Machine Learning — Lecture 5

Linear Discriminant Functions

23.10.2019

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

* Deep Learning
> Foundations
> Convolutional Neural Networks
.~ Recurrent Neural Networks ||t | cassane
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Recap: Mixture of Gaussians (MoG)

e “Generative model”

, “Weight” of mixture
@ p(j) = ; component
. Mixture
p(z) ‘ M p(x|6;) component
ZB >

é

I \ Mixture density
| ) =
/% p(a(0) = > p(10;)p())
- . j=1

g 7%

Slide credit: Bernt Schiele B. Leibe



p1 =

(@))
S
| S
(O]
e
=
(@)]
k=
C
| S
©
()
—
(O]
<
e
(@]
©
=

JS(x)

ML for Gaussian #1 T

assumed known —m 1 111
h(j =1z,) = 1 111
h(5 =2|z,) = 0 000

27]:]:1 h(] — 1‘xn)xn

Slide credit: Bernt Schiele

¥ h(G = 1)z,)

B. Leibe
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Recap: Estimating MoGs — Iterative Strategy

* Assuming we knew the values of the hidden variable...

X

T ML for Gaussian #2
22 2 2
00 O 0
11 1 1

]

Z’]J’:[:]_ h )= 2|xn)xn

qu;il h )= 2|$n)



Recap: Estimating MoGs - Iterative Strategy

* Assuming we knew the mixture components...

f(X) assumed known
X
p(i=1la) | | G =20
1 111 22 2 2 j

* Bayes decision rule: Decide j =1 if

p(J = lzn) > p(j = 2|zn)
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Slide credit: Bernt Schiele B. Leibe



Recap: K-Means Clustering

* |terative procedure

1. Initialization: pick K arbitrary
centroids (cluster means)

2. Assign each sample to the closest
centroid.

3. Adjust the centroids to be the
means of the samples assigned
to them.

4. Go to step 2 (until no change)

e Algorithm is guaranteed to
converge after finite #iterations.
> Local optimum
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Slide credit: Bernt Schiele B. Leibe

> Final result depends on initialization.
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Recap: EM Algorithm

* Expectation-Maximization (EM) Algorithm
> E-Step: softly assign samples to mixture components
WJN(Xn“Lja Ej)

ngvzl WkN(anuka Ek)

> M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments

/Vj(xn)<_ \V/j:].,...,K, n:]‘?"‘?N

Nj ) 7;(xn) = soft number of samples labeled ;

(o)}
“GLJ n=1
= new , 1Yy
J
- N
=
=
O /\IleW
ks (Xn)x
) J ﬂ 1
c
< A
O new ,new ~new\ T
e 3 E Y (Xn) (% — fo577 ) (Kn — f57)
J n=1 7

Slide adapted from Bernt Schiele B. Leibe



Applications

* Mixture models are used in
many practical applications.

> Wherever distributions with complex
or unknown shapes need to be
represented...

05¢

* Popular application in Computer Vision
> Model distributions of pixel colors.
> Each pixel is one data point in, e.g., RGB space.
= Learn a MoG to represent the class-conditional densities.
— Use the learned models to classify other pixels.
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Image source: C.M. Bishop, 2006

B. Leibe



RWTH
Application: Background Model for Tracking

* Train background MoG for each pixel N Gaussian
- Model “common“ appearance | /\ - | Mixture
variation for each background pixel. T A~
> Initialization with an empty scene. N —— PN
> Update the mixtures over time . -_A__

— Adapt to lighting changes, etc.

* Used in many vision-based tracking
applications

> Anything that cannot be explained
by the background model is labeled
as foreground (=object).

> Easy segmentation if camera is fixed.

