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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Recap: The Rules of Probability

* We have shown in the last lecture

Sum Rule

p(X) = p(X.Y)

Y

Product Rule p(X,Y) = p(YX)p(X)

* From those, we can derive

X Y)p(Y)

Bayes’ Theorem 2(X)

p(Y|X) =

where

p(X) = ZP(XIYJP(Y)

B. Leibe
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Announcements: Reminders

* Moodle electronic learning room

» Slides, exercises, and supplementary material will be made
available here

» Lecture recordings will be uploaded 2-3 days after the lecture
» Moodle access should now be fixed for all registered participants!

* Course webpage

» http://www.vision.rwth-aachen.de/courses/
» Slides will also be made available on the webpage

* Please subscribe to the lecture on rwth online!
» Important to get email announcements and moodle access!

B. Leibe

Topics of This Lecture

* Bayes Decision Theory
» Basic concepts
» Minimizing the misclassification rate
» Minimizing the expected loss
» Discriminant functions

* Probability Density Estimation
» General concepts
» Gaussian distribution

* Parametric Methods
» Maximum Likelihood approach
» Bayesian vs. Frequentist views on probability

B. Leibe
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Probability Densities

* Probabilities over continuous #5) Pl)
variables are defined over their
probability density function
(pdf) p()

b
plr e (a,b)):j p(x) da

a

dx

* The probability that z lies in the interval (—0, z) is given by
the cumulative distribution function

P(z)= fz plz)dx

—00
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RWTH//THE
Expectations

* The average value of some function f (x) under a
probability distribution p(x) is called its expectation

Elf] = S p@)f@)  Elf = [ p(e) f(z) da

discrete case continuous case

* |f we have a finite number N of samples drawn from a pdf,
then the expectation can be approximated by

Blf] = + 3 flan)

* We can also consider a conditional expectation

Ex(fly] = 3 p(aly)f(2)

rrrrrrrrrrr >x
B. Leibe

Bayes Decision Theory

Thomas Bayes, 1701-1761

“The theory of inverse probability is founded upon an
error, and must be wholly rejected.”
R.A. Fisher, 1925

17
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RWTH/ACHEN
Bayes Decision Theory
* Concept 1: Priors (a priori probabilities) p(Ck)

» What we can tell about the probability before seeing the data.
» Example: ?

aababaaba
baaaabaaba
abaaaabba

babaabaa

* Ingeneral:

19
de credit Bernt Schiele B. Leibe
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Variances and Covariances

* The variance provides a measure how much variability there
isin f(«) around its mean value E[f (z)].

varlf] = E [(f(«) - Elf@)))°] = Elf(+)?] - E[f(2)]?
* For two random variables z and y, the covariance is defined
by
coviz,y] = Eoy[{z - El]} {y — Ely]}]
= Euyloy) - Elz|E[y]
* If x and y are vectors, the result is a covariance matrix
covx,y] = Exy [{x —ExXHy" —E[y']}]
= Exy[xy"] - EXE[y"]

B. Leibe
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Bayes Decision Theory
* Example: handwritten character recognition
[ u [ u
o S [ u
* Goal:
» Classify a new letter such that the probability of misclassification is
minimized.
18
de credit Bernt Schiele B. Lelte Jmage source: G\, Bishop, 200
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TOWTHACHET]
Bayes Decision Theory

¢ Concept 2: Conditional probabilities p(X|Ck)
» Let z be a feature vector.
» « measures/describes certain properties of the input.
— E.g. number of black pixels, aspect ratio, ...
» p(z|C}) describes its likelihood for class C.

p(x|a)

p(x|b)

20
de credit Bernt Schiele B, Leibe
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Bayes Decision Theory

x=15

* Example:

* Question:
» Which class?

