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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Recap: Support Vector Machine (SVM)

* Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

Up to now: consider linear classifiers

wix+b=0

v

* Formulation as a convex optimization problem
» Find the hyperplane satisfying

1 2
arg min §HWH
under the constraints
to(wTx, +b) >1 Vn

based on training data points x,, and target values ¢, € {—1,1}
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Announcements

* Exam dates
» 1stdate: Saturday, 29.02., 13:30h — 15:30h
» 2nd date: Thursday, 19.03., 11:00h — 13:00h

v

The exam dates have been optimized to avoid overlaps with
other Computer Science Master lectures as much as possible.

If you still have conflicts with both exam dates, please tell us.

v

v

If you're an exchange student and need to leave RWTH before the
first exam date, we will offer some special oral exam slots

— Please do NOT contact us about those yet.

— We will let you sign up for those special exam slots in early January

* Please do not forget to register for the exam in RWTH
online!
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Topics of This Lecture

* Support Vector Machines
» Lagrangian (primal) formulation
» Dual formulation
» Soft-margin classification

* Nonlinear Support Vector Machines
» Nonlinear basis functions
» The Kernel trick
» Mercer’s condition
» Popular kernels

* Analysis
» Error function

* Applications
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B. Leibe

Support Vector Machine (SVM)

* Optimization problem
» Find the hyperplane satisfying
arg min = |w]|*
w,b 2
under the constraints

tn(WTx, +b) >1 Vn

» Quadratic programming problem with linear constraints.
» Can be formulated using Lagrange multipliers.

* Who is already familiar with Lagrange multipliers?
» Let’s look at a real-life example...
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Recap: Lagrange Multipliers

* Problem
» We want to maximize K(x) subject to constraints f(x) = 0.

» Example: we want to get as close as
possible, but there is a fence.
» How should we move?

. We want to maximize VK
» But we can only move parallel
to the fence, i.e. along

VK =VK+AVf
with A # 0. 1

ide adapted from Mario Erit B. Leibe

Recap: Lagrange Multipliers

* Problem
» Now let's look at constraints of the form f(x) > 0.

» Example: There might be a hill from
which we can see better...

Optimize max L(x,\) = K(x) + Af(x)

v

¢ Two cases
> Solution lies on boundary
= f(x) =0 for some A >0
Solution lies inside f(x) >0
= Constraint inactive: A= 0
» In both cases
= Af(x)=0

v

B. Leibe
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SVM - Lagrangian Formulation

* Find hyperplane minimizing ||w||2 under the constraints
tn(WTxﬂ +b)—-1>0 Vn

* Lagrangian formulation
» Introduce positive Lagrange multipliers: ap >0 Vn

» Minimize Lagrangian (“primal form”)
N
1
L(W7 b, a) = 5} ”WH2 - Zlan {tn(WTxn + b) - 1}

» le., find w, b, and a such that

N

oL

=0 =Y ant,=0
n=1

oL

N
— =0 =|w :Z AptnXy
n—1

ob ow
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Recap: Lagrange Multipliers

* Problem
» We want to maximize K(x) subject to constraints f(x) = 0.

» Example: we want to get as close as
possible, but there is a fence.
» How should we move?

= Optimize N
maS\XL(x, A) = K(x) + Af(x)
X,

OL I
o ViK=0
oL |
N flz)=0
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Recap: Lagrange Multipliers
* Problem
» Now let's look at constraints of the form f(x) > 0.
» Example: There might be a hill from
which we can see better...
~ Optimize max L(x,)) = K(x) + Mf(x)
1690 2o Karush-Kuhn-Tucker (KKT)
conditions: A > 0
* Two cases f(x) >0
» Solution lies on boundary /\f(x) =0

= f(x) =0 for some A >0
» Solution lies inside f(x) >0

= Constraint inactive: A = 0
» In both cases

= A(x)=0 Fence f 15
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SVM - Lagrangian Formulation
* Lagrangian primal form

1 N
L, = 5 Iw]|? — Zan {ta(WwTx, +b) — 1}
n=1

1 N
= FIWI* = an {tay(xa) — 1}
n=1

* The solution of L, needs to fulfill the KKT conditions
» Necessary and sufficient conditions

KKT:
ap > 0 A >0
bay(xa) =1 = 0 f6) = 0
an {tny(xn) —1} = 0 Af(x) =0

15
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SVM — Solution (Part 1)

* Solution for the hyperplane
» Computed as a linear combination of the training examples

N
w = E antnXy
n=1

» Because of the KKT conditions, the following must also hold

an (tn(wix, +0) —1) =0 /\fE(;)T:: 0

» This implies that a,, > 0 only for training data points for which
(tn(W'xp +b) —1) =0

= Only some of the data points actually influence the decision
boundary!

