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Linear Discriminants |l
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

* Deep Learning
> Foundations
> Convolutional Neural Networks
- Recurrent Neural Networks ||t | cassane
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RWNTH
Recap: Linear Discriminant Functions

* Basic idea
> Directly encode decision boundary
> Minimize misclassification probability directly.

* Linear discriminant functions y=0|x y >0
— wix -+ W
weight vector “bias”
(= threshold) , —W

> W, w, define a hyperplane in R”.

> If a data set can be perfectly classified by a linear discriminant, then
we call it linearly separable.
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Slide adapted from Bernt Schiele B. Leibe



RWNTH
Recap: Least-Sqguares Classification

* Simplest approach

> Directly try to minimize the sum-of-squares error
N

B(w) = 3 (0 w) — b,
n=1
Ep(W) = STt { (KW - T)'(XW - T)}
> Setting the derivative to zero yields
W = (X'X)"'X'T = XIT = (X™X)"'X"T
> We then obtain the discriminant function as

— ~ \TI
y(x) = WTx = TT(XT ) X

= Exact, closed-form solution for the discriminant function parameters.
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4 2 o0 2 4 6 8 4 2 0o 2 4 6 =
* Least-squares is very sensitive to outliers!

> The error function penalizes predictions that are “too correct”.

5

B. Leibe Image source: C.M. Bishop, 2006



RWTH
Recap: Generalized Linear Models

* Generalized linear model
y(x) = g(Ww' x4 wp)

> ¢( - ) is called an activation function and may be nonlinear.

> The decision surfaces correspond to

T

y(x) = const. < W X+ wy = const.

> If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

* Advantages of the non-linearity

> Can be used to bound the influence of outliers
and “too correct” data points.

» When using a sigmoid for g(-), we can interpret L [ ?
the y(x) as posterior probabilities. gla) =
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Linear Separability

* Up to now: restrictive assumption
> Only consider linear decision boundaries

* Classical counterexample: XOR

Ly

C
O

o &

Slide credit: Bernt Schiele

Ly

B. Leibe



Generalized Linear Discriminants

* Generalization
» Transform vector x with M nonlinear basis functions ¢ (x):

Zwkj ¢ (x) + wio

> Purpose of qu(x): basis functions
> Allow non-linear decision boundaries.

(@))

:§ > By choosing the right (bj, every continuous function can (in principle)
§ be approximated with arbitrary accuracy.

(@)

=1 « Notation

3 M

GJ .

yp(X) =Y wiidi(x)  with do(x) =1

= =0

Slide credit: Bernt Schiele B. Leibe
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Linear Basis Function Models

* Generalized Linear Discriminant Model

- where ¢,(x) are known as basis functions.
- Typically, ¢y(x) = 1, so that wy acts as a bias.

- In the simplest case, we use linear basis functions: ¢,(x) = z,.

* [etl’s take a look at some other possible basis functions...

Slide adapted from C.M. Bishop, 2006 B. Leibe
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Linear Basis Function Models (2)

* Polynomial basis functions

¢i(z) = 7

* Properties
> Global

= A small change in z affects all
basis functions.

* Result

> If we use polynomial basis functions, the decision boundary will
be a polynomial function of x.

= Nonlinear decision boundaries
— However, we still solve a linear problem in ¢ (x).
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Linear Basis Function Models (3)

e Gaussian basis functions

(z — p5)? } 1 \ \

@3(w) = exp {_ 252 0.75|

05t |

0251/
* Properties

> Local 0

= A small change in z affects
only nearby basis functions.

> p;and s control location and
scale (width).
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Slide adapted from C.M. Bishop, 2006 B. Leibe Image source: C.M. Bishop, 2006




Linear Basis Function Models (4)

* Sigmoid basis functions

oyle) = (T512) o

> where

B 1 0.5
1+ exp(—a)

o(a)

0.25 |

* Properties
. Local 0=

= A small change in z affects
only nearby basis functions.

> p; and s control location and
scale (slope).
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Topics of This Lecture

* Gradient Descent

* Logistic Regression
> Probabilistic discriminative models
Logistic sigmoid (logit function)
> Cross-entropy error
lteratively Reweighted Least Squares

Y

Y

* Softmax Regression
> Multi-class generalization
> Gradient descent solution

* Note on Error Functions
> ldeal error function
> Quadratic error
> Cross-entropy error
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Gradient Descent

* Learning the weights w:
> N training data points:
> K outputs of decision functions:
> Target vector for each data point:

X={x,...., X}

T={t,... ty}

> Error function (Ieast squares error) of linear model

5‘5‘ (yk (%5 W

nlkl

tkn)2

1
— 522 Zwkj(bj (xn)

n=1 k=1 71=1

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

* Problem

>

The error function can in general no longer be minimized in
closed form.

