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Topics of This Lecture

* Recap: Support Vector Machines
» Lagrangian (primal) formulation
» Dual formulation
» Soft-margin classification

* Nonlinear Support Vector Machines
» Nonlinear basis functions
» The Kernel trick
» Mercer’s condition
» Popular kernels

* Analysis
» Error function

* Applications
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Recap: SVM — Lagrangian Formulation

* Find hyperplane minimizing ||w||2 under the constraints
tn(WTxﬂ +b)—-1>0 Vn

* Lagrangian formulation
» Introduce positive Lagrange multipliers: ap >0 Vn

» Minimize Lagrangian (“primal form”)
N
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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Recap: Support Vector Machine (SVM)

* Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

» Up to now: consider linear classifiers

wix+b=0

* Formulation as a convex optimization problem
» Find the hyperplane satisfying

1 2
argmin [Iw]|
under the constraints
ty(WTx, +b) >1 Vn
based on training data points x,, and target values ¢, € {—1,1}
5
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Recap: SVM — Primal Formulation

* Lagrangian primal form

1 N
L, = 5 Iw]|? — Zan {ta(WwTx, +b) — 1}
n=1

1 N
= FIWI* = an {tay(xa) — 1}
n=1

* The solution of L, needs to fulfill the KKT conditions
» Necessary and sufficient conditions

KKT:
ap > 0 A >0
bay(xa) =1 = 0 f6) = 0
an {tny(xn) —1} = 0 Af(x) =0
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Recap: SVM for Non-Separable Data

* Slack variables
» One slack variable £, > 0 for each training data point.
* Interpretation

» &, = 0 for points that are on the correct side of the margin.
» &, = |t, — y(x,)| for all other points.
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Point on decision
boundary: §, =1
Misclassified point:
£ >1
» We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.
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Topics of This Lecture
* Nonlinear Support Vector Machines
» Nonlinear basis functions
» The Kernel trick
» Mercer’s condition
» Popular kernels
1n
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Nonlinear SVM
* Linear SVMs
» Datasets that are linearly separable with some noise work well:
L G
ol ¥ X
» But what are we going to do if the dataset is just too hard?
0 X
» How about... mapping data to a higher-dimensional space:
x2 °
L]
L]
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Recap: SVM — New Dual Formulation

* New SVM Dual: Maximize

N 1 N N
T
Ld(a) = Z ap — 3 Z Z anamtntm(xmxn)
n=1 n=1m=1
under the conditions This is all
is is a
0~ a,- C that changed!
) N
D antn =0
= n=1
2
§ * This is again a quadratic programming problem
2 = Solve as before...
£
8
= 10
de adapied from Bernf Schiele B. Leibe
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So Far...

Only looked at linearly separable case...
Current problem formulation has no
solution if the data are not linearly
separable!

Need to introduce some tolerance to
outlier data points.

> Slack variables.

* Only looked at linear decision boundaries...
» This is not sufficient for many applications.

» Want to generalize the ideas to non-linear
boundaries.
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Nonlinear SVM — Feature Spaces

* General idea: The original input space can be mapped to
some higher-dimensional feature space where the training

set is separable:
r . .
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Nonlinear SVM

* General idea
» Nonlinear transformation ¢ of the data points x,,:

xeRP ¢:RP - H
» Hyperplane in higher-dim. space H (linear classifier in H)

wlp(x)+b=0

= Nonlinear classifier in RP.
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Problem with High-dim. Basis Functions

* Problem
» In order to apply the SVM, we need to evaluate the function

y(x) = w'(x) +b

» Using the hyperplane, which is itself defined as

N
w :Z antn¢(xn)
n=1

= What happens if we try this for a million-dimensional
feature space ¢(x)?
~ Oh-oh...
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Back to Our Previous Example...

» 2nd degree polynomial kernel:

2 2
1 Y1

(x)Td(y) = | V2z122 || V2112
3 Y3

=23y} + 2120110 + THY

= (x"y)? = k(x,y)

» Whenever we evaluate the kernel function k(x,y) = (x"y)? we

implicitly compute the dot product in the higher-dimensional feature
space.
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What Could This Look Like?

