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Recap: Mixture of Gaussians (MoG)

* “Generative model”
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Recap: Estimating MoGs — Iterative Strategy

¢ Assuming we knew the mixture components...
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* Bayes decision rule: Decide j =1 if

p(j = 1zn) > p(j = 2|zn)
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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning

. Foundations \
» Convolutional Neural Networks E‘.

» Recurrent Neural Networks
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Recap: Estimating MoGs — Iterative Strategy

* Assuming we knew the values of the hidden variable...
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Recap: K-Means Clustering

* lterative procedure
1. |Initialization: pick K arbitrary
centroids (cluster means)

2. Assign each sample to the closest
centroid.

3. Adjust the centroids to be the
means of the samples assigned
to them.

4. Go to step 2 (until no change)

« Algorithm is guaranteed to
converge after finite #iterations.
»  Local optimum
»  Final result depends on initialization.

ide credit Bernt Schigle B. Leibe
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Recap: EM Algorithm

* Expectation-Maximization (EM) Algorithm
» E-Step: softly assign samples to mixture components
WJN(xn‘ILjv %)
o1 TN (e g, i)
» M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments
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Application: Background Model for Tracking

* Train background MoG for each pixel
» Model “common* appearance
variation for each background pixel.
» Initialization with an empty scene.
» Update the mixtures over time
— Adapt to lighting changes, etc.

Gaussian
Mixture

[

* Used in many vision-based tracking
applications

. Anything that cannot be explained =
by the background model is labeled
as foreground (=object).

» Easy segmentation if camera is fixed.

w
i

|

C. Stauffer, E. Grimson, Learning Patterns of Activity Using Real-Time Tracking
|IEEE Trans. PAMI, 22(8):747-757, 2000.
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Topics of This Lecture

* Linear discriminant functions
» Definition
» Extension to multiple classes

* Least-squares classification
» Derivation
» Shortcomings

* Generalized linear models
» Connection to neural networks
» Generalized linear discriminants & gradient descent
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Applications

* Mixture models are used in
many practical applications.

» Wherever distributions with complex
or unknown shapes need to be
represented... 23

05 i

* Popular application in Computer Vision
» Model distributions of pixel colors.
» Each pixel is one data point in, e.g., RGB space.
= Learn a MoG to represent the class-conditional densities.
= Use the learned models to classify other pixels.

B Leibe Image source: M, Bishop, 200

Application: Image Segmentation

(a) input in

(b) user input

* User assisted image segmentation
» User marks two regions for foreground and background.
» Learn a MoG model for the color values in each region.
» Use those models to classify all other pixels.
= Simple segmentation procedure
(building block for more complex applications)
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Discriminant Functions

* Bayesian Decision Theory p(Cilz) = ZM
» Model conditional probability densities (x)
p(z|Cy,) and priors p(Ck)
» Compute posteriors p(Ci|x) (using Bayes’ rule)
~ Minimize probability of misclassification by maximizing p(C|z)

* New approach
» Directly encode decision boundary
» Without explicit modeling of probability densities
» Minimize misclassification probability directly.

12
de credit Bernt Schiele B, Leibe



http://people.csail.mit.edu/people/stauffer/Home/_papers/vsam-pami-tracking.pdf
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Recap: Discriminant Functions Discriminant Functions

* Formulate classification in terms of comparisons
» Discriminant functions
y(x), .- yx (@)

* Example: 2 classes
y1(x) > ya(2)
< y@) —y2(x) >0

. Classify z as class C, if & y(z) >0

k() > y;(x) Vi#k
* Examples (Bayes Decision Theory)

yr(z) = p(Cklz)
yr(x) = p(x|Cr)p(Cr)

* Decision functions (from Bayes Decision Theory)

y(x) = p(Ci|x) — p(C2|x)
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yk(x) = logp(x‘ck) +]0gp(ck) (CL‘) —In p(x|C1) np(cl)
p(x]Cs) p(C2)
13 14
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Learning Discriminant Functions Linear Discriminant Functions

* General classification problem
» Goal: take a new input x and assign it to one of K classes Cj.
» Given: training set X = {x,, ..., x5}
with target values T = {t,, ..., tp}.
= Learn a discriminant function y(x) to perform the classification.