C. Stauffer, E. Grimson, Learning Patterns of Activity Using Real-Time Tracking,
IEEE Trans. PAMI, 22(8):747-757, 2000. 9

B. Leibe Image Source: Daniel Roth, Tobias Jaggli
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http://people.csail.mit.edu/people/stauffer/Home/_papers/vsam-pami-tracking.pdf

Application: Image Segmentation

(a) input image (b) user input (¢) inferred segmentation

* User assisted image segmentation
> User marks two regions for foreground and background.
> Learn a MoG model for the color values in each region.
> Use those models to classify all other pixels.

= Simple segmentation procedure
(building block for more complex applications)
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Topics of This Lecture

 Linear discriminant functions
> Definition
> Extension to multiple classes

* Least-squares classification
> Derivation
> Shortcomings

* Generalized linear models
> Connection to neural networks
> Generalized linear discriminants & gradient descent
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Discriminant Functions

p(z|Cr)p(Cr)
p(z)

e Bayesian Decision Theory p(Crlx) =
> Model conditional probability densities
p(z|C;,) and priors p(Ck,)
~ Compute posteriors p(Cr|x) (using Bayes’ rule)
. Minimize probability of misclassification by maximizing p(C|z)

* New approach
> Directly encode decision boundary
> Without explicit modeling of probability densities
> Minimize misclassification probability directly.
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Slide credit: Bernt Schiele B. Leibe



Recap: Discriminant Functions

* Formulate classification in terms of comparisons
> Discriminant functions

yl(x)7 e 7yK(w)

> Classify z as class C if

ye(x) > yj(z) Vj#k

* Examples (Bayes Decision Theory)
ye(z) = p(Cilz)
ye(z) = p(z|Ck)p(Ck)
ye(z) = logp(z|Ck) + log p(Ck)
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Slide credit: Bernt Schiele B. Leibe
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Discriminant Functions

* Example: 2 classes

y1(z) > ya(x)
& yi(x) —y2(z) >0
& y(x) >0

* Decision functions (from Bayes Decision Theory)
y(z) = p(Ci|z) — p(Ca|)

p(x|Cy) p(C1)
@G T PG

y(r) =In
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Slide credit: Bernt Schiele B. Leibe
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Learning Discriminant Functions

* General classification problem
- Goal: take a new input x and assign it to one of K classes (..

- Given: training set X = {x, ..., Xy}
with target values T ={t, ..., t}.

— Learn a discriminant function y(x) to perform the classification.

e 2-class problem
. Binary target values: t, € {0,1}

* K-class problem
. 1-of-K coding scheme, e.g. t, =(0,1,0,0, 0)T

B. Leibe

15
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Linear Discriminant Functions

* 2-class problem
> y(x) > 0: Decide for class C', else for class C,

* In the following, we focus on linear discriminant functions

X—I—’LUO

VAR

weight vector “bias”
(= threshold)

> If a data set can be perfectly classified by a linear discriminant,
then we call it linearly separable.

Slide credit: Bernt Schiele B. Leibe

16
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Linear Discriminant Functions

* Decision boundary y(X) = () defines a hyperplane
> Normal vector: w

> Offset: D
Iw| y >0

Xy

y=0
y <0

T

Y(X) = WX + wy

Slide credit: Bernt Schiele B. Leibe

L7



Linear Discriminant Functions

* Notation 1 w1
> D : Number of dimensions To Wa
X = W =
y(x) = wix + wy
= D
5
é — E W; T; + Wo
=2 1=1
.é D
&
= — E W;I; with g = 1 constant
C
= 1=0
©
=

18

Slide credit: Bernt Schiele B. Leibe



Extension to Multiple Classes

* Two simple strategies

One-vs-all classifiers One-vs-one classifiers

not Cs

> How many classifiers do we need in both cases?

> What difficulties do you see for those strategies?
B. Leibe
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Image source: C.M. Bishop, 2006




Extension to Multiple Classes

* Problem

> Both strategies result in regions for which
the pure classification result (y, > 0) is
ambiguous.

