Ideal misclassification error function (black)
> This is what we want to approximate,
> Unfortunately, it is not differentiable.
> The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 38

Image source: Bishop, 2006
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Recap: Error Functions

E(Zn) Ideal misclassification error
Squared error

tn, € {—1,1}

Sensitive to outliers!

Penalizes “too correct”
data points!

N e
- [
-2 ol 0 \\

* Squared error used In Least-Squares Classification
> Very popular, leads to closed-form solutions.
> However, sensitive to outliers due to squared penalty.
> Penalizes “too correct” data points
— Generally does not lead to good classifiers. 39

Image source: Bishop, 2006

2"' Zn = tny(Xn)
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RWNTH
Error Functions (Loss Functions)

n
E(Zn) Ideal misclassification error

Squared error
Hinge error

Robust to outliers!

Favors sparse
/ solutions!

Not differentiable! \

-2 -1 0

* “Hinge error” used in SVMs
- Zero error for points outside the margin (z, > 1) = sparsity
> Linear penalty for misclassified points (z, < 1) = robustness
- Not differentiable around z, = 1 = Harder to optimize directly.

(@))
S
| S
(O]
e
=
(@)]
k=
C
| S
©
()
—
(O]
<
e
(@]
©
=

40
Image source: Bishop, 2006
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Slide adapted from Christoph Lampert

SVM — Discussion

* SVM optimization function

N
1 2
min - ||w||“ +C E 1 —1t,y(x,
e%R{% 9 [w| n:1[ y(x )]+

Yo Y

L, regularizer Hinge loss

J

* Hinge loss enforces sparsity

Only a subset of training data points actually influences the
decision boundary.

This is different from sparsity obtained through the regularizer!
There, only a subset of input dimensions are used.

Unconstrained optimization, but non-differentiable function.
Solve, e.g. by subgradient descent
Currently most efficient: stochastic gradient descent

B. Leibe
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Topics of This Lecture

* Recap: Support Vector Machines
> Recap: Lagrangian (primal) formulation
> Dual formulation
> Soft-margin classification

* Nonlinear Support Vector Machines
> Nonlinear basis functions
> The Kernel trick
> Mercer’s condition

Popular kernels

\

* Analysis
> Error function

* Applications
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RWNTH
Example Application: Text Classification

* Problem:
> Classify a document in a number of categories

G ?
* Representation:

> "Bag-of-words” approach

> Histogram of word counts (on learned dictionary) __.L.J_._,

— Very high-dimensional feature space (~10.000 dimensions)
— Few irrelevant features

* This was one of the first applications of SVMs
> T.Joachims (1997)
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RWTH
Example Application: Text Classification

* Results:
SVM (poly) SVM (rbf)
degree d = width + =
Bayes|Rocchio{C4.5(k-NNijl 1 | 2 3 4 5 0.6 (0.8]11.0f1.2
earn 95.9 96.1 [96.1197.3 [198.2]98.4/98.5/98.4198.3]/198.5]|08.5/98.4198.3
lacq 91.5 92.1 [85.3192.0(]92.6]94.6{95.2|95.2195.3(/95.0]95.3/95.3/95.4
money-fx || 62.9 67.6 |69.4|78.2 |66,9172.5175.4|74.9176.2]74.0|75.4/76.3] 75.9
grain 72.5 79.5 [89.1]82.2 [191.3]|93.1192.4/91.3189.91{93.1(91.9/91.9]90.6
o crude 81L.0} 81.5 |75.5]185.7 ||86.0|187.3|88.6(88.9187.8{|88.9[R9.0/88.9/88.2
A trade 50.0 77.4 |59.2177.41169.2175.5176.6177.3177.11176.9178.0|77.8/ 76.8
_g§ mterest 58.0 72.5 149.1]74.0 |169.8(63.3/67.9(73.1(76.2{174.4175.0176.2|76.1
é ship 78.7 | 83.1 [80.9!79.2 |I82.0/185.4186.0/86.5/86.01{(85.4/86.5/87.6(87.1
o wheat 60.6 79.4 |85.5]76.6 ||83.1184.5/85.285.9/83.81/185.2|85.9/85.9/85.9
g corn 47.3 62.2 |87.7177.9 ||86.0[86.5[85.3 |85.7183.91{85.1{85.7/85.784.5
o . 84.2[85.1[85.9[86.2]85.9][86.4]86.5[36.3 [ 86.2
?CI, microavg.|| 72.0 | 79.9 \79.4)82.3 combined: 86.0 combined: 86.4
S
=