* 2-class problem
» y(z) >0 : Decide for class O, else for class C,

* In the following, we focus on linear discriminant functions

T
X) =W X+ w
* 2-class problem y(x) +wo

» Binary target values: t, € {0,1}

weight vector “bias”

* K-class problem (= threshold)

. 1-0fK coding scheme, e.g.  t, = (0,1,0,0,0)T - i o
» If a data set can be perfectly classified by a linear discriminant,
then we call it linearly separable.
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Linear Discriminant Functions Linear Discriminant Functions
* Decision boundary y(x) =0 defines a hyperplane * Notation 1 w1
» Normal vector: W » D : Number of dimensions T wo
Offset: T— x= W=
© O W y>0 :
rp wp
Y= 0 R
y<0 N y(x) = wx +wp
; ; 0
£ y(x) = WIx +wp i £ o
% % = Z W; T with o =1 constant
% g i=0
= L7 = 18
ide credit Bernt Schiele B. Leie de credit Bernt Schiele B. Leibe




Extension to Multiple Classes Extension to Multiple Classes

* Two simple strategies * Problem

» Both strategies result in regions for which
the pure classification result (y, > 0) is
ambiguous.

In the one-vs-all case, it is still possible

to classify those inputs based on the
continuous classifier outputs y; > y; Vjzk.

One-vs-all classifiers One-vs-one classifiers

v

* Solution

» We can avoid those difficulties by taking

K linear functions of the form
Yi(X) = Wi X + wko

and defining the decision boundaries directly
by deciding for C iff y;, > y; Vj=k.

» This corresponds to a 1-of-K coding scheme

t, =(0,1,0,...,0,0)"

B. Leibe

not Ca

» How many classifiers do we need in both cases?

» What difficulties do you see for those strategies?
B. Leibe
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Extension to Multiple Classes Topics of This Lecture
* K-class discriminant
» Combination of K linear functions
T
Yr(X) = Wi X + wko
* Least-squares classification
» Resulting decision hyperplanes: » Derivation
(Wi —w;)Tx + (wro — wjo) =0 » Shortcomings
= o
3 3
§ » It can be shown that the decision regions of such a discriminant é
= are always singly connected and convex. =
E — Convex means: if x4, and x are both in R, then any point £ on the g
it connecting line between x, and x is also in Ry. S
% » This makes linear discriminant models particularly suitable for E
g problems for which the conditional densities p(x|w,) are unimodal. §
B. Leibe lmage source: C\. Bishop gé B. Leibe >
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General Classification Problem General Classification Problem

* Classification problem
» Let's consider K classes described by linear models
T
Yr(X) = W X + Wio, k=1,....K

* Classification problem
» For the entire dataset, we can write
Y(X) = XW

» We can group those together using vector notation and compare this to the target matrix T where

—WTx ~ _ _
y(x)=W'x W = [Wy,...,Wg]
where wy ... WKQ x7 tf
o _ ~ w1 ... WK1 s X T _ .
W:[Wl,...7WK: X = : - T
T
Xy tn
wip ... WKD

» Result of the comparison:

ey Goal: Choose \TV such
XW-T that this is minimal!

» The output will again be in 1-of-K notation.
= We can directly compare it to the target value t = [t1,... ,tk]T
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Least-Squares Classification

* Simplest approach
~ Directly try to minimize the sum-of-squares error
> We could write this as

K
D (s w) — thn)

k

E(w) =

[T
M=

3
I
_
I
-

(W;:Ixn - tii‘n.) ’

Il
M-
)=

L

T 1

» But let’s stick with the matrix notation for now...

» (The result will be simpler to express and we'll learn some
nice matrix algebra rules along the way...)
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Least-Squares Classification
* Minimizing the sum-of-squares error

o —~ ~ o~
L Ep(W)=XT(XW-T) £ 0
oW
XW =T
W = (XTX)X'T
— XiT “pseudo-inverse”
» We then obtain the discriminant function as

y(x)=WTx = TT(X]L)TX

= Exact, closed-form solution for the discriminant function parameters.

29
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Problems with Least-Squares

* Another example:
» 3classes (red, green, blue)
» Linearly separable problem
» Least-squares solution:
Most green points are misclassified!

* Deeper reason for the failure
» Least-squares corresponds to
Maximum Likelihood under the
assumption of a Gaussian conditional distribution.
» However, our binary target vectors have a distribution that is
clearly non-Gaussian!
= Least-squares is the wrong probabilistic tool in this case!