> In the one-vs-all case, it is still possible

to classify those inputs based on the
continuous classifier outputs y, >y, Vj#k.

e Solution

> We can avoid those difficulties by taking
K linear functions of the form

Yk (X) = Wi X + wio
and defining the decision boundaries directly
by deciding for C, iff y;, >y, Vj=k.
> This corresponds to a 1-of-K coding scheme
t, =(0,1,0,...,0,0)"

B. Leibe
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Extension to Multiple Classes

 K-class discriminant
> Combination of K linear functions
Yr(x) = ng + Wko R,

> Resulting decision hyperplanes: -
(Wi, — W) x + (wko — wjo) =0

e X B

Rk
X A @ ﬁl

> It can be shown that the decision regions of such a discriminant
are always singly connected and convex.

— Convex means: if x, and x5 are both in R, then any point X on the
connecting line between x, and x5 is also in R;,.

> This makes linear discriminant models particularly suitable for
problems for which the conditional densities p(x|w,) are unimodal.
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Topics of This Lecture

* Least-squares classification
> Derivation
> Shortcomings
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General Classification Problem

* Classification problem

» Let’s consider K classes described by linear models

Yk (X) = Wi X 4 wio, Ek=1,.... K

> We can group those together using vector notation

y(x) = WTx
where - w1
~ N N W11
W =[wy,...,Wg| =
| W1iD

> The output will again be in 1-of-K notation.
= We can directly compare it to the target value

B. Leibe




General Classification Problem

* Classification problem
> For the entire dataset, we can write

Y(X) = XW
and compare this to the target matrix T' where

I~

W = |[wy,...,Wg]|
I I
X1 ty
X = . T = .
T T
| XN Lty

> Result of the comparison:

)NCW _T Goal: Choose W such

that this is minimal!
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Least-Squares Classification

* Simplest approach
> Directly try to minimize the sum-of-squares error
> We could write this as

2
=

E(w) = (e (%5 W) — L)’

Do

ﬁ
= K
TT
= K

(ngn — tkn)Q

[
-
]~

I
(Y

k

I
p—t

n

> But let’s stick with the matrix notation for now...

> (The result will be simpler to express and we’ll learn some
nice matrix algebra rules along the way...)
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Least-Squares Classification using
) af; = Tr{ATA}
* Multi-class case i

> Let’s formulate the sum-of-squares error in matrix notation

I~

Ep(W) = %Tr [XW - T)"(XW - T)]

> Taking the derivative yields chain rule:
C_Ep(W) = T {XW - T)T(XW - T)} 2R
— = ——1r — — A~ AaNxr a~r
£ _ 9 (AW - T)'(XW - 1)}
= 20(XW — T)T(XW — T)
E 0 v — .
= —(XW -T)'(XW - T) using:
@ OW 9
2 I —Tr{A}l =1
5 = X' (XW - T) gA T1A
©
=

28
B. Leibe



Least-Squares Classification

* Minimizing the sum-of-squares error
o __ e
—_Ep(W)=XTXW-T) = 0
oW

XW =T
W = (XTX) !XT

— XiT “pseudo-inverse”
> We then obtain the discriminant function as

— ~ \TI
y(x) = WTK = ']?T(}Cr ) X

= Exact, closed-form solution for the discriminant function parameters.
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-8| | -8t

4 2 o0 2 4 6 8 4 2 0o 2 4 6 8
* Least-squares is very sensitive to outliers!
> The error function penalizes predictions that are “too correct”.
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Problems with Least-Squares

* Another example:
> 3 classes (red, green, blue)
> Linearly separable problem

> Least-squares solution:
Most green points are misclassified!

* Deeper reason for the failure

> Least-squares corresponds to
Maximum Likelihood under the
assumption of a Gaussian conditional distribution.

> However, our binary target vectors have a distribution that is
clearly non-Gaussian!