* |dea (Gradient Descent)

>

>

>

Y

lterative minimization

: L 0
Start with an initial guess for the parameter values w,i j)
Move towards a (local) minimum by following the gradient.

(r+1) _ (r)  OE(w)

w(T)

7). Learning rate

This simple scheme corresponds to a 15t-order Taylor expansion
(There are more complex procedures available).

B. Leibe
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Gradient Descent — Basic Strategies '

* “Batch learning”

WD = ) nf)‘E( w)
kj (‘9wa

7). Learning rate

w(T)

L

o

£

i > Compute the gradient based on all training data:
k=

- OF (w)
-

2 Owg;
L

&

=

. 22
Slide credit: Bernt Schiele B. Leibe
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Gradient Descent — Basic Strategies

* “Sequential updating”

N
E(w) =) En(w)
n=1
(r+1) _ (r)  OFEn(w)
w. . =W, —1N
k3 3 Owy; w(m)

7). Learning rate

> Compute the gradient based on a single data point at a time:
OE, (w)
8wkj

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

* Error function
N
E(w) =) En(w)
n=1
E,(w)

OF, (w)
8wkj

Slide credit: Bernt Schiele

N

. K [ M
5 Sj Sj Zwkj¢j(xn) — tkn

n=1 k=1 j:].

2
K M

%Z ZW@% (%Xn) — tkn
k=1 \7

=1
M
Z wquﬁj (%) — ten | @5(xp)
j=1
(Y (X3 W) — Tien) @5 (Xn)

B. Leibe
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Gradient Descent

* Delta rule (=LMS rule)

wii = wl = (e (s W) — tn) 65(%n)

— w]({:]-) o n5kn¢j (Xn)
> where

5kn — yk(Xn; W) — tkn

= Simply feed back the input data point, weighted by the
classification error.

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

* Cases with differentiable, non-linear activation function

yk(x) = glax) =g Z’wkiqu (%n)

* Gradient descent

3 OE,(w)  dg(ax) |

.g w]g;Jrl) _ w}(ﬂ;) . 775kn¢j (Xn)

: dg(ay)

[ 0 n — Xn; W) — tgn
: = D (o w) = )

. 26
Slide credit: Bernt Schiele B. Leibe
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RWTH
Summary: Generalized Linear Discriminants

* Properties
> General class of decision functions.

- Nonlinearity g(-) and basis functions ¢; allow us to address linearly
non-separable problems.

> Shown simple sequential learning approach for parameter estimation
using gradient descent.

» Better 2" order gradient descent approaches are available
(e.g. Newton-Raphson), but they are more expensive to compute.

* Limitations / Caveats
> Flexibility of model is limited by curse of dimensionality

— ¢(-) and gbj often introduce additional parameters.

— Models are either limited to lower-dimensional input space
or need to share parameters.

> Linearly separable case often leads to overfitting.
— Several possible parameter choices minimize training error. 27
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Topics of This Lecture

* Logistic Regression
> Probabillistic discriminative models
> Logistic sigmoid (logit function)
> Cross-entropy error
> Iteratively Reweighted Least Squares

B. Leibe

£O0



RWTH
Probabilistic Discriminative Models

* \We have seen that we can write

p(Cil) = o0 et
B 1
1 + exp(—a)
* We can obtain the familiar probabilistic model by setting

> C1)p(C
% 0 — lnp(X’ 1)p(C1)
- p(x|C2)p(C2)
=
=2 * Or we can use generalized linear discriminant models
E a=w'x
£ T
5 or a=w ¢(x)
=

. 29
B. Leibe



RWTH
Probabilistic Discriminative Models

* In the following, we will consider models of the form
p(Cilp) = y(¢) =o(w' ¢)
with p(Ca|@p) = 1—p(Ci|o)

* This model is called logistic regression.

* Why should we do this? What advantage does such a
model have compared to modeling the probabilities?

B p(9|C1)p(Cy)
p(C1|) p(|C1)p(C1) + p(|C2)p(C)
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* Any ideas?

_ 30
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Comparison

* Let's look at the number of parameters...
» Assume we have an M-dimensional feature space ¢.