- since p(x|b)is much smaller than p(X|a), the decision
should be ‘a’ here.

ide credit: Bernt Schiele B. Leibe
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Bayes Decision Theory
* Example:
p(x|a) p(x|b)
x=20
* Question:
» Which class?
» Remember that p(a) = 0.75 and p(b) = 0.25...
» l.e., the decision should be again ‘a’.
= How can we formalize this?
de credit Bernt Schiele B. Leibe =
RWTH//CHE
Bayes Decision Theory
p(x|a) p(x|b) Likelihood
X
p(xla)p(a
p(X | b) p(b) Likelihood x Prior
N
X
Decision boundary
p(alx) P(O1X) pysierion — Likelihood x Prior
NormalizationFactor|

X

ide credit- Bernt Schigle B. Leibe
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RWTH/ACHET
Bayes Decision Theory
* Example:
p(x|a) p(x|b)
1
X=25
* Question:

» Which class?

- Since p(x]a) is much smaller than p(X|b), the decision
should be ‘b’ here.

22

ide credit Bernt Schiele B. Leibe

TRWTH/JCHEN
Bayes Decision Theory

* Concept 3: Posterior probabilities

p (Ck | X)
» We are typically interested in the a posteriori probability, i.e., the
probability of class C), given the measurement vector z.

* Bayes’ Theorem:
p(Ck|x):p(X|Ck)p(Ck)— p(xlck)p(ck)

p(x) _ZP(XIC.)D(Q)

* Interpretation
Likelihood x Prior
Normalization Factor

Posterior =

24
ide credit Bernt Schigle B. Leibe
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Bayesian Decision Theory

* Goal: Minimize the probability of a misclassification

Decision rule:
X<2=06 The green and blue
X220, regions stay constant.
How does Only the size of the

p(mistake) change red region varies!

when we move £?

=

p(mistake) = p(x € Rq1,C2) + p(x € Ra, (1)

= p(x,Cg)dx+f p(x,Cq) dx.
Ry Rz

= [ peaponax+ [ pcixpeoix
R1 R2

26

\mage source: G\, Bishop, 200¢
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Bayes Decision Theory

* Optimal decision rule
» Decide for C, if

p(C1|z) > p(Calz)

» This is equivalent to

p(x|C1)p(C1) > p(z|C2)p(C2)

» Which is again equivalent to (Likelihood-Ratio test) g
p(z|C1) _ p(C2) £
p(z|C2) = p(C1) %

- =
£

Decision threshold &

27
ide credit: Bernt Schiele B. Leibe

TRWTH/ACHEN
Classifying with Loss Functions

* Generalization to decisions with a loss function
~ Differentiate between the possible decisions and the possible true

classes.
» Example: medical diagnosis
— Decisions: sick or healthy (or: further examination necessary)

— Classes: patient is sick or healthy
» The cost may be asymmetric:
loss(decision = healthy|patient = sick) >>

loss(decision = sick|patient = healthy)

Machine Learning Winter ‘19
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ide credit. Bernt Schigle B. Leibe

RWTHAACHEN
Generalization to More Than 2 Classes

* Decide for class k whenever it has the greatest posterior
probability of all classes:

p(Crlz) > p(Cjlx) Vj # K

p(z|C)p(Ck) > p(x|Cj)p(C;) Vi #k

¢ Likelihood-ratio test

p(z|Cy) - p(Cy)

p(z[C))

p(C) vi#k

28
B. Leibe
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Classifying with Loss Functions

* In general, we can formalize this by introducing a
loss matrix Ly

Ly; = loss for decision C; if truth is C.
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TRWTH/ACHEN
Classifying with Loss Functions

* Loss functions may be different for different actors.

dnvest” dont ,
» Example: invest
7 - %Cgain 0 .
Lstocktrader(SprT‘lme) = 0 0 =3
_1 -
Liyank (subprime) = < 3 ﬁgam 8 ) E

= Different loss functions may lead to different Bayes optimal
strategies.
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* Example: cancer diagnosis
Decision
cancer normal
I £ cancer ( 0 1000 )
cancer diagnosis — é normal 1 0
B. Leibe 30
RWTH/ACHEN

Minimizing the Expected Loss

* Optimal solution is the one that minimizes the loss.
» But: loss function depends on the true class, which is unknown.