* Example:
» Mapping to polynomial space, x, y € RZ

b(x) =
£
s [raa— s
06 FEr—— 1
2 R
£
3 » Motivation: Easier to separate data in higher-dimensional space.
o . . N N
£ » But wait — isn’t there a big problem?
§ — How should we evaluate the decision function?
21
B. Leibe Image source: C. Burges, 19

Solution: The Kernel Trick

* Important observation
» ¢(x) only appears in the form of dot products ¢(x)T¢(y):

y(x) = wio(x)+b

N
= 3 antud(x,)"0(x) + b

n=1
. Trick: Define a so-called kernel function k(x,y) = ¢(x)To(y).

» Now, in place of the dot product, use the kernel instead:
N
y(x) = Z antnk(xn: X) +b
n=1

» The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!

Machine Learning Winter ‘19
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SVMs with Kernels

* Using kernels
» Applying the kernel trick is easy. Just replace every dot product by a
kernel function...
T
xy — kixy)
» ...and we're done.

» Instead of the raw input space, we’re now working in a higher-
dimensional (potentially infinite dimensional!) space, where the data
is more easily separable.

“Sounds like magic...”

* Wait — does this always work?

» The kernel needs to define an implicit mapping
to a higher-dimensional feature space ¢(x).

> When is this the case?
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Which Functions are Valid Kernels?

* Mercer’s theorem (modernized version):
» Every positive definite symmetric function is a kernel.

* Positive definite symmetric functions correspond to a
positive definite symmetric Gram matrix:

k(xpXp) | k(xyXp) | k(Xy,Xs) k(xy,%q)
k(xpXp) | k(XpXp) | k(XpX3) k(Xy,Xn)
K=
K(XaX)) | K(XnX) | k(X0 Xs) k(X0 X)
(positive definite = all eigenvalues are > 0)
26
ide credit- Raymond Moone: B. Leibe

Example: Bag of Visual Words Representation

* General framework in visual recognition
» Create a codebook (vocabulary) of prototypical image features
» Represent images as histograms over codebook activations
» Compare two images by any histogram kernel, e.g. x2 kernel

1 (B — R})?
k2 (h, h') = exp (7“ '; s h':

de adapted from Chyistonh | ampert B Leibe
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SVM Demo

crangs | (Fin]| ciow | 8w | Loa J47-q 11 < om0

Applet from libsvm
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
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Kernels Fulfilling Mercer's Condition
* Polynomial kernel

k(x,y) = (x"y + 1)

* Radial Basis Function kernel

X — v)2
k(x,y) = exp {—%} e.g. Gaussian

* Hyperbolic tangent kernel

k(x, y) = tanhtmely D) _

Actually, this was wrong in
the original SVM paper...

e.g. Sigmoid

Machine Learning Winter ‘19

(and many, many more...)

ide credit Bernt Schiele B. Leibe
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Nonlinear SVM — Dual Formulation

* SVM Dual: Maximize
N 1 N N
Lg(a) = ZI O = 5 Zl Z] Qb k(X X,,)

under the conditions

0- a, - C
N
Zantn =0
n=1

* Classify new data points using
N

y(x) = > antuk(x,,x) +b

n=1
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Summary: SVMs

* Properties
Empirically, SVMs work very, very well.
SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.
SVMs can be applied to complex data types beyond feature vectors
(e.g. graphs, sequences, relational data) by designing kernel
functions for such data.
SVM techniques have been applied to a variety of other tasks

— e.g. SV Regression, One-class SVMs, ...
The kernel trick has been used for a wide variety of applications. It
can be applied wherever dot products are in use

— e.g. Kernel PCA, kernel FLD, ...