Machine Learning Winter ‘19
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ide adapted from Bernt Schiele B. Leibe

SVM - Solution (Part 2)

* Solution for the hyperplane
» To define the decision boundary, we still need to know b.
» Observation: any support vector x,, satisfies

KKT:
thy(xn) =ty E UmtmXox, +b] =1 [fx)>0
meS
& Using t2 = 1 we can derive: b=t, — Z At mX o X,
E > g lp . n mtmXmXn
é meS
E » In practice, it is more robust to average over all support vectors:
€
3 1
T
E b= — E tn - E anLtmmen
= Ns
S nes meS
= 19
B. Leibe
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SVM - Dual Formulation

* Improving the scaling behavior: rewrite L, in a dual form

1 N
L,= 5 Iwl)® — Zan {tn(wan +b) — 1}
n=1

1 N N 0 N
= 2w Dt b ;ﬁ 3 an
n=1 =1 n=1
N
» Using the constraint Z ant, =0 we obtain % =0
n=1

1 N N
L,= 3 w||? — Zantanxn + Z an
n=1 n=1
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ide adapted from Bernt Schiele B. Leibe
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SVM — Support Vectors

* The training points for which a,, > 0 are called
“support vectors”.

* Graphical interpretation:
» The support vectors are the
points on the margin.
» They define the margin
and thus the hyperplane. o

= Robustness to “too correct”
points!

g@ . I/Margin

18

de adapted from Bernt Schiele B Leibe Image source: C Burges, 199

SVM - Discussion (Part 1)

* Linear SVM
» Linear classifier
» SVMs have a “guaranteed” generalization capability.
» Formulation as convex optimization problem.
= Globally optimal solution!

* Primal form formulation
» Solution to quadratic prog. problem in M variables is in O(M?).
> Here: D variables = O(D?)
» Problem: scaling with high-dim. data (“curse of dimensionality”)

20

de adanted from Bernt Schiele B. Leibe
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SVM — Dual Formulation

1 N N
L,= 3 Iwl)® — Z antnWix, + Zan
n=1 n=1

_ _ ul _ aL,
» Using the constraint W :Z anpty Xy, we obtain =0

ow

n=1

1 N N N
L,= 3 Iw||? — Zantn Z AmtmXE X, + Z an,
n=1 m=1 n=1

1 N N N
=5 W7 =2 > antmtutm(x5%0) + > an
n=1

n=1m=1

23
de adanted from Bernt Schiele B. Leibe




SVM — Dual Formulation

RWTH/AACHET]

1 N N N
L= Wiz =3 anamtntm(xnxn) + > an
n=1m=1 n=1
S A - a
» Applying 5 Iw[*= VW and again using w :Z ptnXp
n=1
1 . TR -
2—w w = 3 Z Z A Qmtntm (X, Xn)
? n=1m=1
8
£
= » Inserting this, we get the Wolfe dual
2 N 1NN
§ Ly(a) = Zan ~3 Z Z Anmtntm (XL %,)
_E n=1 n=1m=1
<
8
= 24
ide adapted from Bernt Schiele B. Leibe

SVM - Discussion (Part 2)

* Dual form formulation
» In going to the dual, we now have a problem in N variables (a,,).
» Isn’t this worse??? We penalize large training sets!

* However...
1. SVMs have sparse solutions: a,, # 0 only for support vectors!
= This makes it possible to construct efficient algorithms
— e.g. Sequential Minimal Optimization (SMO)
— Effective runtime between O(N) and O(N?).

