Machine Learning - Lecture 9

Support Vector Machines II

07.11.2019

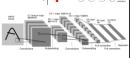
Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - > Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Deep Learning
 - Foundations

 - Convolutional Neural Networks
 - Recurrent Neural Networks



Topics of This Lecture

- Recap: Support Vector Machines
 - > Lagrangian (primal) formulation
 - Dual formulation
 - Soft-margin classification
- Nonlinear Support Vector Machines
 - > Nonlinear basis functions
 - > The Kernel trick
 - Mercer's condition
 - Popular kernels
- Analysis
 - Error function
- **Applications**

Recap: Support Vector Machine (SVM)

Basic idea

- > The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
- > Up to now: consider linear classifiers

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$

- Formulation as a convex optimization problem
 - > Find the hyperplane satisfying

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} ||\mathbf{w}||^2$$

under the constraints

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) \ge 1 \quad \forall n$$

based on training data points \mathbf{x}_n and target values $t_n \in \{-1,1\}$

Recap: SVM - Lagrangian Formulation

• Find hyperplane minimizing $\|\mathbf{w}\|^2$ under the constraints

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) - 1 \ge 0 \quad \forall n$$

- Lagrangian formulation
 - Introduce positive Lagrange multipliers: $a_n \geq 0 \quad \forall n$
 - > Minimize Lagrangian ("primal form")

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(\mathbf{w}^{\mathrm{T}} \mathbf{x}_n + b) - 1 \right\}$$

$$\frac{\partial L}{\partial b} = 0 \implies \sum_{n=1}^{N} a_n t_n = 0$$

$$\frac{\partial L}{\partial b} = 0 \implies \sum_{n=1}^{N} a_n t_n = 0 \qquad \frac{\partial L}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

Recap: SVM - Primal Formulation

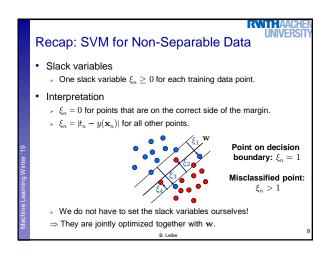
• Lagrangian primal form
$$\begin{split} L_p &= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^N a_n \left\{ t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) - 1 \right\} \\ &= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^N a_n \left\{ t_n y(\mathbf{x}_n) - 1 \right\} \end{split}$$

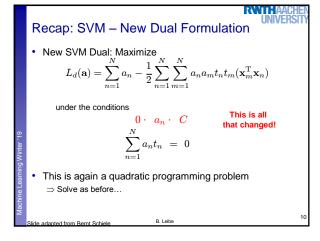
- The solution of L_p needs to fulfill the KKT conditions
 - > Necessary and sufficient conditions

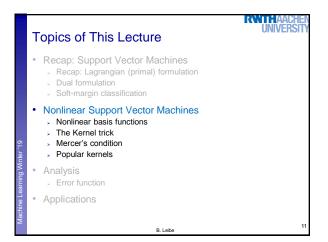
$$a_n \geq 0$$
 $t_n y(\mathbf{x}_n) - 1 \geq 0$ $f(\mathbf{x}) \geq 0$ $f(\mathbf{x}) \geq 0$ $\lambda f(\mathbf{x}) = 0$

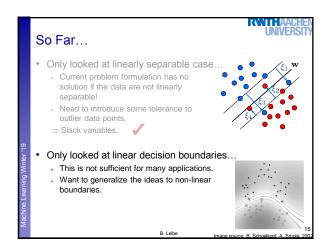
RWITHAACI

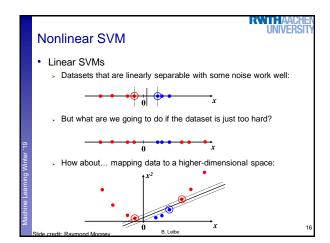
1

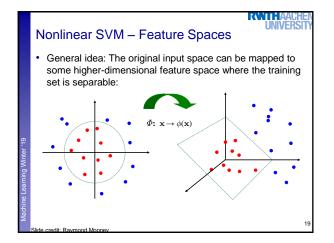












Nonlinear SVM

- General idea
 - Nonlinear transformation ϕ of the data points \mathbf{x}_n :

$$\mathbf{x} \in \mathbb{R}^D \quad \phi : \mathbb{R}^D \to \mathcal{H}$$

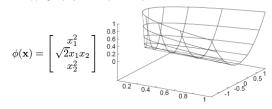
 $\,\,$ Hyperplane in higher-dim. space ${\cal H}$ (linear classifier in ${\cal H})$

$$\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + b = 0$$

 \Rightarrow Nonlinear classifier in \mathbb{R}^D .