* Solution: Minimize the expected loss

E[L] = ; ; /R Li;p(x,Cy) dx

* This can be done by choosing the regions R ; such that
E[L] =} Li;p(Cilx)
k

which is easy to do once we know the posterior class
probabilities p(Ck|x)

32
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Minimizing the Expected Loss

* Example:
» 2Classes: C,, C,
» 2 Decision: «,, a,
» Loss function: L(oy|Cy) = Ly;

» Expected loss (= risk R) for the two decisions:
Ea,[L] = Rlai|x) = Lup(Ci]x) + Laip(Ca|x)
Ea, (L] = R(az|x) = Li2p(C1]x) 4 Laap(C2|x)

* Goal: Decide such that expected loss is minimized
. le. decide o, if R(aa|x) > R(aq|x)

Machine Learning Winter ‘19

33
ide credit: Bernt Schiele B. Leibe

The Reject Option

p(Cilz) p(Calz)

1.0
@

0.0 = =
reject region
* Classification errors arise from regions where the largest
posterior probability p(Cx|x) is significantly less than 1.
» These are the regions where we are relatively uncertain about
class membership.
» For some applications, it may be better to reject the automatic

decision entirely in such a case and, e.g., consult a human expert.
35

z
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RWTH LGN
Different Views on the Decision Problem

* yr(x) o< p([Cr)p(C)
» First determine the class-conditional densities for each class
individually and separately infer the prior class probabilities.
» Then use Bayes’ theorem to determine class membership.
= Generative methods

* yk(z) = p(Cilz)
» First solve the inference problem of determining the posterior class
probabilities.

» Then use decision theory to assign each new z to its class.
= Discriminative methods

* Alternative

. Directly find a discriminant function y(z)which maps each input =
directly onto a class label.
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Minimizing the Expected Loss

R(as|x) > R(az]x)
L12p(Cr[x) + L22p(Calx) > L11p(C1]x) + Laip(Ca|x)

(L2 = L1)p(C1|x) > (La1 — L22)p(Calx)

(L12 — L11) p(Ca|x) _ p(x|C2)p(Ca)

(L21 — La2) p(Gi]x)  p(x|C1)p(C1)
p(x|C1) (L21 — Laz) p(C2)
p(x[Co) (L12 — L11) p(Ch)

= Adapted decision rule taking into account the loss.

34
ide credit Bernt Schiele B. Leibe

TWTH G
Discriminant Functions

* Formulate classification in terms of comparisons
» Discriminant functions

y1(x), ..., yx(x)
- Classify z as class C if
ye(z) > y;(z) Vj#k
* Examples (Bayes Decision Theory)
ye(z) = p(Cx|z)
ye(z) = p(|Ck)p(Ck)
yr(z) = logp(z|Cy) + log p(Cr)

36

ide credit Bernt Schigle B. Leibe

Topics of This Lecture

* Probability Density Estimation
» General concepts
» Gaussian distribution

38
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Probability Density Estimation

* Up to now
» Bayes optimal classification
» Based on the probabilities p(X|Ck)p(Ck)

* How can we estimate (= learn) those probability densities?
» Supervised training case: data and class labels are known.
. Estimate the probability density for each class Cj separately:

@
3 p(x[Cr)
£
E, . (For simplicity of notation, we will drop the class label Cy; in the
€ following.)
3
£
=
8
=
39
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RWTH/THE
The Gaussian (or Normal) Distribution

* One-dimensional case
> Mean p

» Variance o / \

2
Nelpo®) = e { - L2

Vi(x|p.0?)

xn
* Multi-dimensional case

> Mean u
» Covariance X

N1 ®) = s o] g ™= - )}

B. Leibe
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Gaussian Distribution — Properties

* Quadratic Form
» N depends on x through the exponent
A =(x—p) "B (x - p)
» Here, A is often called the
Mahalanobis distance from x to p.

* Shape of the Gaussian
» X is areal, symmetric matrix.

» Wecan thergfore decompose it into its eiger}yectors
_ 1
¥ = Zkfuiu;r nl= Z )‘—u[ulT
i=1 i=1 "

D o2 Y
and thus obtain A% =" Howith wo=ufx—p)
Pyl
= Constant density on ellipsoids with main directions along the
eigenvectors u, and scaling factors v/ A;
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lmage source: G\, Bishop, 200«

RWTH/ACHET
Probability Density Estimation
* Data: z,, z,, z,, z, ... _|_"_‘_‘_33.
* Estimate: p(z)
o T
3
£l Methods
= » Parametric representations (today)
£ » Non-parametric representations (lecture 3)
(]
2 » Mixture models (lecture 4)
=
8
= 40
ide credit: Bernt Schiele B. Leibe
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Gaussian Distribution — Properties

* Central Limit Theorem

» “The distribution of the sum of N i.i.d. random variables becomes
increasingly Gaussian as N grows.”