— Least-squares is the wrong probabilistic tool in this case!
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Topics of This Lecture

* Generalized linear models
> Connection to neural networks
> Generalized linear discriminants & gradient descent
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Generalized Linear Models

 Linear model

y(x) = Wx + wo
* Generalized linear model
y(x) = g(W"x + wo)

> ¢( - ) is called an activation function and may be nonlinear.

> The decision surfaces correspond to

y(x) = const. < wWix4wy = const.

> If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

B. Leibe
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Generalized Linear Models

* Consider 2 classes:

B p(x|C1)p(C1)
PaR) = SaIep(@) + pxICp(C)

1

p(x|C2)p(C2)
L+ Seespes

p(x|C1)p(Cy)

with  a =1n

p(x|C2)p(C2)

Slide credit: Bernt Schiele B. Leibe

34



Logistic Sigmoid Activation Function

Example: Normal distributions

g(a) = ] with identical covariance
B 1 -+ eXp(—a)
p(z|a) p(z|b)
% X
=
: p(alz) p(b|z)
: L 35

Slide credit: Bernt Schiele B. Leibe
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Normalized Exponential

General case of K > 2 classes:

B p(x|Ck)p(Cr)
p(Cr|x) Zj p(XTCj )péﬁ(/’j)

exp(ag)

Zj exp(a;)

with QA = lnp(X’Ck)p(Ck)

> This is known as the normalized exponential or softmax function

> Can be regarded as a multiclass generalization of the logistic
sigmoid.

Slide credit: Bernt Schiele B. Leibe
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Relationship to Neural Networks

e 2-Class case

D
y(x) =g (Z wzwz) with g = 1 constant

1=0

* Neural network (“single-layer perceptron”)

y(x) output
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Slide credit: Bernt Schiele B. Leibe
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Relationship to Neural Networks
* Multi-class case

D

yk(x) — g E WE;Tq | with g = 1 constant
1=0

* Multi-class perceptron
Y1 (X) V(X) outputs

thresholds weights

Slide credit: Bernt Schiele B. Leibe
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Logistic Discrimination

* |f we use the logistic sigmoid activation function...
1 y(x) output

weights

y(x) — g(wTX + wO) .................

X, =1 b S — X, 1nputs

... then we can interpret the y(x) as posterior probabilities!
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Other Motivation for Nonlinearity

* Recall least-squares classification

> One of the problems was that data
points that are “too correct” have a
strong influence on the decision

surface under a squared-error criterion. o
N Bl
2 _ 5 |
B(w) =)  (y(xnsw) —ta)” - B
n=1 -8 '

- Reason: the output of y(x,,;w) can grow

arbitrarily large for some x:

T

Y(X; W) =W X + wy

> By choosing a suitable nonlinearity (e.g.
a sigmoid), we can limit those influences

y(x; w) = g(wx + )
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RWTH
Discussion: Generalized Linear Models

* Advantages
> The nonlinearity gives us more flexibility.
> Can be used to limit the effect of outliers.
> Choice of a sigmoid leads to a nice probabillistic interpretation.

* Disadvantage

> Least-squares minimization in general no longer leads to a
closed-form analytical solution.

= Need to apply iterative methods.
= Gradient descent.

B. Leibe
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Linear Separability

* Up to now: restrictive assumption
> Only consider linear decision boundaries

* Classical counterexample: XOR

Ly

C
O

o &

Slide credit: Bernt Schiele

Ly

B. Leibe
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Generalized Linear Discriminants

* Generalization
» Transform vector x with M nonlinear basis functions ¢ (x):

Zwkj ¢ (x) + wio

> Purpose of qu(x): basis functions
> Allow non-linear decision boundaries.

(0))

:§ - By choosing the right ¢, every continuous function can (in principle)
§ be approximated with arbitrary accuracy.