What Could This Look Like?

- Example:
 - > Mapping to polynomial space, $\mathbf{x},\,\mathbf{y}\in\mathbb{R}^2$:



- > Motivation: Easier to separate data in higher-dimensional space.
- But wait isn't there a big problem?
 - How should we evaluate the decision function?

Problem with High-dim. Basis Functions

- Problem
 - In order to apply the SVM, we need to evaluate the function

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$$

. Using the hyperplane, which is itself defined as
$$\mathbf{w} = \!\!\sum_{n=1}^N a_n t_n \phi(\mathbf{x}_n)$$

- ⇒ What happens if we try this for a million-dimensional feature space $\phi(\mathbf{x})$?
 - > Oh-oh...

Solution: The Kernel Trick

Important observation

> $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$:

$$\begin{split} y(\mathbf{x}) &= & \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b \\ &= & \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)^{\mathrm{T}} \phi(\mathbf{x}) + b \end{split}$$

- Fig. Trick: Define a so-called kernel function $k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^T \phi(\mathbf{y})$.
- Now, in place of the dot product, use the kernel instead:

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$$

> The kernel function implicitly maps the data to the higherdimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)!

Back to Our Previous Example...

2nd degree polynomial kernel:

$$\phi(\mathbf{x})^{\mathrm{T}}\phi(\mathbf{y}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} y_1^2 \\ \sqrt{2}y_1y_2 \\ y_2^2 \end{bmatrix}^{\frac{1}{2}}$$

$$= x_1^2y_1^2 + 2x_1x_2y_1y_2 + x_2^2y_2^2$$

$$= (\mathbf{x}^{\mathrm{T}}\mathbf{y})^2 =: k(\mathbf{x}, \mathbf{y})$$

> Whenever we evaluate the kernel function $k(\mathbf{x},\mathbf{y}) = (\mathbf{x}^\mathsf{T}\mathbf{y})^2$, we implicitly compute the dot product in the higher-dimensional feature space.

SVMs with Kernels

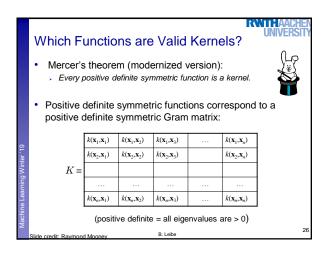
- · Using kernels
 - Applying the kernel trick is easy. Just replace every dot product by a kernel function...

$$\mathbf{x}^{\mathrm{T}}\mathbf{y} \rightarrow k(\mathbf{x}, \mathbf{y})$$

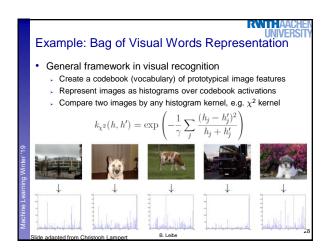
- ...and we're done.
- Instead of the raw input space, we're now working in a higherdimensional (potentially infinite dimensional!) space, where the data is more easily separable.

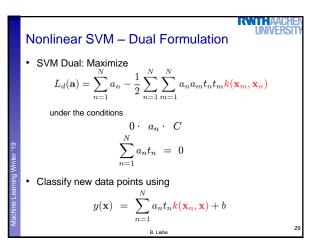
"Sounds like magic..

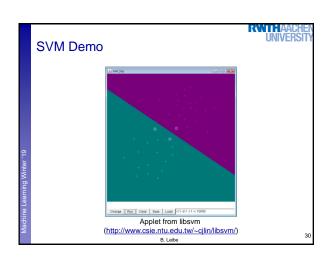
- · Wait does this always work?
 - > The kernel needs to define an implicit mapping to a higher-dimensional feature space $\phi(\mathbf{x})$.
 - When is this the case?