31
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Least-Squares Classification uSing:
> a2 = Tr{A"A}
* Multi-class case ij
» Let’s formulate the sum-of-squares error in matrix notation

Ep(W) = %Tr [&W - 1" &W - 1)}

» Taking the derivative yields chain rule:
9 gy = 19 {()"(VT/ )T (XW T)} oz _oZox
— .\ _ _ @ _2297
- B ol 5w 5X ~ oY 09X
E B T {(XW - T)T(XW - T)}
=3 29(XW - T)T(XW —T)
<
£ 0 o~ ~—
= —(XW - T)T(XW - T) using:
2 W P
2 IO —Tr{A} =1
£ - X'XW-T) ox M
©
= 28
B. Leibe
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Problems with Least Squares

x
X
xx
2 X yn X
SREX 9o
o ¥ P o
P
E )
2 O%
x
©
-4
-6
-8
4 2 0 2 4 6 8 4 -2 0 2 4 & 8

* Least-squares is very sensitive to outliers!
» The error function penalizes predictions that are “too correct”.

Machine Learning Winter ‘19
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Topics of This Lecture

* Generalized linear models
» Connection to neural networks
» Generalized linear discriminants & gradient descent
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Generalized Linear Models

* Linear model

y(x) = w'x +wo

* Generalized linear model
y(x) = g(w'x + w)

» g(-)is called an activation function and may be nonlinear.
» The decision surfaces correspond to

y(x) = const. = wWTx 4wy = const.

» If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

33
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Logistic Sigmoid Activation Function

Example: Normal distributions
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1 with identical covariance
A= ——
9(a) 1+ exp(—a)
i o p(m | a) p(m | b)
:: ‘//
§ p(alz) p(b])
T .7:35
ide credit- Bernt Schiele. B. Leibe
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Relationship to Neural Networks
¢ 2-Class case
D
y(x)=g (Z wz’-Ti) with g = 1 constant
i=0
* Neural network (“single-layer perceptron”)
»(x) output
threshold weights
xo=1 b Ae— x, inputs
ide credit- Bernt Schiele. B. Leibe 37
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Normalized Exponential

* General case of K > 2 classes:
p(x|Cr)p(Cr)
p(Crlx —_
R S AT
exp(ag)

>, exp(ay)

with  a = Inp(x|Cr.)p(Ck)

» This is known as the normalized exponential or softmax function

» Can be regarded as a multiclass generalization of the logistic
sigmoid.

ide credit Bernt Schigle B. Leibe
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Generalized Linear Models
* Consider 2 classes:
p(x|C1)p(C1)
p(Ci]x) =
G = ey + pxGIrC)
_ 1
- p(x[C2)p(C2)
1 + p(X[C1)p(C1)
1
T T+exp(—a) 9(a)
) p(x|C1)p(C1)
with a=In—F2&—~ "¢
p(x|C2)p(Ca)
ide credit: Bernt Schiele B. Leibe 34
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Relationship to Neural Networks

* Multi-class case

D
y(x) =g (z wkil’i) with g = 1 constant

i=0

* Multi-class perceptron

»i(x) Y(x) outputs

thresholds weights
Wio Wi
X, =1 Xy inputs

ide credit Bernt Schigle B. Leibe
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Logistic Discrimination
* |f we use the logistic sigmoid activation function...

1 »x) output
9@) = o (=)

threshold weights

y(x) = g(wa +wy) € O

0 =1 E A — x, inputs

... then we can interpret the y(z) as posterior probabilities!

Machine Learning Winter ‘19
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Discussion: Generalized Linear Models

* Advantages
» The nonlinearity gives us more flexibility.
» Can be used to limit the effect of outliers.
» Choice of a sigmoid leads to a nice probabilistic interpretation.

* Disadvantage

» Least-squares minimization in general no longer leads to a
closed-form analytical solution.

= Need to apply iterative methods.

= Gradient descent.

Machine Learning Winter ‘19
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Generalized Linear Discriminants

* Generalization
» Transform vector x with M nonlinear basis functions ¢,(x):

M
k(%) = D wiy (%) + wio
j=1

» Purpose of ¢,(x): basis functions
» Allow non-linear decision boundaries.
» By choosing the right ¢;, every continuous function can (in principle)

be approximated with arbitrary accuracy.
* Notation

M
ye(x) = > wiidi(x)  wih po(x) =1
=0

ide credit- Bernt Schigle B. Leibe
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Other Motivation for Nonlinearity

* Recall least-squares classification g
» One of the problems was that data ’
points that are “too correct” have a
strong influence on the decision
surface under a squared-error criterion.
N

Bw) =" (xuiw) —t)° LA

n=1 N
» Reason: the output of y(x,,;w) can grow e L
arbitrarily large for some x,: o T

Y w) = whx +up
» By choosing a suitable nonlinearity (e.g.
a sigmoid), we can limit those influences
T .
y(x;w) = g(W™x + wo) L—

Machine Learning Winter ‘19
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Linear Separability
* Up to now: restrictive assumption
» Only consider linear decision boundaries
* Classical counterexample: XOR
2
3
£
s
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Generalized Linear Discriminants

* Model M
k(%) = > wijd;(x) = yr(x; w)
j=0

» K functions (outputs) y;(x;w)

* Learning in Neural Networks
» Single-layer networks: ¢; are fixed, only weights w are learned.
» Multi-layer networks: both the w and the ¢; are learned.