In practice, the convergence to a Gaussian can be very rapid.
This makes the Gaussian interesting for many applications.

v

v

* Example: N uniform [0,1] random variables.

Machine Learning Winter ‘19
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RWTH CHET
Gaussian Distribution — Properties
* Special cases
» Full covariance matrix
EA @
= General ellipsoid shape

» Diagonal covariance matrix

¥ = diag{o;}

= Axis-aligned ellipsoid
» Uniform variance z3

> =021

= Hypersphere
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RWTH/ACHEN
Gaussian Distribution — Properties

* The marginals of a Gaussian are again Gaussians:

1
= 2, =07 plzalzs =0.7)
05 5
plza, 1)
)
0 0
0 05 T 1o 05 Za 1
45
B. Leibe Image source: C.M, Bishon, 200
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Probability Densities
* Probabilities over continuous o09) P)
variables are defined over their
probability density function
(pdf) piz)
b
P € (@b) = [ pla)da
[
bx B

* The probability that z lies in the interval (—oo, Z) is given by
the cumulative distribution function

P(z) = fz p(z)dx

—00

47

lmage source: C\, Bishop, 200«

B. Leibe

RWTH LGN
Variances and Covariances

* The variance provides a measure how much variability there
isin f(x) around its mean value E[f(z)].
varlf] = E [(f(x) - E[f()))°] = E[f(2)?] - E[f(x)?
* For two random variables z and y, the covariance is defined
by
covlz,y] = Buy [{z — El]} {y — Ely]}]
Epylzy] — Elz|E[y]

* |f x and y are vectors, the result is a covariance matrix
Exy [{x —ExHy" —Ely"]}]
= Euylxy"| -ExE[y"]

cov[x,y]

49
B. Leibe
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Topics of This Lecture
* Parametric Methods
» Maximum Likelihood approach
» Bayesian vs. Frequentist views on probability
B. Leibe 46
RWTH CHET

Expectations

* The average value of some function f (x) under a
probability distribution p(x) is called its expectation

Elf] = S p@)f@ Bl = ] p(a)f(x) dz

discrete case continuous case

* |If we have a finite number N of samples drawn from a pdf,
then the expectation can be approximated by

Blf) =+ 3 flaw)

* We can also consider a conditional expectation

Ee(fly] = >_p(aly)f(2)

rrrrrrrrrrr >z

48
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Parametric Methods

* Given
. Data X = {z1,22,...,ZN}
» Parametric form of the distribution
with parameters ¢

» E.g. for Gaussian distrib.. 0 = (i, 0)

* Learning
» Estimation of the parameters ¢

* Likelihood of

» Probability that the data X have indeed been generated from a
probability density with parameters ¢

L(0) = p(X10)

50

de adanted from Bernt Schiele B. Leibe




Maximum Likelihood Approach

* Computation of the likelihood N
. Single data point: (2 |0) = ! (‘xp{—(‘?-_'”) }
Vire 20

» Assumption: all data points are |ndependent

L(0) = p(X[0) = Hp 2, 0)
» Log-likelihood N
E@®)=—-InL(0) = — Z Inp(z,|0)

» Estimation of the parameters 6 (Learning)
— Maximize the likelihood
— Minimize the negative log-likelihood

Machine Learning Winter ‘19

ide credit: Bernt Schiele B. Leibe

51

Maximum Likelihood Approach
* Minimizing the log-likelihood

» How do we minimize a function?
= Take the derivative and set it to zero.

3917 Inle i
E( 802111;)(%\9 Z AR =0

* Log-likelihood for Normal distribution (1D case)
N

E@®) = — Z Inp(x,|p, o

N
= —Zln< ! exp{—l‘z7"7”|‘2}>
= V2o 202

B. Leibe
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Maximum Likelihood Approach

* We thus obtain
N

=5

n=1

“sample mean”

* In a similar fashion, we get

=¥ Z(xn — )2 “sample variance”

« 0= (f1,6)is the Maximum Likelihood estimate for the
parameters of a Gaussian distribution.

