Machine Learning — Lecture 2

Probability Density Estimation
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Announcements: Reminders

* Moodle electronic learning room

> Slides, exercises, and supplementary material will be made
available here

> Lecture recordings will be uploaded 2-3 days after the lecture
> Moodle access should now be fixed for all registered participants!

* Course webpage
> http://www.vision.rwth-aachen.de/courses/
> Slides will also be made available on the webpage

* Please subscribe to the lecture on rwth online!
> Important to get email announcements and moodle access!
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http://www.vision.rwth-aachen.de/courses/

Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks | pomtvire Gt Sutmaring " Bt
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Topics of This Lecture

* Bayes Decision Theory
> Basic concepts
> Minimizing the misclassification rate
> Minimizing the expected loss
> Discriminant functions

* Probability Density Estimation
> General concepts
> Gaussian distribution

* Parametric Methods
> Maximum Likelihood approach
> Bayesian vs. Frequentist views on probability
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Recap: The Rules of Probability

* We have shown in the last lecture

Sum Rule p(X)=> p(X,Y)

Product Rule p(X,Y) =pY|X)p(X)

* From those, we can derive

é

2 p(X]Y)p(Y)

= B ’Th YX) =

; ayes’ Theorem p(Y|X) P(X)

-?Eé where p(X)=> p(X|Y)p(Y)
= Y

B. Leibe



Probability Densities

* Probabilities over continuous
variables are defined over their
probability density function

(pdf) p(z)
b
p( € (a,b)) = / p() da

a

p(x) Pl)

L d

ox z

* The probability that z lies in the interval (—oo, Z) is given by
the cumulative distribution function
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Expectations

* The average value of some function f (x) under a
probability distribution p(X) is called its expectation

=S p@)f@)  Elf] = / p(2)f(x) da

discrete case continuous case

* If we have a finite number N of samples drawn from a pdf,
then the expectation can be approximated by

1 N
n=1

* We can also consider a conditional expectation

Eq[fly] = Zp (z|y) f

_____________

B Lelbe
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Variances and Covariances

* The variance provides a measure how much variability there
is in f () around its mean value E[f(x)].

var(f] = E | (f() - E[f(2)))°| = Elf(2)?] - E[f(2))?
* For two random variables = and y, the covariance is defined
by
covlz,y] = Eoy[{z—Elz]}{y —Elyl}
= Eoyloy] — Elz]Ely]

* If x and y are vectors, the result is a covariance matrix

covix,y] = Exy [{x—Ex|}H{y —E[y']}]
= Exy[xy'| —E[XE[y"]
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RWTHAACHEN
UNIVERSITY

Bayes Decision Theory

Thomas Bayes, 1701-1761

“The theory of inverse probability is founded upon an
error, and must be wholly rejected.”
R.A. Fisher, 1925
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Bayes Decision Theory

* Example: handwritten character recognition

L

o

£

=

= ¢ Goal:

% > Classify a new letter such that the probability of misclassification is
o minimized.

=

&

=

. 18
Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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RWNTH
Bayes Decision Theory

* Concept 1: Priors (a priori probabilities) ‘ p(Ck) ‘

> What we can tell about the probability before seeing the data.

> Example: 9
P(a)=0.75
aababaaba P(b)=0.25
baaaabaaba i-

abaaaabba
* In general: Zp(ck)zl

babaabaa
Slide credit: Bernt Schiele B. Leibe
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Bayes Decision Theory

* Concept 2: Conditional probabilities ‘p(X | Ck)‘

> Let z be a feature vector.

> x measures/describes certain properties of the input.
— E.g. number of black pixels, aspect ratio, ...
> p(z|C,) describes its likelihood for class C,.

1111 171

Slide credit: Bernt Schiele

F

p(x|a)

AN |

p(x]b) |

B. Leibe
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Bayes Decision Theory

* Example:

* Question:
> Which class?

. Since p(X | b)is much smaller than p(x | a), the decision
should be ‘a’ here.
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Bayes Decision Theory

T

X=25

* Example:

* Question:
> Which class?