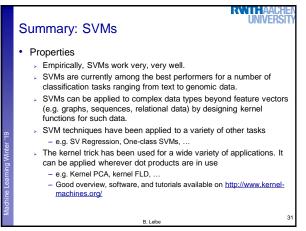


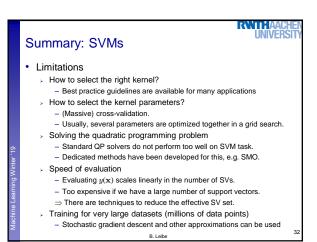


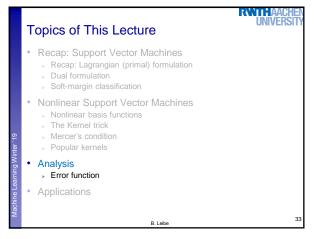


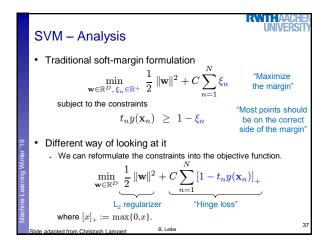


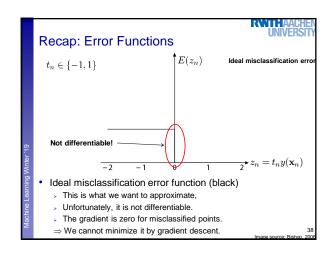


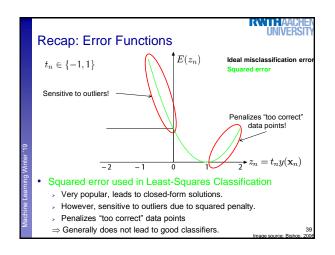


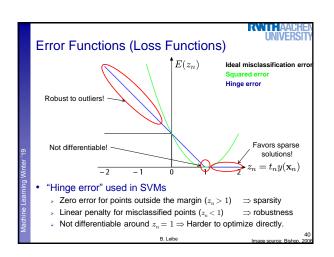


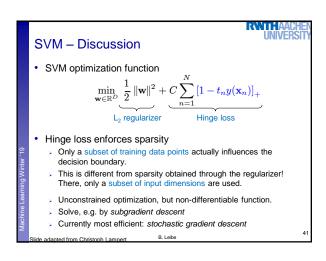


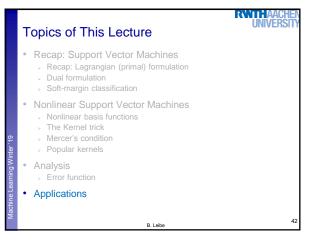


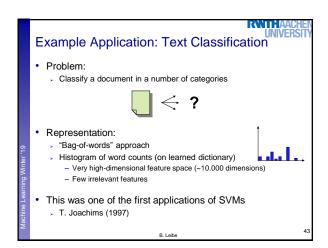


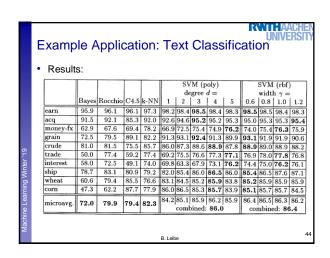


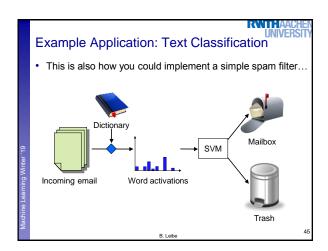


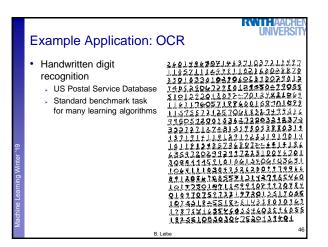












Historical Importance • USPS benchmark • 2.5% error: human performance • Different learning algorithms • 16.2% error: Decision tree (C4.5) • 5.9% error: (best) 2-layer Neural Network • 5.1% error: LeNet 1 – (massively hand-tuned) 5-layer network • Different SVMs • 4.0% error: Polynomial kernel (p=3, 274 support vectors) • 4.1% error: Gaussian kernel (σ=0.3, 291 support vectors)