2. We have avoided the dependency on the dimensionality.

= This makes it possible to work with infinite-dimensional feature
spaces by using suitable basis functions ¢(x).

= We'll see that later in today’s lecture...

Machine Learning Winter ‘19
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SVM — Non-Separable Data

* Non-separable data
» l.e. the following inequalities cannot be satisfied for all data points

wix, +b>+1 for t, =+1

wix, +b- —1 for t,=-1
» Instead use

wlx, +b>41-¢, for t,=-+1

wix, +b- —1 +¢&, for t,=-1

with “slack variables”

& >0 Yn
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SVM — Dual Formulation
* Maximize
N 1 N N
Ld(a) = Z ap — 5 Z Z anamtntm(xzy,xn)
n=1 n=1m=1
under the conditions
a, > 0 Vn
N
Z apt, = 0
n=1
» The hyperplane is given by the Ng support vectors:
Ns
w :Z AntnXy
n=1 2
de adapted from Bernt Schiele B. Leibe
RWTH CHET
So Far...

* Only looked at linearly separable case...
» Current problem formulation has no
solution if the data are not linearly
separable!
» Need to introduce some tolerance to
outlier data points.

29
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SVM — Soft-Margin Classification

* Slack variables
» One slack variable £, > 0 for each training data point.

* Interpretation
» &, = 0 for points that are on the correct side of the margin.
» &, = |t, — y(x,)| for all other points (linear penalty).

Point on decision
boundary: &, =1

Misclassified point:
£, >1

> We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

1
B. Leibe
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SVM — Non-Separable Data

* Separable data 1 9 Trade-off
> Minimize 5 ||W|| parameter!
* Non-separable data | N
» Minimize ) ||W||2 Zén
n=1

32
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SVM — New Dual Formulation

* New SVM DuaI Maximize

N N
= Z ap — Z Z anamtntm(ernxn)
n=1m=1

N =

under the conditions

0 a,- C
N
Zantn =0
n=1

* This is again a quadratic programming problem
= Solve as before... (more on that later)

This is all
that changed!

34
ide adapted from Bernt Schiele B Leibe
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Interpretation of Support Vectors

* Those are the hard examples!
» We can visualize them, e.g. for face detection

MNON-FACES
_o
o L, o oo =
= oo go
] Ll o O
m ® CEgl
=] B = -_El... o-
EEo
NS
wE \Eo
-
M"‘{
LR |
- _'-_«'1'
FACES ) ;o

36

B. Leibe Lmage source: E.Osuna E Girosi, 19979
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SVM — New Primal Formulation
* New SVM Primal: Optimize

Ly ——I\WH2+CZ§n Ean tny(%n) — 1+ &) —

Z in&n

n=1 n=1
H_/
Constraint Constraint
tny(xn) 2 1- é-n gn 2 0

* KKT conditions

KKT:
tny(xn) -1 + {n 2 gn 2 f(x) Z 0
an (tny(xn) -1+ 671) =0 nén = AM(x) =0
B. Leibe 3
RWTH/ACHEN

SVM — New Solution

* Solution for the hyperplane
» Computed as a linear combination of the training examples

N
w = E AntnXy
n=1

» Again sparse solution: a,, = 0 for points outside the margin.
= The slack points with £, > 0 are now also support vectors!

~ Compute b by averaging over all N, points with 0 < a,, < C:
= — E E amtmxaxn
nGM memM

35
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Topics of This Lecture

* Nonlinear Support Vector Machines
» Nonlinear basis functions
» The Kernel trick
» Mercer’s condition
» Popular kernels

37
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So Far...

Only looked at linearly separable case...
Current problem formulation has no
solution if the data are not linearly
separable! g
Need to introduce some tolerance to
outlier data points.

= Slack variables

o

5 * Only looked at linear decision boundaries...

§ » This is not sufficient for many applications.

é’ » Want to generalize the ideas to non-linear

& boundaries.
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Image source: B, Schoelkonf, A, Smola, 200
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Nonlinear SVM — Feature Spaces

* General idea: The original input space can be mapped to
some higher-dimensional feature space where the training

set is separable:
r . .

Machine Learning Winter ‘19
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ide credit- Ravmond Moone:

What Could This Look Like?