- And assume we represent p(¢|C,) and p(C,) by Gaussians.

> How many parameters do we need?
— For the means: 2M
— For the covariances: M(M+1)/2
— Together with the class priors, this gives M(M+5)/2+1 parameters!

> How many parameters do we need for logistic regression?

p(Cilp) = y(@) =o(w' ¢)

— Just the values of w = M parameters.

= For large M, logistic regression has clear advantages!
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Logistic Sigmoid

* Properties 1
> Definition: O'(CL)

17 exp(—a)

o)
> Inverse: a=In “logit” function
l—o0

> Symmetry property:
o(—a)=1—o0(a)

. Derivative: do _ o(l—o)
da
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Logistic Regression

* Let's consider a data set{¢, .t } withn =1,...,N,
where ¢,, = ¢(x,,)and t,, € {0,1}, t = (¢1,...,tn)" .

* Withy, = p(Cl|qb ), we can write the likelihood as

p(t|w) = Hyn {T—ya}' ™

* Define the error function as the negative log-likelihood
E(w) = —Inp(tjw)

= — Z {tnIny, + (1 —%,)In(1 —y,)}

> This is the so-called cross-entropy error function.
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Gradient of the Error Function [ —owTa)

* Error function Wn _ Yn(1 — yn)P,
N dw
E(w) = =) {tnlny,+(1—t,)In(1—y,)}
* Gradient n; F ]
o 1 2w —yn)
e = n; <\tn R (e }
N
- - (1= ) Y (T=9m ). }
. — \ tn ¢n - (1 T tn) ¢n
5 ; \ Voo (T=%)
i N
€ = = {(tn —bniln — Yn +lndla) D}
g anl
-c;:u) — Z(yn o tn)¢n

n=1 _ 34
B. Leibe



Gradient of the Error Function

* Gradient for logistic regression
N

VE(w) = Z(yn_tn)¢n

n=1

* Does this look familiar to you?

* This is the same result as for the Delta (=LMS) rule
+1
wi ™ = ) — 0y (%n; W) — tin) 6 (%n)

* We can use this to derive a seqguential estimation algorithm.
> However, this will be quite slow...

(@)]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

. 35
B. Leibe



RWNTH
A More Efficient lterative Method...

* Second-order Newton-Raphson gradient descent scheme
wi ) = wl™ _H1VE(w)

where H = VVE(w) is the Hessian matrix, i.e. the matrix
of second derivatives.

* Properties
> Local guadratic approximation to the log-likelinood.
> Faster convergence.
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RWTH
Newton-Raphson for Least-Squares Estimation

* Let’s first apply Newton-Raphson to the least-squares
error function:

N
1 T 2
N
VE(w) = Z (W', —tn) @, = L dw — d't
? w ol
*E’ H=VVE(w) = Z ¢n¢£ =%'® where & — .
= n=1 T
£ L PN
= * Resulting update scheme:
;% = (<I>T<I>)_1<I>Tt Closed-form solution!

37



RWNTH
Newton-Raphson for Logistic Regression

* Now, let’s try Newton-Raphson on the cross-entropy error
function:

N
E(w) = =) {talnyn+ (1 —t,)In(1—y,)}
n=1 dyy,
VE(W) — Z(yn _tn)¢n — (I)T(y _t)
n=— 1
H=VVE(w Zyn —yn)d, ¢ = PTRP

where R is an NxN diagonal matrix with R,,,, = ¢, (1 — yn) -

— The Hessian is no longer constant, but depends on w through the
weighting matrix R..
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RWNTH
lteratively Reweighted Least Squares

* Update equations

wi = w( — (TR®) 1! (y — t)
— (3"R®)" {(I)TR<I>W(T) — 7 (y — t)}
= (®'R®) @' Rz
with z = ®dw'™ —R71(y —t)

* Again very similar form (normal equations)
~ But now with non-constant weighing matrix R (depends on w).

> Need to apply normal equations iteratively.
= Iteratively Reweighted Least-Squares (IRLS)

39



Summary: Logistic Regression

* Properties

Directly represent posterior distribution p(¢|C,)

Requires fewer parameters than modeling the likelihood + prior.

Very often used in statistics.

