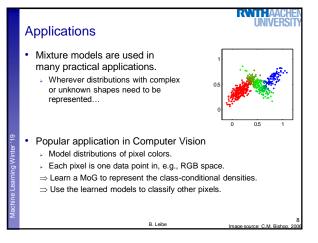
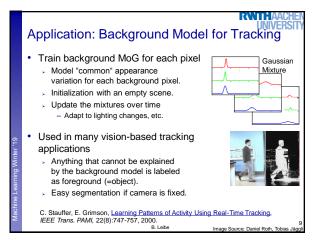
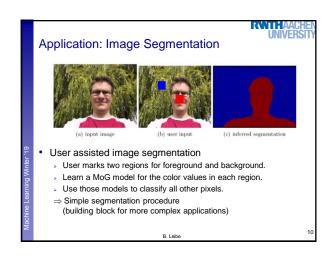
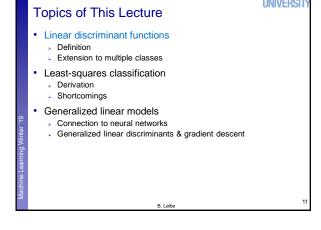


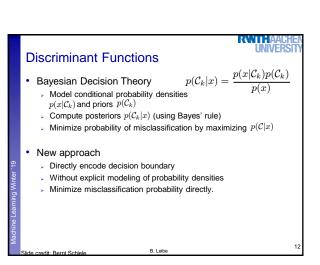
Recap: EM Algorithm • Expectation-Maximization (EM) Algorithm • E-Step: softly assign samples to mixture components $\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^N \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \quad \forall j=1,\dots,K, \ \ n=1,\dots,N$ • M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments $\hat{N}_j \leftarrow \sum_{n=1}^N \gamma_j(\mathbf{x}_n) = \text{soft number of samples labeled } j$ $\hat{\pi}_j^{\text{new}} \leftarrow \frac{\hat{N}_j}{N}$ $\hat{\mu}_j^{\text{new}} \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^N \gamma_j(\mathbf{x}_n) \mathbf{x}_n$ $\hat{\Sigma}_j^{\text{new}} \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^N \gamma_j(\mathbf{x}_n) (\mathbf{x}_n - \hat{\mu}_j^{\text{new}}) (\mathbf{x}_n - \hat{\mu}_j^{\text{new}})^{\text{T}}$ B. Leibe











Recap: Discriminant Functions

· Formulate classification in terms of comparisons

Discriminant functions

$$y_1(x),\ldots,y_K(x)$$

ightharpoonup Classify x as class C_k if

$$y_k(x) > y_j(x) \ \forall j \neq k$$

• Examples (Bayes Decision Theory)

$$y_k(x) = p(\mathcal{C}_k|x)$$

$$y_k(x) = p(x|\mathcal{C}_k)p(\mathcal{C}_k)$$

$$y_k(x) = \log p(x|\mathcal{C}_k) + \log p(\mathcal{C}_k)$$

Slide credit: Bernt Schiele

Laiba

Discriminant Functions

• Example: 2 classes

$$y_1(x) > y_2(x)$$

$$\Leftrightarrow \qquad y_1(x) - y_2(x) > 0$$

$$\Leftrightarrow \qquad \mathbf{y}(x) > 0$$

Decision functions (from Bayes Decision Theory)

$$y(x) = p(\mathcal{C}_1|x) - p(\mathcal{C}_2|x)$$

$$y(x) = \ln \frac{p(x|\mathcal{C}_1)}{p(x|\mathcal{C}_2)} + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}$$

00.1

Loibo

Learning Discriminant Functions

General classification problem

ightharpoonup Goal: take a new input ${f x}$ and assign it to one of K classes C_k .

 $\label{eq:continuous} \begin{array}{l} \text{Figure Given: training set } \mathbf{X} = \{\mathbf{x}_1, \, ..., \, \mathbf{x}_N\} \\ \text{with target values} \ \ \mathbf{T} = \{\mathbf{t}_1, \, ..., \, \mathbf{t}_N\}. \end{array}$

 \Rightarrow Learn a discriminant function $y(\mathbf{x})$ to perform the classification.

· 2-class problem

ightarrow Binary target values: $t_n \in \{0,1\}$

K-class problem

- 1-of-K coding scheme, e.g. $\mathbf{t}_n = (0,1,0,0,0)^{\mathrm{T}}$

B. Leibe

Linear Discriminant Functions

2-class problem

> y(x) > 0: Decide for class C_1 , else for class C_2

• In the following, we focus on linear discriminant functions

 $y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0$ weight vector "bias" (= threshold)

If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.