* Example:
» Mapping to polynomial space, x, y € R2

» Motivation: Easier to separate data in higher-dimensional space.
» But wait — isn’t there a big problem?
— How should we evaluate the decision function?
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lmage source: G, Buiges, 199
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Nonlinear SVM

* Linear SVMs
» Datasets that are linearly separable with some noise work well:

ol
o 7 x

» But what are we going to do if the dataset is just too hard?

0 X

» How about... mapping data to a higher-dimensional space:
L]

x2

Machine Learning Winter ‘19
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Nonlinear SVM

* General idea
» Nonlinear transformation ¢ of the data points x,,:

xeRP ¢:RP -H
» Hyperplane in higher-dim. space # (linear classifier in H)

wlo(x)+b=0

= Nonlinear classifier in R?.

Machine Learning Winter ‘19
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TOWTHACHET]
Problem with High-dim. Basis Functions

* Problem
» In order to apply the SVM, we need to evaluate the function

y(x) = w'$(x) +b

» Using the hyperplane, which is itself defined as

N
w :Z antn(b(xn)
n=1

= What happens if we try this for a million-dimensional
feature space ¢(x)?
- Oh-oh...
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Solution: The Kernel Trick

* Important observation
» ¢(x) only appears in the form of dot products ¢(x)T¢é(y):

y(x) = wio(x) +b

N
=) antad(xn)"$(x) +b
n=1

. Trick: Define a so-called kernel function k(x,y) = ¢(x)To(y).

» Now, in place of the dot product, use the kernel instead:
N
y(X) = Z antnk(x'ru X) +b
n=1

» The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!

Machine Learning Winter ‘19
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SVMs with Kernels

* Using kernels
» Applying the kernel trick is easy. Just replace every dot product by a
kernel function...
T
xy — k(xy)
» ...and we're done.

» Instead of the raw input space, we’re now working in a higher-
dimensional (potentially infinite dimensional!) space, where the data
is more easily separable.

“Sounds like magic...”,

e

* Wait — does this always work?

» The kernel needs to define an implicit mapping
to a higher-dimensional feature space ¢(x).

Machine Learning Winter ‘19

» When is this the case?
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TRWTH/ACHEN
Kernels Fulfilling Mercer’'s Condition

* Polynomial kernel
k(x,y) = (x"y + 1)

* Radial Basis Function kernel

x — v)2
k(x, Y) = €xp {—(27}’)} e.g. Gaussian

* Hyperbolic tangent kernel

k(x,y) = tantbmeEy D] eg Sigmoid

Actually, this was wrong in

the original SVM paper...
(and many, many more...)
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ide credit- Bernt Schigle B. Leibe

Back to Our Previous Example...

» 2nd degree polynomial kernel:
2

T 21 _1/%
3(x)"oly) = | V2z12a || V2y192

2 2

3 Y2

=23y} + 2m1 o012 + T3V

= (x"y)? = k(x,y)

> Whenever we evaluate the kernel function k(x,y) = (x"y)? we

implicitly compute the dot product in the higher-dimensional feature
space.

Machine Learning Winter ‘19
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Image source: C. Burges, 199t
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Which Functions are Valid Kernels?

* Mercer’s theorem (modernized version): H
» Every positive definite symmetric function is a kernel. )

* Positive definite symmetric functions correspond to a
positive definite symmetric Gram matrix:

> k(% Xp) | k(x%p) | K(Xq,X3) e k(x1,%,)
5 Koox) [ KOGx) | kOGxs) )
E

= K=

&

€

g

3 K(Xa) | kOGX) | k(XX5) e K(aXa)
£

£

§ (positive definite = all eigenvalues are > 0)

52
ide credit- Ravmond Moone: B. Leibe
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Example: Bag of Visual Words Representation
* General framework in visual recognition
» Create a codebook (vocabulary) of prototypical image features

» Represent images as histograms over codebook activations
» Compare two images by any histogram kernel, e.g. x2 kernel

1 (h; — h%)?
A:\u(h, ) = oxXp (7‘, Z ijj - j.,f'f
Fi i
1 {

T o4
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Nonlinear SVM — Dual Formulation