. Since p(x|a) is much smaller than p(X|b), the decision
should be ‘b’ here.
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Bayes Decision Theory

* Example:

s

p(x|a) p(x|b)

* Question:
> Which class?
. Remember that p(a) = 0.75 and p(b) = 0.25...

> l.e., the decision should be again ‘a’.
— How can we formalize this?
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RWNTH
Bayes Decision Theory

* Concept 3: Posterior probabilities ‘p(Ck | X)‘

> We are typically interested in the a posteriori probability, i.e., the
probability of class C, given the measurement vector x.

* Bayes' Theorem:

p(C, |X)= p(xIC)P(C) _ p(xIC)P(Cy)

p(x) ) Z p(xIC;)p(C)

* Interpretation
Likelthood x Prior

Normalization Factor

Posterior =
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Bayes Decision Theory

tp %&x |b) Likelihood

p(xil a)p(a ’

p(x|b)p(b)  Liketihood x Prior

"

Decision boundary

|p(alx)

p(b | X) Posterior — Likelihood X Prior

NormalizationFactor
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Slide credit: Bernt Schiele B. Leibe
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Bayesian Decision Theory

* Goal: Minimize the probability of a misclassification

Decision rule;
xX<X=0C
xX=X=0,

How does
p(mistake) change
when we move x?

p(mistake)

'y

Zo z

p(@,C1) i The green and blue
AN (0.0 regions stay constant.
Yy 4 Only the size of the
red region varies!
* R, > Ry >

— p(X < Rl,CQ) —I—p(x - RQ,Cl)
[ sxcyaxt [ pixciax
R1

Ra

:/R p(C2\X)p(x)dx—|—/ p(C1|x)p(x)dx

R
2 26

B. Leibe Image source: C.M. Bishop, 2006



Bayes Decision Theory

* Optimal decision rule
> Decide for C, if

p(C1|z) > p(C2|)

> This is equivalent to

p(z|C1)p(C1) > p(x]|Ca)p(Co)

.
Decision threshold &

(0))

_*E > Which is again equivalent to (Likelihood-Ratio test)
=

p([C1) _ p(C2)

@

S p(x|C2) ~ p(Cy)

£ \ y

g

=

Slide credit: Bernt Schiele B. Leibe
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RWTH
Generalization to More Than 2 Classes

* Decide for class k£ whenever it has the greatest posterior
probability of all classes:

p(Cxlx) > p(Cjlz) Vi #k

p(z|Ci)p(Cr) > p(z|C;)p(C;) Vi #k

* Likelihood-ratio test

p(alC) _ p(C))

p(z|C;) — p(Ck)

Vj # k
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Classifying with Loss Functions

* (Generalization to decisions with a loss function
> Differentiate between the possible decisions and the possible true

classes.
> Example: medical diagnosis
— Decisions: sick or healthy (or: further examination necessary)
— Classes: patient is sick or healthy

> The cost may be asymmetric:

loss(decision = healthy|patient = sick) >>

loss(decision = sick|patient = healthy)

Slide credit: Bernt Schiele B. Leibe
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Classifying with Loss Functions

* In general, we can formalize this by introducing a
loss matrix L,

Ly; = loss for decision C; if truth s Cy.

* Example: cancer diagnosis
Decision

cancer normal

cancer ( 0 1000 )

normal 1 0

Truth

Lcancer diagnosis —

B. Leibe
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Classifying with Loss Functions

* Loss functions may be different for different actors.

“nvest” .dont”
> Example: invest

e ()
LstocktradeT(Sprm;me) B ( 2 Ogazn 0 )

1 .
Lpani (subprime) = < 5Cgain

= Different loss functions may lead to different Bayes optimal
strategies.
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Minimizing the Expected Loss

* Optimal solution is the one that minimizes the loss.
> But: loss function depends on the true class, which is unknown.