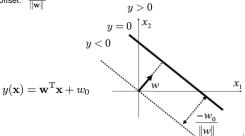
o cradit: Borot Sabialo B. Leil

Linear Discriminant Functions

• Decision boundary $y(\mathbf{x}) = 0$ defines a hyperplane

Normal vector: w

ightharpoonup Offset: $\frac{-w_0}{\|\mathbf{w}\|}$



RANTHAAC

Linear Discriminant Functions

Notation

D: Number of dimensions

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix}$$

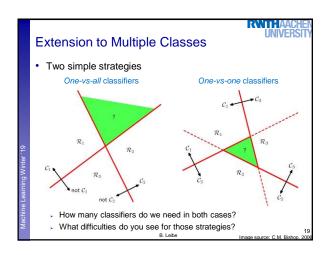
RWITHAACH

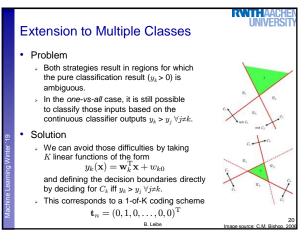
$$\begin{split} y(\mathbf{x}) &= \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0 \\ &= \sum_{i=1}^{D} w_i x_i + w_0 \\ &= \sum_{i=0}^{D} w_i x_i \qquad \text{with } x_0 = 1 \text{ constant} \end{split}$$

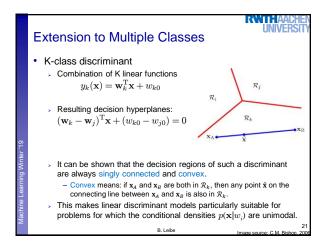
Slide credit: Bernt Schiele

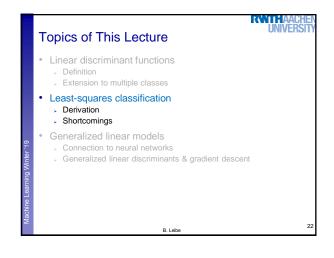
3. Leibe

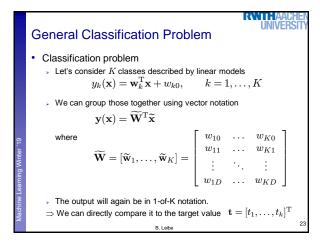
3

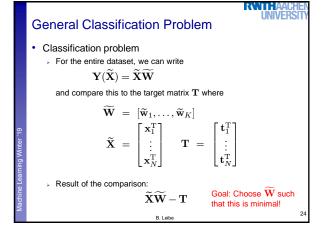












Least-Squares Classification

- Simplest approach
 - > Directly try to minimize the sum-of-squares error
 - > We could write this as

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})^2$$

= $\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (\mathbf{w}_k^T \mathbf{x}_n - t_{kn})^2$

- > But let's stick with the matrix notation for now...
- > (The result will be simpler to express and we'll learn some nice matrix algebra rules along the way...)

Least-Squares Classification

using: $\sum a_{ij}^2 = \text{Tr}\{\mathbf{A}^T\mathbf{A}\}$

Multi-class case

Let's formulate the sum-of-squares error in matrix notation

$$E_D(\widetilde{\mathbf{W}}) = \frac{1}{2} \text{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\text{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\}$$

Taking the derivative yields
$$\begin{split} \frac{\partial}{\partial \widetilde{\mathbf{W}}} E_D(\widetilde{\mathbf{W}}) &= \frac{1}{2} \frac{\partial}{\partial \widetilde{\mathbf{W}}} \mathrm{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^\mathrm{T} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\} & \frac{\partial \mathbf{Z}}{\partial \mathbf{X}} = \frac{\partial \mathbf{Z}}{\partial \mathbf{Y}} \frac{\partial \mathbf{Y}}{\partial \mathbf{X}} \\ &= \frac{1}{2} \frac{\partial}{\partial (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^\mathrm{T} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})} \mathrm{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^\mathrm{T} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\} \\ & \cdot \frac{\partial}{\partial \widetilde{\mathbf{W}}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^\mathrm{T} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \\ &= \widetilde{\mathbf{X}}^\mathrm{T} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \end{split}$$
 using:
$$\frac{\partial}{\partial \mathbf{A}} \mathrm{Tr} \left\{ \mathbf{A} \right\} = \mathbf{I}$$

Least-Squares Classification

· Minimizing the sum-of-squares error

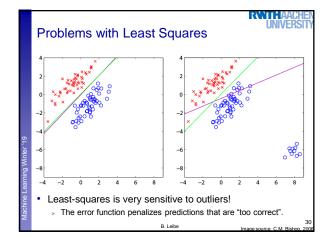
$$\frac{\partial}{\partial \widetilde{\mathbf{W}}} E_D(\widetilde{\mathbf{W}}) = \widetilde{\mathbf{X}}^{\mathrm{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \stackrel{!}{=} 0$$
$$\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} = \mathbf{T}$$

 $\widetilde{\mathbf{W}} = (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T}$ $= \widetilde{\mathbf{X}}^{\dagger} \mathbf{T}$ "pseudo-inverse"

> We then obtain the discriminant function as

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}} = \mathbf{T}^{\mathrm{T}} (\widetilde{\mathbf{X}}^{\dagger})^{\mathrm{T}} \widetilde{\mathbf{x}}$$

 \Rightarrow Exact, closed-form solution for the discriminant function parameters.