* SVM Dual: Maximize
V N N

N
1
La(a) =Y a, - 5 SN anamtatk(x,%,)

n=1 n=1m=1
under the conditions

0- a,- C
N
Z apt, = 0
n=1
* Classify new data points using

N
y(x) = 3 autuk(x,,x) +b

n=1

Machine Learning Winter ‘19
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Summary: SVMs

* Properties
Empirically, SVMs work very, very well.
SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.
SVMs can be applied to complex data types beyond feature vectors
(e.g. graphs, sequences, relational data) by designing kernel
functions for such data.
SVM techniques have been applied to a variety of other tasks

— e.g. SV Regression, One-class SVMs, ...
The kernel trick has been used for a wide variety of applications. It
can be applied wherever dot products are in use

— e.g. Kernel PCA, kernel FLD, ...

— Good overview, software, and tutorials available on http://www.kernel-
machines.org/

v

v

v

v v
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Topics of This Lecture

* Analysis
» Error function
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SVM Demo
2}
8
£
s
2
<
©
S
2 change [P o | s | Lo [A7-a7-r7-¢70008
S Applet from libsvm
= (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 56
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Summary: SVMs

* Limitations
» How to select the right kernel?
— Best practice guidelines are available for many applications
» How to select the kernel parameters?
— (Massive) cross-validation.
— Usually, several parameters are optimized together in a grid search.
» Solving the quadratic programming problem
— Standard QP solvers do not perform too well on SVM task.
— Dedicated methods have been developed for this, e.g. SMO.
» Speed of evaluation
— Evaluating y(x) scales linearly in the number of SVs.
— Too expensive if we have a large number of support vectors.
= There are techniques to reduce the effective SV set.
» Training for very large datasets (millions of data points)
— Stochastic gradient descent and other approximations can be used

Machine Learning Winter ‘19
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SVM — Analysis
* Traditional soft-margin formulation
N
. 1 2 “Maximize
LT ) DUt

subject to the constraints
tay(xn) = 1-6,

“Most points should
be on the correct
side of the margin”

=i« Different way of looking at it

g » We can reformulate the constraints into the objective function.
s 1 N

2 in — 2 —

£ i, [Iw||* +C Z:l (1 —tny(xn)],

it — n=

£ L, regularizer “Hinge loss”

=]

©

=

where [z], := max{0,z}.
63
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http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.kernel-machines.org/
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Recap: Error Functions
E(zn.)

Ideal misclassification erro

t, e {-1,1}

Not differentiable! ——M — |

-2 3 N4 1 3" n = tny(%n)

¢ |deal misclassification error function (black)
» This is what we want to approximate,
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.

= We cannot minimize it by gradient descent. e st b gg
RWTH//CHE
Error Functions (Loss Functions)
E(z,) Ideal misclassification erro
Squared erro
Hinge error

Robust to outliers!

Not differentiable! — | '

/

Favors sparse

/’ solutions!
) . 0 - Y—="% = tny(xn)
* “Hinge error” used in SVMs
» Zero error for points outside the margin (z, > 1) = sparsity

» Linear penalty for misclassified points (z, < 1)

» Not differentiable around z,= 1 = Cannot be optimized directly.

B. Leibe
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Topics of This Lecture

* Applications

B. Leibe

68
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Recap: Error Functions

Ideal misclassification erro
Squared error

t,e {—1.1}

Sensitive to outliers!

Penalizes “too correct”
data points!

N // s
e
* Squared error used in Least-Squares Classification

» Very popular, leads to closed-form solutions.

» However, sensitive to outliers due to squared penalty.

» Penalizes “too correct” data points

= Generally does not lead to good classifiers. 65

Image source: Bishop, 2001

3 Zn = tny(xn)

SVM - Discussion
* SVM optimization function

N
. ]- 2
— —
L, regularizer

Hinge loss

* Hinge loss enforces sparsity

v

Only a subset of training data points actually influences the
decision boundary.

This is different from sparsity obtained through the regularizer!