* Solution: Minimize the expected loss

E[L] = ;zjjfn Ly;ip(x,Cp) dx

* This can be done by choosing the regions ‘R, such that
E[L] =)  L;p(Ck|x)
k

which is easy to do once we know the posterior class
probabilities p(Ck|x)

(0)]
S
| S
(O]
e
=
(@)]
k=
C
| S
©
()
—
(O]
<
e
(@]
©
=

32
B. Leibe



(0)]
S
| S
(O]
e
=
(@)]
k=
C
| S
©
()
—
(O]
<
e
(@]
©
=

Minimizing the Expected Loss

* Example:
> 2Classes: (', C,
> 2 Decision: «,, a,
- Loss function: L(aj|Cx) = Ly,

> Expected loss (= risk R) for the two decisions:
Eo, L] = R(a1|x) = Li1p(C1]x) + L21p(C2|x)
Eo, L] = R(az2|x) = Li2p(C1]x) + La2p(C2|x)

* Goal: Decide such that expected loss is minimized
. lLe.decide o, if R(a|x) > R(a|x)

Slide credit: Bernt Schiele B. Leibe
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Minimizing the Expected Loss

R(as|x) > R(a1|x)
L12p(C1|x) + Lagp(Ca|x) > L11p(Ci|x) + La1p(Ca|x)
(L1z — L11)p(C1|x) > (L21 — La2)p(Ca|x)
(L2 — L11) _ p(Calx)  p(x|C2)p(C2)
)

(L21 — Lo g P(Cl\x) N P(X\Cl)p(cl)

p(x|C1) - (L21 — La2) p(C2)
p(x|C2) (L12 — L11) p(Cy)

— Adapted decision rule taking into account the loss.
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The Reject Option

p(C1]z) p(Ca|x)

1.0
‘T

0.0 /

‘ L] - . a;.
reject region

* Classification errors arise from regions where the largest
posterior probability p(Ck|x) is significantly less than 1.

> These are the regions where we are relatively uncertain about
class membership.

> For some applications, it may be better to reject the automatic
decision entirely in such a case and, e.g., consult a human expert.
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Discriminant Functions

* Formulate classification in terms of comparisons
> Discriminant functions

Y1 (x), ..., yr(x)
. Classify z as class C, if
yk(x) > y;(x) Vj#k
* Examples (Bayes Decision Theory)
yk(z) = p(Cklz)
yr(z) = p(z|Cx)p(Ck)
yr(x) = logp(x|Ck) + log p(Cr)

Slide credit: Bernt Schiele B. Leibe

36



RWNTH
Different Views on the Decision Problem

» yi(x) < p(x|Cr)p(Ck)

> First determine the class-conditional densities for each class
iIndividually and separately infer the prior class probabillities.

> Then use Bayes’ theorem to determine class membership.
= Generative methods

* yk(@) = p(Crlz)
> First solve the inference problem of determining the posterior class
probabilities.

> Then use decision theory to assign each new z to its class.
= Discriminative methods

* Alternative

- Directly find a discriminant function gy (x)which maps each input x
directly onto a class label.
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RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

* Probability Density Estimation
> General concepts
> Gaussian distribution
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Probability Density Estimation

* Up to now

> Bayes optimal classification
- Based on the probabilities p(X|Ck)p(Ck)

* How can we estimate (= learn) those probability densities?
> Supervised training case: data and class labels are known.
> Estimate the probability density for each class Cr separately:

p(x|Cx)

. (For simplicity of notation, we will drop the class label C, in the
following.)

Slide credit: Bernt Schiele B. Leibe
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Probability Density Estimation

- 1| |
* Data: z,, z,, z,, z,, ... — e
. A
* Estimate: p(x)
>
2 X
o
t Methods
=2 > Parametric representations (today)
= > Non-parametric representations (lecture 3)
o .
o > Mixture models (lecture 4)
=
&
=
40

Slide credit: Bernt Schiele B. Leibe



RWTH
The Gaussian (or Normal) Distribution

* One-dimensional case TOR
> Mean p
> Variance o2
Ao
1 (z — p)?
NCE , 2 — e _
(|, o) 2o P 202
p z
(o)) Tok
' ¢ Multi-dimensional case
S . Mean p @
I » Covariance X
§ ’5131
PR E— L )" x )
CE% XL, — (27T)D/2’2‘1/2 exp 5 X M X v

41
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e Central Limit Theorem

Increasingly Gaussian as N grows.”

Gaussian Distribution — Properties

* Example: N uniform [0,1] random variables.