» We will take a closer look at neural networks from lecture 11 on. For
now, let’s first consider generalized linear discriminants in general...
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Gradient Descent

* Learning the weights w:

» N training data points: X ={x,, ..., x5}
» K outputs of decision functions: Yi(X, W)
» Target vector for each data point: T={t, ..., tx}

» Error function (least-squares error) of linear model

N K
1 2

i E(w) = 522(yk(xn;W) —trn)
= n=1k=1
H 2
2 1 N K M
5O | Do wdi (%) ~ ta
° n=1k=1 \j=1
£
=
8
= 46

ide credit: Bernt Schiele B. Leibe
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Gradient Descent — Basic Strategies
* “Batch learning”
W™ — ™ OE(w)
kj - Ykj .
! ! OWkj | gir)
7: Learning rate

°
3
E
E, > Compute the gradient based on all training data:
§ OE(w)
£ Owy;
8
= 48

ide credit- Bernt Schiele. B. Leibe
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Gradient Descent

* Error function
2

ISP
M=

B(w) =3 Bu(w) = D i (%n) ~tin

n=1k=1
2
1K M
En(W) = 7 Z wquSj (Xn) — tgn
S k=1 \j=1
£ OB, (w) M
2 il DILELACO RS KT
€ j=1
3
2 = (Un(Xn; W) — tan) 5 (xn)
£
= 50
ide credit: Bernt Schiele B. Leibe
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Gradient Descent
* Problem
» The error function can in general no longer be minimized in

closed form.

* |dea (Gradient Descent)
» lterative minimization

) L 0
» Start with an initial guess for the parameter values w,(c 7.)

» Move towards a (local) minimum by following the gradient.
(r+1) _ 0 9E(W)
kT
Wk |w(n)

n: Learning rate
» This simple scheme corresponds to a 1s-order Taylor expansion
(There are more complex procedures available).

47
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Gradient Descent — Basic Strategies

* “Sequential updating”
N

E(w) = >  En(w)

n=1
() _ ) _ ) OEn(wW)
kj kj 8wkj )

7: Learning rate

» Compute the gradient based on a single data point at a time:
OE,(w)
6wkj

49
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Gradient Descent

* Delta rule (=LMS rule)

T+1 T
wi = ) = (e (2as W) — tin) 65(x2)
= w](c‘;) - n(sknd)j (Xn)
» where
ékn = Yk (xn; W) - tkn

= Simply feed back the input data point, weighted by the
classification error.

51

ide credit Bernt Schigle B. Leibe
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Gradient Descent Summary: Generalized Linear Discriminants

* Cases with differentiable, non-linear activation function * Properties
» General class of decision functions.

Nonlinearity g(-) and basis functions ¢; allow us to address
linearly non-separable problems.

» Shown simple sequential learning approach for parameter
estimation using gradient descent.

» Better 2 order gradient descent approaches available

v

k(%) = glar) = g | D wrid;(xn)

J=0

* Gradient descent

o) OF ( ) o ( ) ® (e.g. Newton-Raphson).

= n(W glak L o

E o = T (Y (Xn; W) — tien) ¢5(xn) il + Limitations / Caveats

%, J ’ %, » Flexibility of model is limited by curse of dimensionality

< <

E w}i;+1) = wg) — N0kn s (Xn) E — g(-) and ¢; often introduce additional parameters.

3 3 — Models are either limited to lower-dimensional input space

2 0 ( e or need to share parameters.

£ g(ax) 2 p

}:é Okn = Owy; (yk (xﬂ’ W) - tk") § » Linearly separable case often leads to overfitting.

= J . 52 = — Several possible parameter choices minimize training error. 53
ide credit: Bernt Schiele B. Leibe
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References and Further Reading

* More information on Linear Discriminant Functions can be
found in Chapter 4 of Bishop’s book (in particular Chapter
4.1).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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