¢ This is a very important result.
* Unfortunately, it is wrong...
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B. Leibe
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Maximum Likelihood Approach
H p(zn]0)

* We want to obtain § such that L(f) is maximized.

* Likelihood: L(#) =p(X|0) =
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p(X]0)
F; 0
de credit: Bernt Schiele B. Leibe =
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Maximum Likelihood Approach
* Minimizing the log-likelihood p(Tnlp,0) =
2 pi.o) N gmp(zalu, o) 1 ey
J— ,0) = — -/ — 20
ot 2 p(@ali,o) V2ro
_ i 2z, —p)
n=1 20-2
1 N
; Z(In - /")
n=1
1 N
- 07 (Z " NM)
n=1
8 , 1 N
B#E(#af’):[] < BszﬁnZ:lZ-u .
RWTH/ACHEN

Maximum Likelihood Approach
* Or not wrong, but rather biased...

* Assume the samples z,, z,, ..., zy come from a true
Gaussian distribution with mean p and variance o2

» We can now compute the expectations of the ML estimates with
respect to the data set values. It can be shown that

E(umL) = p

Botn) = (T

= The ML estimate will underestimate the true variance.

* Corrected estimate:
N .
&= N 1‘712vIL “N_-1 Z(zn - )’

n=1 56

B. Leibe
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Maximum Likelihood — Limitations
* Maximum Likelihood has several significant limitations

» It systematically underestimates the variance of the distribution!
» E.g. consider the case

N=1,X={z}

= Maximum-likelihood estimate:

» We say ML overfits to the observed data.

» We will still often use ML, but it is important to know about
this effect.

57

ide adapted from Bernt Schiele B. Leibe

Bayesian vs. Frequentist View

* To see the difference...
» Suppose we want to estimate the uncertainty whether the Arctic ice
cap will have disappeared by the end of the century.

This question makes no sense in a Frequentist view, since the event
cannot be repeated numerous times.

In the Bayesian view, we generally have a prior,

e.g., from calculations how fast the polar ice is melting.

If we now get fresh evidence, e.g., from a new satellite, we may

revise our opinion and update the uncertainty from the prior.
Posterior o Likelihood x Prior

This generally allows to get better uncertainty estimates for
many situations.

v

v

v

v

* Main Frequentist criticism

» The prior has to come from somewhere and if it is wrong, the result

will be worse. 59
B. Leibe
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Bayesian Learning
* Bayesian Learning is an important concept

» However, it would lead to far here.
= | will introduce it in more detail in the Advanced ML lecture.

61
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Deeper Reason

* Maximum Likelihood is a Frequentist concept

» In the Frequentist view, probabilities are the frequencies of random,
repeatable events.

» These frequencies are fixed, but can be estimated more precisely
when more data is available.

* This is in contrast to the Bayesian interpretation
» In the Bayesian view, probabilities quantify the uncertainty about

% certain states or events.
é » This uncertainty can be revised in the light of new evidence.
é N
=| * Bayesians and Frequentists do not like /7\
% each other too well... ok
= “‘S 58
B. Leibe
RWTH CHET

Bayesian Approach to Parameter Learning

* Conceptual shift

> Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

~ In Bayesian learning, we consider 6 to be a random variable.

* This allows us to use knowledge about the parameters 6
posterior
p(6ly)

» i.e. to use a prior for 6

» Training data then converts this

o
5 prior distribution on @ into prior
£ . - .
s a posterior probability density. p(8)
2 JEEEEEEEE B -.\
£ ’
8
3 ]
2
£ » The prior thus encodes knowledge we have about the type of
2 distribution we expect to see for 6.
60
de adapted from Bernt Schiele B. Lelte
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References and Further Reading

* More information in Bishop’s book
» Gaussian distribution and ML: Ch.1.2.4 and 2.3.1-2.3.4.
» Bayesian Learning: Ch.1.2.3 and 2.3.6.
» Nonparametric methods: Ch. 2.5.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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