> “The distribution of the sum of N i.i.d. random variables becomes

> In practice, the convergence to a Gaussian can be very rapid.
> This makes the Gaussian interesting for many applications.

ﬁ |||||||| ﬁ
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B. Leibe

N =10

42

Image source: C.M. Bishop, 2006



Gaussian Distribution — Properties

Quadratic Form w
> N depends on x through the exponent \/ul

A% = (x —p) 'S (x — p) :

> Here, A is often called the
Mahalanobis distance from x to pu. A

T

A2

* Shape of the Gaussian
> 23 1s areal, symmetric matrix.

> We can therefore decompose it into its elgenvectors
23 nual S IE

and thus obtain A% = Z i with ¥i = uT (x — )
1=1
= Constant density on eII|p50|ds with main directions along the

eigenvectors u, and scaling factors v/ A; 43
Image source: C.M. Bishop, 2006
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RWTH
Gaussian Distribution — Properties

* Special cases .
Ta

> Full covariance matrix
3 = o]
= General ellipsoid shape

372‘

S

> Diagonal covariance matrix

3 = diag{o;}

= Axis-aligned ellipsoid

332‘

> Uniform variance
> =’
= Hypersphere

B. Leibe

T
’1

T
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Gaussian Distribution — Properties

* The marginals of a Gaussian are again Gaussians:

1 ' 10 .
. ﬁ |
=0.7)
2, = 0.7 //} P(Talze
05¢} ] 5t
(o))
3
£ p(xa: xb)
=
o
£
=
o
— 0 . 0
CICJ 0 0.5 S 1 0 Loy 1
=
O
®
= 45
B. Leibe
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RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

* Parametric Methods
> Maximum Likelihood approach
> Bayesian vs. Frequentist views on probability
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Probability Densities

* Probabilities over continuous
variables are defined over their
probability density function

(pdf) p(z)
b
p( € (a,b)) = / p() da

a

p(x) Pl)

L d

ox z

* The probability that z lies in the interval (—oo, Z) is given by
the cumulative distribution function
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Expectations

* The average value of some function f (x) under a
probability distribution p(X) is called its expectation

=S p@)f@)  Elf] = / p(2)f(x) da

discrete case continuous case

* If we have a finite number N of samples drawn from a pdf,
then the expectation can be approximated by

1 N
n=1

* We can also consider a conditional expectation

Eq[fly] = Zp (z|y) f

""""""" 48
B Lelbe
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Variances and Covariances

* The variance provides a measure how much variability there
is in f () around its mean value E[f(x)].

var(f] = E | (f() - E[f(2)))°| = Elf(2)?] - E[f(2))?

* For two random variables = and y, the covariance is defined

by

cov|x, |

Eqylzy] — E[z]Ely]

* If x and y are vectors, the result is a covariance matrix

cov|x,y]

Exy [{x —Ex/Hy" —Ely"']}]
Eyy[xy'] —EX]E[y"]

B. Leibe
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Parametric Methods

* Given
. Data X ={x1,%2,...,ZN}
> Parametric form of the distribution
with parameters 6

. E.g. for Gaussian distrib.: 6 = (u,0)

* Learning
» Estimation of the parameters 6

e Likelihood of 6

> Probability that the data X have indeed been generated from a
probability density with parameters 6

L(0) = p(X16)

(@))
S
| S
(O]
e
=
(@)]
k=
C
| S
©
()
—
(O]
<
e
(@]
©
=

50

Slide adapted from Bernt Schiele B. Leibe



Maximum Likelihood Approach

* Computation of the likelihood 5
> Single data point: p(ZB |9) = ! exp{—(x_'u) }
| " V2o 202

> Assumption: all data points are independent

L(9) = p(X|0) = Hp:z:n|9

> Log-likelihood N
E(f)=—InL(6) = — ) Inp(z,|0)

> Estimation of the parameters 6 (Learning)

— Maximize the likelihood
— Minimize the negative log-likelihood
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Maximum Likelihood Approach ‘

e Likelihood: L(6) = p(X|9) = H p(2,]0)
* We want to obtain § such that L(f) is maximized.

p(X]0) 1

o
S
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Maximum Likelihood Approach

* Minimizing the log-likelihood
> How do we minimize a function?
— Take the derivative and set it to zero.