It can be shown that the cross-entropy error function is concave
— Optimization leads to unique minimum

— But no closed-form solution exists
— Iterative optimization (IRLS)

> Both online and batch optimizations exist

Y

Y

Y

Y

e Caveat

> Logistic regression tends to systematically overestimate odds ratios
when the sample size is less than ~500.
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Topics of This Lecture

* Softmax Regression
> Multi-class generalization
> Gradient descent solution
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Softmax Regression

* Multi-class generalization

of logistic regression

-~ In logistic regression, we assumed binary labels t,, € {0,1}.

> Softmax generalizes this to

_ng = 1}){; wg_
Py =2|x;w
yow) = | :

Py =Kx;w)_

K values in 1-of-K notation.

exp(wq X) |
B 1 exp(wj X)
K .
D et exp(ijx) :
| exp(W ) |

> This uses the softmax function

exp(ag)

Zj exp(a;)

> Note: the resulting distribution is normalized.

B. Leibe
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RWNTH
Softmax Regression Cost Function
* Logistic regression

> Alternative way of writing the cost function
N

E(w) = — Z {talny, + (1 —t,)In(1 —y,)}

= —ZZ k)In P (y, = k|x,; w)}

* Softmax regression
> Generalization to K classes using indicator functions.

oS i m o) }
ZZ{( ) ST

n=1k=1

(@)]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

43
B. Leibe



(@)]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Optimization

* Again, no closed-form solution is available
> Resort again to Gradient Descent

> Gradient
N
Ve, E(W) = = [[(tp = k) In P (y, = k|xp; w)]
n=1
* Note

- V. E(w) is itself a vector of partial derivatives for the different
components of w,.

> We can now plug this into a standard optimization package.

B. Leibe
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Topics of This Lecture

* Note on Error Functions
> ldeal error function
> Quadratic error
> Cross-entropy error
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RWTH
Note on Error Functions

t, € {_]_’ 1} E(Zn) Ideal misclassification error

Not differentiable!

v

) — o’ 1 7" #n = tny(Xn)

* Ideal misclassification error function (black)
> This is what we want to approximate (error = #misclassifications)
> Unfortunately, it is not differentiable.
> The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 47

Image source: Bishop, 2006
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Note on Error Functions

E(Zn) |deal misclassification error
Squared error

tn, € {—1,1}

Sensitive to outliers!

Penalizes “too correct”
data points!

N e
- [
-2 ol 0 \\

* Squared error used In Least-Squares Classification
> Very popular, leads to closed-form solutions.
> However, sensitive to outliers due to squared penalty.
> Penalizes “too correct” data points
— Generally does not lead to good classifiers. 48

Image source: Bishop, 2006

2"' Zn = tny(Xn)
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Comparing Error Functions (Loss Functions)
A
E(Z'”’) Ideal misclassification error
Squared error
Cross-entropy error

tn, € {—1,1}

Robust to outliers!

—2 — e = tay(xn)

* Cross-Entropy Error

Minimizer of this error is given by posterior class probabilities.

> Concave error function, unique minimum exists.

> Robust to outliers, error increases only roughly linearly

> But no closed-form solution, requires iterative estimation. 49

Image source: Bishop, 2006

Y
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Overview: Error Functions

“E (2)

* |deal Misclassification Error
> This is what we would like to optimize.
> But cannot compute gradients here.

* Quadratic Error
-2
> [Easy to optimize, closed-form solutions exist.
> But not robust to outliers.

y 0 1 2

* Cross-Entropy Error
> Minimizer of this error is given by posterior class probabilities.
> Concave error function, uniqgue minimum exists.
> But no closed-form solution, requires iterative estimation.

— Looking at the error function this way gives us an analysis

tool to compare the properties of classification approaches.
50

(@)]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

B. Leibe



Let’'s Put This To Practice...
- o

E(Zn) |ldeal misclassification error
Squared error

Squared error on tanh

Zero gradient!

No penalty for
“too correct”
data points!

tn - {—]., 1} H“xm | .,
) — 0 1 7 #n = tnY(Xn)

e Sqguared error on sigmoid/tanh output function
> Avoids penalizing “too correct” data points.
> But: zero gradient for confidently incorrect classifications!
= Do not use L, loss with sigmoid outputs (instead: cross-entropy)!
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Image source: Bishop, 2006
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References and Further Reading

* More information on Linear Discriminant Functions can be
found in Chapter 4 of Bishop’s book (in particular Chapter
4.1 - 4.3).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

(@))
S
| S
(O]
e
=
(@)]
£
C
| S
©
(]
—
(O]
£
O
(@)
©
=

52

B. Leibe