B. Leibe
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SVM

el .

Incoming email Word activations

B. Leibe

n . = 141

L ‘ '.? ¥ T ‘. FaTt . F

UNIVERSITY
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i

Example Application: Text Classification

* This is also how you could implement a simple spam filter...

-

Mailbox

45
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Example Application: OCR

* Handwritten digit
recognition
> US Postal Service Database

> Standard benchmark task
for many learning algorithms

2401084257 ) 442300273 L0410
LLggz L) &i 2L LARE6L 025240
239103301032042821R0400.13
1405350220 L21SRD22Q55
51212220 L2203 L ERLELY
LLELITEQRTIRY 620188701877
LLSZes 1A R 1Qu L k1L dn b
9960512901L8344123832143.03
33212112723)537307383803).1
1320314108082 0484)2)308L%
Loltrdadselded Uizt lElhs
$3588120433211 12220018201
3088424510000 a0kl 0Red)
LoeIt1e30420262001 103368
821ABRe IRASRELALIRTIASER
Lelr23e) eyl 12 leniiiflily
10310758132.2230) 23 L1025
IB745 0253 (828 U2 50001628
L3N 1e38 6422603818032
LEZSRLREIRAREISARLAILRL

. 46
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Historical Importance

e USPS bhenchmark

> 2.5% error: human performance

* Different learning algorithms
> 16.2% error: Decision tree (C4.5)
> 5.9% error: (best) 2-layer Neural Network
> 5.1% error: LeNet 1 — (massively hand-tuned) 5-layer network

* Different SVMs

> 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel (0=0.3, 291 support vectors)
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Example Application: OCR

* Results

> Almost no overfitting with higher-degree kernels.

degree of || dimensionality of | support | raw
polynomial feature space vectors | error
1 256 282 8.9

2 ~ 33000 227 4.7

3 ~ 1 x 10° 274 4.0

4 ~ 1 x 108 321 4.2

D 2z 1 x 1012 374 4.3

6 ~ 1 x 10 377 4.5

7 ~ 1 x 1010 422 4.5

B. Leibe
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RWTH
Example Application: Object Detection

Rea/ ~lim
Capab A,

e

* Sliding-window approach

_>[ Obj./non-ob;j. ]

Classifier

* E.g. histogram representation (HOG)

> Map each grid cell in the input window to a
histogram of gradient orientations.

> Train a linear SVM using training set of
pedestrian vs. non-pedestrian windows.
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[Dalal & Triggs, CVPR 2005]
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Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Machine Learning Winter ‘19

B. Leibe


http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/

Many Other Applications

* Lots of other applications in all fields of technology
. OCR
> Text classification
> Computer vision

> High-energy physics

> Monitoring of household appliances

> Protein secondary structure prediction

> Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)
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http://www.learning-with-kernels.org/

References and Further Reading

* More information on SVMs can be found in Chapter 7.1 of
Bishop’s book. You can also look at Scholkopf & Smola
(some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Learning with Kernels Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.org/

* A more in-depth introduction to SVMs is available in the
following tutorial:

> C. Burges, A Tutorial on Support Vector Machines for Pattern
Recognition, Data Mining and Knowledge Discovery, Vol. 2(2), pp.
121-167 1998.
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http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf
http://www.learning-with-kernels.org/