— Good overview, software, and tutorials available on http://www.kernel-
machines.org/
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http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.kernel-machines.org/
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Summary: SVMs Topics of This Lecture
* Limitations
» How to select the right kernel?
— Best practice guidelines are available for many applications
» How to select the kernel parameters?
— (Massive) cross-validation.
— Usually, several parameters are optimized together in a grid search.
» Solving the quadratic programming problem
) — Standard QP solvers do not perform too well on SVM task. =)
5 — Dedicated methods have been developed for this, e.g. SMO. 5
§ » Speed of evaluation § )
2 — Evaluating y(x) scales linearly in the number of SVs. 2 * Analysis .
£ — Too expensive if we have a large number of support vectors. £ » Error function
% = There are techniques to reduce the effective SV set. %
% » Training for very large datasets (millions of data points) _g
L — Stochastic gradient descent and other approximations can be used 2
B. Leibe B. Leibe 33
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SVM — Analysis Recap: Error Functions
. . . E(z Ideal misclassificati
* Traditional soft-margin formulation o € {=1,1} (zn) eal misclassification erro
N
1 2 “Maximize
min —|[w||*+C Z A
weRD, ¢, R+ 2 H H 15" the margin
n=
subject to the constraints
! “Most points should
tn.yixn) = 1-¢, be on the correct
side of the margin”
. . . Not diff tiable! —— —
<Nl « Different way of looking at it 2 ot differentiable
g » We can reformulate the constraints into the objective function. g =
é N ) é ] - o/ 1 2" %n tny(xn)
o . 1 2 o . . . .
£ min, |lwl|]? + CZ (1 —tny(xn)l, =] « Ideal misclassification error function (black)
= € = o .
3 w n=1 3 » This is what we want to approximate,
2 L, regularizer “Hinge loss” 2 » Unfortunately, it is not differentiable.
< S
g where [z], := max{0,z} § » The gradient is zero for misclassified points.
: L}
37 = We cannot minimize it by gradient descent. 38
de adapted from Christooh | ampert B. Leibe Image source: Bishop 200
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Recap: Error Functions Error Functions (Loss Functions)
t e {_1 1} E(zn) Ideal misclassification errol E(zn) Ideal misclassification erro
n ’ Squared erro Squared error
Hinge error
Sensitive to outliers! Robust to outliers!
Penalizes “too correct”
data points!
> N > Not differentiable! / Favors sparse
2 \ / 2 \ / solutions!
5 [ 3 s L
£ -2 - 0 " o = tny(%n) = ) - 0 P 2 = tnyl(xn)
o o
Bl © Squared error used in Least-Squares Classification = * “Hinge error” used in SVMs
E » Very popular, leads to closed-form solutions. § » Zero error for points outside the margin (z, > 1) = sparsity
% » However, sensitive to outliers due to squared penalty. § » Linear penalty for misclassified points (z, < 1) = robustness
é - Penalizes “too correct” data points é » Not differentiable around z, = 1 = Harder to optimize directly.
= Generally does not lead to good classifiers. 39 40
Image source: Bishop 200 B. Leibe Lmage source: Rishop 200
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SVM - Discussion Topics of This Lecture
* SVM optimization function
N
2
mln HWH + C’Z [1—tay(xn)l,
we 1
H—/ n=
L, regularizer Hinge loss
* Hinge loss enforces sparsity
e » Only a subset of training data points actually influences the 2
& decision boundary. £
2 » This is different from sparsity obtained through the regularizer! 2
é’ There, only a subset of input dimensions are used. E’
L!g » Unconstrained optimization, but non-differentiable function. § L
° ) i * Applications
= » Solve, e.g. by subgradient descent =
§ » Currently most efficient: stochastic gradient descent §
4 42
jde adapted from Chyistoph | ampert B. Leibe B Leibe
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Example Application: Text Classification Example Application: Text Classification
* Problem: * Results:
» Classify a document in a number of categories SVM (poly) SVM (rbf)
degree d = width v =
) /Bayes|Rocchio|C4.5k-NNj| 1 | 2| 3 | 4 | 5 [[o6]08]|10]12
<' H earn. 959 [ 961 [96.1]97.3 [[98.2[98.4[98,5]98.4]98.3][08.5][98.5] 98.4 | 98.3
acq OL5 [ 92.1 [85.3]920 |[92.6/94.6[95.2]55.255.3[95.0[95.3] 95.3|95.4]
) money-fx || 62.9 | 67.6 |69.4| 782 |[66.972.5(75.4| 74.9]76.2]/74.0 75.4|76.3| 75.9
* Representation: Frain 725 | 79.5 [89.1]82.2[91.3]93.1[92.4[91.3[80.6[98.1]91.9[91.9/90.6
- . “Bag-of-words” approach - crude 8L0 | 81.5 [75.5|85.7 |[86.0/87.3[88.6[88.9]87.8 [88.9|80.0[ 88 9|88 2
Q > o = trade 50.0 | 77.4 ]59.2|77.4 |[69.2[75.5]76.6|77.3|77.1]| 76.9 |7R.0[77.8| 76.8
5 » Histogram of word counts (on learned dictionary) 'l [interest |[58.0 | 72.5 |49.1] 74.0 [|69.8]63.367.0|73.176.2|| 74.4 |75.0[76.2 76.1
é — Very high-dimensional feature space (~10.000 dimensions) é ship 78.7 | 83.1 |80.9]79.2([82.0[85.4]86.0[86.5[86.0|[85.4|86.5|87.6[87.1
> _ Few irrelevant features =) [wheat 60.6 | 79.4 |85.5]76.6 |[83.1]84.5]85.2 [85.9|83.8 |[85.2[85.9/85.9 | 85.9
£ £ corn 473 | 62.2 [87.7]77.9 |[86.0]86.5/85.3[85.7|83.9 |[85.1[85.7|85.7 | 84.5
© (o] =
£ - This was one of the first applications of SVMs £ [microave || 72.0 | 79.0 [79.4{s2.5 | % 21N 11808 [SO2185.9 186 418G 51865 56.2
£ . T. Joachims (1997) =
2 2
43 44
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Example Application: Text Classification Example Application: OCR
* This is also how you could implement a simple spam filter... * Handwritten digit 2eRLIALDPEE)SE2IVQPTALIAL]
recognition ‘LR&ZA¢L*ZJ&$¢£&1§§Q%&&Z&
9 23908320,0320602312023013