(®)]

=+ Notation

4 M

GJ .

ye(x) =) wiidi (%) with go(x) =1

= =0

44

Slide credit: Bernt Schiele B. Leibe



Generalized Linear Discriminants

* Model

yr(%) = ) wrei(x) = yr(x; w)

> K functions (outputs) y,(x;w)

* Learning in Neural Networks
> Single-layer networks: (b]- are fixed, only weights w are learned.
- Multi-layer networks: both the w and the ¢, are learned.

> We will take a closer look at neural networks from lecture 11 on. For
now, let’s first consider generalized linear discriminants in general...
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Gradient Descent

* Learning the weights w.
> N training data points:
> K outputs of decision functions:
> Target vector for each data point:

X={x,...., Xy}

T={t, ..t}

> Error function (Ieast squares error) of linear model

5‘5‘ (yk (%5 W

nlkl

tkn)2

1
— 522 Zwkj(bj (xn)

n=1 k=1 71=1

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

* Problem

>

The error function can in general no longer be minimized Iin
closed form.

* |dea (Gradient Descent)

>

>

>

Y

lterative minimization

: — 0
Start with an initial guess for the parameter values w,i j)
Move towards a (local) minimum by following the gradient.

(r+1) _ (r)  OE(w)

w(T)

7). Learning rate

This simple scheme corresponds to a 1st-order Taylor expansion
(There are more complex procedures available).

B. Leibe
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_ _ UNIVERSITY
Gradient Descent — Basic Strategies '

* “Batch learning”

WD = ) nf)‘E( w)
kj (‘9wa

7). Learning rate

w(T)

L

o

£

i > Compute the gradient based on all training data:
k=

: OF (w)
-

2 Owg;
L

&

=

. 48
Slide credit: Bernt Schiele B. Leibe
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Gradient Descent — Basic Strategies

* “Sequential updating”

N
E(w) =) En(w)
n=1
(r+1) _ (r)  OFEn(w)
w. . =W, —1N
k3 3 Owy; w(m)

7). Learning rate

> Compute the gradient based on a single data point at a time:
OE, (w)
8wkj

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

* Error function
N
E(w) =) En(w)
n=1
En(w)

OFE, (w)
8wkj

Slide credit: Bernt Schiele

N

1 K M
55? Sj Zwkj¢j(xn) — lkn

n=1 k=1 j:].

K [ M ?
§Z D wiid; (%n) — ten
k=1 \j=1

M
Z wquﬁj (%) — ten | @5(xp)
(Y (X3 W) — Tien) @5 (Xn)

B. Leibe
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Gradient Descent

* Delta rule (=LMS rule)

wii = wl = (e (s W) — tn) 65(%n)
— w]({:]-) o n5kn¢j (Xn)
> where
5kn — yk(Xn; W) — tkn

= Simply feed back the input data point, weighted by the
classification error.

Slide credit: Bernt Schiele B. Leibe
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Gradient Descent

* (Cases with differentiable, non-linear activation function

yk(x) = glax) =g Z’wkiqu (%n)

* Gradient descent

5’En (W) B 8g(ak) .
w;i;-“) = ’w/(.ﬂ;) — N0kn@; (Xn)
_ Og(ax) |
5kn — 8wkj (yk (Xna W) tkn)

Slide credit: Bernt Schiele B. Leibe
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Summary: Generalized Linear Discriminants

* Properties
> General class of decision functions.

- Nonlinearity g(-) and basis functions ¢; allow us to address
linearly non-separable problems.

> Shown simple sequential learning approach for parameter
estimation using gradient descent.

~ Better 2"d order gradient descent approaches available
(e.g. Newton-Raphson).

* Limitations / Caveats
> Flexibility of model is limited by curse of dimensionality

— ¢(+) and gbj often introduce additional parameters.

— Models are either limited to lower-dimensional input space
or need to share parameters.

> Linearly separable case often leads to overfitting.
— Several possible parameter choices minimize training error. 53
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References and Further Reading

* More information on Linear Discriminant Functions can be
found in Chapter 4 of Bishop’s book (in particular Chapter
4.1).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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