Problems with Least-Squares

- Another example:
 - > 3 classes (red, green, blue)
 - > Linearly separable problem
 - Least-squares solution: Most green points are misclassified!

- Deeper reason for the failure
 - Least-squares corresponds to Maximum Likelihood under the
 - assumption of a Gaussian conditional distribution.
 - > However, our binary target vectors have a distribution that is clearly non-Gaussian!
 - ⇒ Least-squares is the wrong probabilistic tool in this case!

Topics of This Lecture

- Linear discriminant functions
 - Definition
- Extension to multiple classes
- Least-squares classification
- Derivation
- Generalized linear models
 - Connection to neural networks
 - Generalized linear discriminants & gradient descent

Generalized Linear Models

Linear model

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

Generalized linear model

$$y(\mathbf{x}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

- $g(\cdot)$ is called an activation function and may be nonlinear.
- > The decision surfaces correspond to

$$y(\mathbf{x}) = const. \Leftrightarrow \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = const.$$

If g is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of x.

ha

 \overline{x}_{35}

Generalized Linear Models

· Consider 2 classes:

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$

$$= \frac{1}{1 + \frac{p(\mathbf{x}|C_2)p(C_2)}{p(\mathbf{x}|C_1)p(C_1)}}$$

$$= \frac{1}{1 + \exp(-a)} \equiv g(a)$$

with $a = \ln rac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$

e credit: Bernt Schiele

Logistic Sigmoid Activation Function $g(a) \equiv \frac{1}{1 + \exp(-a)}$ Example: Normal distributions with identical covariance $p(x|a) = \frac{1}{1 + \exp(-a)}$ $p(x|a) = \frac{1}{1 + \exp(-a)}$ $p(x|a) = \frac{1}{1 + \exp(-a)}$

Normalized Exponential

General case of K > 2 classes:

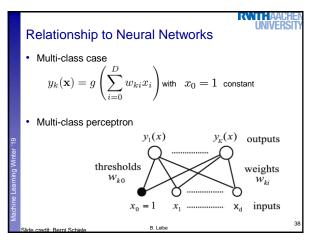
$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_j p(\mathbf{x}|C_j)p(C_j)}$$
$$= \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

with $a_k = \ln p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)$

- > This is known as the normalized exponential or softmax function
 - Can be regarded as a multiclass generalization of the logistic sigmoid.

do aradit: Barat Sabiala B. Le

Relationship to Neural Networks $\text{ • 2-Class case } \\ y(\mathbf{x}) = g\left(\sum_{i=0}^D w_i x_i\right) \text{ with } x_0 = 1 \text{ constant} \\ \text{ • Neural network ("single-layer perceptron")} \\ y(x) \text{ output } \\ w_0 = 1 \\ x_0 = 1 \\ x_1 \\ \dots \\ x_d \text{ inputs}$



Logistic Discrimination

If we use the logistic sigmoid activation function...

$$g(a) \equiv \frac{1}{1 + \exp(-a)}$$

$$y(\mathbf{x}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$
threshold w_0

$$y(x)$$

$$y(x)$$
output
$$w_0$$

$$w_1$$

$$w_2$$
weights

... then we can interpret the y(x) as posterior probabilities!

Other Motivation for Nonlinearity

- Recall least-squares classification
 - One of the problems was that data points that are "too correct" have a strong influence on the decision surface under a squared-error criterion.

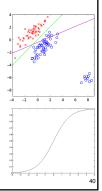
$$E(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n; \mathbf{w}) - \mathbf{t}_n)^2$$

Reason: the output of $y(\mathbf{x}_n; \mathbf{w})$ can grow arbitrarily large for some \mathbf{x}_n :

$$y(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

By choosing a suitable nonlinearity (e.g. a sigmoid), we can limit those influences

$$y(\mathbf{x}; \mathbf{w}) = g(\mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0)$$



Discussion: Generalized Linear Models

- Advantages
 - > The nonlinearity gives us more flexibility.
 - > Can be used to limit the effect of outliers.
 - > Choice of a sigmoid leads to a nice probabilistic interpretation.
- Disadvantage
 - > Least-squares minimization in general no longer leads to a closed-form analytical solution.
 - ⇒ Need to apply iterative methods.
 - ⇒ Gradient descent.