0 _ aep xn“g !
8_9E(0)_ 8021np T,|0) = Z =0

* Log-likelihood for Normal distribution (1D case)

E(@) — _Zlnp(wn‘uag)

— —Zln exp Hazn—,u||2
2_7'('0' 20’2

B. Leibe
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Maximum Likelihood Approach

* Minimizing the log- Iikelihood
%, 2p(Tn |11, 0)
—b ,LL,O') - 'u
O ( Z p(@n|p, o)
N
_ _2(37?% — 1)
202
n=1
o 1 N
; = 2w
£ n=1
E’ 1 (&
% — 0__2 (Z Ty — N:“)
— n=1
e N
£ 0, ! A 1
8 G =0 o fi= 5D n

p(wn‘ﬂa ‘7) —
1 zn —pl]?
——e 202
\/27T0

54
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Maximum Likelihood Approach

* We thus obtain

1 N
w = N Z Tn sample mean
n=1
* In a similar fashion, we get
1N
A2 _ N 2 ‘“ . 7
0" = = zjl(xn i) sample variance
n—

0 = (i1, 6)is the Maximum Likelihood estimate for the
parameters of a Gaussian distribution.

* This is a very important result.
* Unfortunately, it is wrong...

B. Leibe
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Maximum Likelihood Approach

* Or not wrong, but rather biased...

* Assume the samples =, x., ..., £, come from a true
Gaussian distribution with mean p and variance o~

> We can now compute the expectations of the ML estimates with
respect to the data set values. It can be shown that

E(pvi) = p

(0)]

= N —1

o) 12 0'2 = _ 02

G ~

=

I = The ML estimate will underestimate the true variance.
C

tF « Corrected estimate:

- N
§ 6° = al UML T Z
= N —1 —1 —

B. Leibe



RWNTH
Maximum Likelihood — Limitations

* Maximum Likelihood has several significant limitations
> It systematically underestimates the variance of the distribution!
> E.g. consider the case

N=1X={z) | .

— Maximume-likelihood estimate: ¢ 5‘ — O !

> We say ML overfits to the observed data.

> We will still often use ML, but it is important to know about
this effect.
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Deeper Reason

 Maximum Likelihood is a Frequentist concept

> Inthe Frequentist view, probabilities are the frequencies of random,
repeatable events.

> These frequencies are fixed, but can be estimated more precisely
when more data is available.

* This is In contrast to the Bayesian interpretation

> In the Bayesian view, probabilities quantify the uncertainty about
certain states or events.

> This uncertainty can be revised in the light of new evidence.

* Bayesians and Freqguentists do not like AN
each other too well... =
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Bayesian vs. Freqguentist View

* To see the difference...

> Suppose we want to estimate the uncertainty whether the Arctic ice
cap will have disappeared by the end of the century.

> This question makes no sense in a Frequentist view, since the event
cannot be repeated numerous times.

> In the Bayesian view, we generally have a prior,
e.g., from calculations how fast the polar ice is melting.

> If we now get fresh evidence, e.g., from a new satellite, we may
revise our opinion and update the uncertainty from the prior.

Posterior o< Likelihood x Prior
> This generally allows to get better uncertainty estimates for
many situations.
* Main Frequentist criticism

> The prior has to come from somewhere and if it is wrong, the result
will be worse.
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Bayesian Approach to Parameter Learning

* Conceptual shift

> Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

> In Bayesian learning, we consider 6 to be a random variable.

* This allows us to use knowledge about the parameters 6

~» i.e.to use a prior for posterior
p(8ly)

> Training data then converts this .
prior distribution on 6 into prior
a posterior probability density. p(8)

> The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.
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Bayesian Learning

* Bayesian Learning is an important concept
> However, it would lead to far here.
— | will introduce it in more detail in the Advanced ML lecture.
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References and Further Reading

* More information in Bishop’s book
> Gaussian distribution and ML.: Ch. 1.2.4 and 2.3.1-2.3.4.
> Bayesian Learning: Ch. 1.2.3 and 2.3.6.
> Nonparametric methods: Ch. 2.5.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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