There, only a subset of input dimensions are used.

v

Unconstrained optimization, but non-differentiable function.
Solve, e.g. by subgradient descent
Currently most efficient: stochastic gradient descent

v

v
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TOWTHACHET]
Example Application: Text Classification

* Problem:
» Classify a document in a number of categories

* Representation:

» “Bag-of-words” approach

» Histogram of word counts (on learned dictionary)
— Very high-dimensional feature space (~10.000 dimensions)
— Few irrelevant features

* This was one of the first applications of SVMs
» T.Joachims (1997)

69
B. Leibe
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Example Application: Text Classification Example Application: Text Classification
* Results: * This is also how you could implement a simple spam filter...
SVM (poly) SVM (:bf)
degree d = width v =
Bayes|Rocchio|C4.5[k-NN|j 1 | 2 | 3 | 4 | 5 JJos|o8|10]12
[earn 95.9 | 96.1 [96.1]97.3 [[08.2]98.4[98.5[98.4]98.3||98.5]98.5]95.4] 95.3 |
acq 915 | 92.1 [85.3192.0[92.6/94.6]95.2]95.2]95.3]95.0/95.3]95.3|95.4
money-fx || 62.9 | 67.6 [69.4[78.2 [66.9]72.5]75.4|74.9 75.2”»74.0 75.4|76.3[75.9 DlCtanaf)’
|§rain 72.5 | 795 |80.1|82.2 [91.3]93.1[92.4[91.3|89.5][08.1|01.9|61.9|90.6 Mailb
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RWTH/ACHEN RWTH/ACHEN
Example Application: OCR Historical Importance
* Handwritten digit EYT LYY -EAR T ESANERERS S ) e USPS benchmark
IAVETTRNEERIANNEI S 1r 2 s ]

recognition 33010330403 045LA100AT . 2.5% error: human performance
» US Postal Service Database 2906 12719121559“-.72955
. Standard benchmark task ; £AES

for many learning algorithms

* Different learning algorithms
» 16.2% error: Decision tree (C4.5)
» 5.9% error: (best) 2-layer Neural Network
» 5.1% error: LeNet 1 — (massively hand-tuned) 5-layer network

1332513 302 R ELLL
140821213 I 285 RQ.L&JQJ.
A

* Different SVMs
» 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel  (0=0.3, 291 support vectors)

&
BRe1RAZRELILL [
Lolr23e) ey 1229 10v 1120204
910910155133)3730).28L1088
18743 22550824002 58808142
L2EISYl68EYE025206038 L6088
LEZASLRE30IREISARIALLRL
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RWTH//CHE TRWTH/ T
Example Application: OCR Example Application: Object Detection
* Results * Sliding-window approach faj;me

» Almost no overfitting with higher-degree kernels.

degree of || dimensionality of | support | raw
polynomial feature space vectors | error
1 256 282 8.9
2 =2 33000 227 4.7
2 3 ~ 1 x 108 274 4.0 2
& 4 =1 x10° 321 4.2 =
2 5 =1 x 10'2 374 4.3 2 , _
£ 6 1 x 101 377 45 2| * E.g. histogram representation (HOG)
E 7 ~ 1 x 1016 429 4.5 § » Map each grid cell in the input window to a
o ° histogram of gradient orientations.
g 5 . Train a linear SVM using training set of
= = pedestrian vs. non-pedestrian windows.
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[Dalal & Triggs, CVPR 2005:]




RWTH/ACHEN
Example Application: Pedestrian Detection

TRWTHAATHE]
Many Other Applications

* Lots of other applications in all fields of technology
» OCR
» Text classification
» Computer vision

High-energy physics

Monitoring of household appliances

Protein secondary structure prediction

» Design on decision feedback equalizers (DFE) in telephony

v

v

v

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)
N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
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RWTH/THE
References and Further Reading

* More information on SVMs can be found in Chapter 7.1 of
Bishop’s book. You can also look at Scholkopf & Smola
(some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.org/

* A more in-depth introduction to SVMs is available in the
following tutorial:

» C. Burges, A Tutorial on Support Vector Machines for Pattern
Recognition, Data Mining and Knowledge Discovery, Vol. 2(2), pp.
121-167 1998.
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http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
http://www.learning-with-kernels.org/
http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf
http://www.learning-with-kernels.org/