Linear Separability

- · Up to now: restrictive assumption
 - > Only consider linear decision boundaries
- · Classical counterexample: XOR

RWITHAAI Generalized Linear Discriminants

Generalization

Fransform vector $\mathbf x$ with M nonlinear basis functions $\phi_i(\mathbf x)$:

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

- > Purpose of $\phi_i(\mathbf{x})$: basis functions
- > Allow non-linear decision boundaries.
- $\,\,$ By choosing the right $\phi_{\it j}$ every continuous function can (in principle) be approximated with arbitrary accuracy.

Notation

$$y_k(\mathbf{x}) = \sum_{j=0}^{M} w_{kj} \phi_j(\mathbf{x})$$
 with $\phi_0(\mathbf{x}) = 1$

Generalized Linear Discriminants

Model

$$y_k(\mathbf{x}) = \sum_{j=0}^{M} w_{kj} \phi_j(\mathbf{x}) = y_k(\mathbf{x}; \mathbf{w})$$

- ightharpoonup K functions (outputs) $y_k(\mathbf{x};\mathbf{w})$
- Learning in Neural Networks
 - > Single-layer networks: ϕ_i are fixed, only weights \mathbf{w} are learned.
 - \succ Multi-layer networks: both the ${f w}$ and the ϕ_i are learned.
 - We will take a closer look at neural networks from lecture 11 on. For now, let's first consider generalized linear discriminants in general...

RWTH

 $y_k(\mathbf{x}_n; \mathbf{w})$

Gradient Descent

- · Learning the weights w:
 - > N training data points: $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$
 - K outputs of decision functions:
 - > Target vector for each data point: $\mathbf{T} = \{\mathbf{t}_{\scriptscriptstyle 1}, \, ..., \, \mathbf{t}_{\scriptscriptstyle N}\}$
 - Frror function (least-squares error) of linear model

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

Laiba

Gradient Descent

- Problem
 - The error function can in general no longer be minimized in closed form.
- · Idea (Gradient Descent)
 - Iterative minimization
 - > Start with an initial guess for the parameter values $\,w_{k\,i}^{(0)}$
 - Move towards a (local) minimum by following the gradient.

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

This simple scheme corresponds to a 1st-order Taylor expansion (There are more complex procedures available).

R Laiba

RWTHAACHEN UNIVERSITY

Gradient Descent – Basic Strategies

· "Batch learning"

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

> Compute the gradient based on all training data:

$$\frac{\partial E(\mathbf{w})}{\partial w_{kj}}$$

Slide credit: Bernt Schie

3. Leibe

Gradient Descent – Basic Strategies

"Sequential updating"

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$
$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

> Compute the gradient based on a single data point at a time:

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}}$$

Slide credit: Bernt Schiele

B. Leibe

Gradient Descent

· Error function

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$E_n(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \left(\sum_{\tilde{j}=1}^{M} w_{k\tilde{j}} \phi_{\tilde{j}}(\mathbf{x}_n) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$

$$= (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

Gradient Descent

Delta rule (=LMS rule)

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$
$$= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

where

$$\delta_{kn} = y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}$$

 \Rightarrow Simply feed back the input data point, weighted by the classification error.

051------

3. Leibe

RWTHAACHE UNIVERSIT

Gradient Descent

· Cases with differentiable, non-linear activation function

$$y_k(\mathbf{x}) = g(a_k) = g\left(\sum_{j=0}^{M} w_{ki}\phi_j(\mathbf{x}_n)\right)$$

· Gradient descent

$$\begin{split} \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} &= \frac{\partial g(a_k)}{\partial w_{kj}} \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n) \\ w_{kj}^{(\tau+1)} &= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n) \\ \delta_{kn} &= \frac{\partial g(a_k)}{\partial w_{kj}} \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \end{split}$$
serret Schiele

Slide credit: Bernt Schiele

Limitations / Caveats
 Flexibility of model is I

Properties

- > Flexibility of model is limited by curse of dimensionality
 - $g(\cdot)$ and ϕ_i often introduce additional parameters.

General class of decision functions.

linearly non-separable problems.

estimation using gradient descent.

(e.g. Newton-Raphson).

 Models are either limited to lower-dimensional input space or need to share parameters.

Summary: Generalized Linear Discriminants

Nonlinearity $g(\cdot)$ and basis functions ϕ_i allow us to address

Shown simple sequential learning approach for parameter

Better 2nd order gradient descent approaches available

- Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.

E2

UNIVERSITY

References and Further Reading

 More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop's book (in particular Chapter 4.1).

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

B. Leib