2304222£01225%0279955
ALARLASIZTONZIERLB LY
Q511 TP 0055101857
L2500 E2L 1400506
1935412303233372

2321 759273330314
12709180 41312814
LQ'iZL;S&ﬁlikEEl’bx*Lfiﬁﬁ
FERES] L3 RQikZﬁL

» US Postal Service Database

» Standard benchmark task
for many learning algorithms

D|ct|0nary

Mailbox
+> — SVM
2
Incoming email Word activations . I
=

B. Leibe

01Q31075?13319129155I70§5
JESEEAR R R CENEER R ) H
JERLESSKE QA LLRISLELT
LAZE5LRR503RE25R0IALEQL
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Historical Importance Example Application: OCR

* USPS benchmark
» 2.5% error: human performance

* Results
» Almost no overfitting with higher-degree kernels.

* Different learning algorithms degree of | dimensionality of | support | raw
. 16.2% error: Decision tree (C4.5) polynorial feature space vectors | error
» 5.9% error: (best) 2-layer Neural Network 1 2:56 282 8.9
. 5.1% error: LeNet 1 — (massively hand-tuned) 5-layer network 2 2 33000 227 4.7
2 2 3 a1 x 106 2714 | 40
g g ~ 9 a p
i « Different SVMs 2 4 21 x 10 321 4.2
s 2 5 2 1 x 1012 374 43
2 »  4.0% error: Polynomial kernel (p=3, 274 support vectors) E; E ) . o
£ > 4.1% error: Gaussian kernel  (0=0.3, 291 support vectors) £ 6 A1 10 377 4.5
g e 7 &~ 1 x 1018 422 4.5
2 2
E £
g ©
= =
a7 48
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Example Application: Object Detection Example Application: Pedestrian Detection

* Sliding-window approach Rea timg

C"Dal;/e_,
Wy
ERIT ] )
- N_, Obj./non-obj
¢ at Clas r

[Dalal & Triggs, CVPR 2005]

* E.g. histogram representation (HOG)
» Map each grid cell in the input window to a
histogram of gradient orientations.
> Train a linear SVM using training set of
pedestrian vs. non-pedestrian windows.

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Machine Learning Winter ‘19
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Many Other Applications References and Further Reading

* Lots of other applications in all fields of technology
- OCR

Text classification

Computer vision

* More information on SVMs can be found in Chapter 7.1 of
Bishop’s book. You can also look at Schélkopf & Smola
(some chapters available online).

v

v

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.ora/

* A more in-depth introduction to SVMs is available in the
following tutorial:

» C. Burges, A Tutorial on Support Vector Machines for Pattern
Recognition, Data Mining and Knowledge Discovery, Vol. 2(2), pp.
121-167 1998.

» High-energy physics

» Monitoring of household appliances

» Protein secondary structure prediction

» Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)
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http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
http://www.learning-with-kernels.org/
http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf
http://www.learning-with-kernels.org/

