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Announcements

* Exams

> Special oral exams (for exchange students):
— We're in the process of sending out the exam slots
— You'll receive an email with details tonight
— Format: 30 minutes, 4 questions, 3 answers

> Regular exams:
— We will send out an email with the assignment to lecture halls
— Format: 120min, closed-book exam
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Announcements (2)

* Today, I'll summarize the most important points from the
lecture.
> Itis an opportunity for you to ask questions...
> ...or get additional explanations about certain topics.
> S0, please do ask.

* Today’s slides are intended as an index for the lecture.
> But they are not complete, won’t be sufficient as only tool.
> Also look at the exercises — they often explain algorithms in detail.
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Announcements (3)

* Seminar in the summer semester
> Current topics in Computer Vision and Machine Learning
> Quick poll: Who is interested?

B. Leibe



Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

> Mixture Models and EM

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting

* Deep Learning
» Foundations
» Convolutional Neural Networks
- Recurrent Neural Networks e I
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Recap: Bayes Decision Theory

tp MX | b) Likelihood

p(xil a)p(a ’

p(x|b) p(b) Likelihood x Prior

"

Decision boundary

|p(alx)

P (b | X) Posterior — Lz’kelz’hoood'x Prior
NormalizationFactor
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X

Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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Recap: Bayes Decision Theory

* Optimal decision rule
> Decide for C, if

p(C1|z) > p(C2|)

> This is equivalent to

p(z|C1)p(C1) > p(x]|Ca)p(Co)

> Which is again equivalent to (Likelihood-Ratio test)

p(z|Cy) - p(C2)

p(@|C2) — p(C1)

|
Decision threshold &
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Slide credit: Bernt Schiele B. Leibe



RWTHAACHEN
.. UNIVERSITY
Recap: Bayes Decision Theory

* Decision regions: R, R,, R,. ...

iy
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Slide credit: Bernt Schiele B. Leibe



RWNTH
Recap: Classifying with Loss Functions

* In general, we can formalize this by introducing a
loss matrix L,

Ly; = loss for decision C; if truth s Cy.

* Example: cancer diagnosis
Decision

cancer normal

cancer ( 0 1000 )

-
cancer diagnosis = normal 1 0
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RWNTH
Recap: Minimizing the Expected Loss

* Optimal solution minimizes the loss.

> But: loss function depends on the true class,
which is unknown.

)(el-c.
-3

* Solution: Minimize the expected loss

E[L] = ZZ/ Ly;ip(x,Cp) dx
kg YR
e This can be done by choosing the regions R juch that
E[L] =)  Li;p(Cklx)
k

which is easy to do once we know the posterior class
probabilities  p(Ck|x)
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Recap: The Reject Option

p(C1]z) p(Ca|x)

1.0
‘T

0.0 /

- — €
reject region

* Classification errors arise from regions where the largest
posterior probability p(Ck|x) is significantly less than 1.

> These are the regions where we are relatively uncertain about class
membership.

> For some applications, it may be better to reject the automatic
decision entirely in such a case and e.g. consult a human expert.
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation
> Mixture Models and EM

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks

B. Leibe

ions  Subsampling

Full connection
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RWNTH
Recap: Gaussian (or Normal) Distribution

* One-dimensional case ‘
> Mean u
> Variance o2

Nl 0?) = — exp{—<"”‘“)2}

2mo 202

A
N(z|p,0?)

(00)
' ¢ Multi-dimensional case
= . Mean p
I . Covariance X
=
3 - 2
| N = LTS - )
CE% (x|pe, )_(QW)D/Q]EH/QGXP 5X I X — [
13
B. Leibe

Image source: C.M. Bishop, 2006
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RWNTH
Recap: Maximum Likelihood Approach

» Computation of the likelihood Eerees
> Single data point: p($n|9) &
> Assumption: all data points X = {a:l,.. , T, 1€ independent

L(0) = p(X|0) = H p(x,|0)
> Log-likelihood
E(0) = —InL(0) = — Zln p(z,,|0)

* Estimation of the parameters 6 (Learning)

> Maximize the likelihood (= minimize the negative log-likelihood)
— Take the derivative and set it to zero

Z aep (27|0) Lo
p(x,|0)

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Recap: Bayesian Learning Approach

* Bayesian view:

» Consider the parameter vector 6 as a random variable.
> When estimating the parameters, what we compute is

p(x|X) = /p(gj,e X)do Assumption: given 6, this

doesn’t depend on X anymore

p(x,61X) = p(«|0, X)p(6] X)

p(z]X) = / p(]0)p(6]X)de
—

This is entirely determined by the parameter 6
(i.e. by the parametric form of the pdf).
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RWNTH
Recap: Bayesian Learning Approach

R :
Discussion Likelihood of the parametric

form 6 given the data set X.

Estimate for 2 based on Prior for the
parametric form 0 parameters 0
!
p(z[0)L(0)p(0)
X) = do
p(z|X) TL(6)p(6)dd

I

Normalization: integrate
over all possible values of 6

> The more uncertain we are about 6, the more we average over all
possible parameter values.
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Recap: Histograms

* Basic idea:

> Partition the data space into distinct
bins with widths A, and count the
number of observations, n;, in each

x1

0 0.5 1

...but the required
number of bins

grows exponen-
tially with D!

17
Image source: C.M. Bishop, 2006
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* Approximation formula:

p(x)
fixed V
determine K

Recap: Kernel Density Estimation

E)(e
-l ( I'C/'Se
1.5

SN

v
fixed K
determine V

Kernel Methods K-Nearest Neighbor

- ¢ K-Nearest Neighbor

until the K next data

points are found.

fall inside it. .

Slide adapted from Bernt Schiele B. Leibe
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= "
=i * Kernel methods

5 . Place a kernel window k|
o at location x and count -*
£ how many data points .
©

S

> Increase the volume V
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation
> Mixture Models and EM

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Random Forests

* Deep Learning
> Foundations
- i i i SUDSHmp‘”"Q Full ccmnectionaUSSIan “
> Convolutional Neural Networks

> Recurrent Neural Networks
B. Leibe
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Recap: Mixture of Gaussians (MoG)

e “Generative model”

, “Weight” of mixture
@ p(j) = ; component
. Mixture
p(z) ‘ M p(x|6;) component
ZB >

\ Mixture density
M

/% p(l6) = > p(elt;)p()

X

Slide credit: Bernt Schiele B. Leibe
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Recap: MoG - Iterative Strategy

* Assuming we knew the values of the hidden variable...

S(x)
X

ML for Gaussian #1 T T ML for Gaussian #2
% assumed known —> 1 111 22 2 2 i
S h(j=1z,) = 1111 00 0 O
= hj=2|zn) = 0 000 1 1 1
g N N
= 1y = anl h(] — 1‘xn)xn Ly = anl h(] |xn)xn
= o N . o
S Zizl h(j = 1|zy) Zi:l h(j = 2|zy)

. 21
Slide credit: Bernt Schiele B. Leibe



Recap: MoG - Iterative Strategy

* Assuming we knew the mixture components...

f(x) assumed known
X
p(i=1la) | | 2l =2)
1 111 22 2 2 j

* Bayes decision rule: Decide j =1 if

p(j = lzn) > p(J = 2|24)
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Slide credit: Bernt Schiele B. Leibe
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Recap: K-Means Clustering

* |terative procedure

1. |Initialization: pick K arbitrary
centroids (cluster means)

2. Assign each sample to the closest
centroid.

3. Adjust the centroids to be the
means of the samples assigned
to them.

4. Go to step 2 (until no change)

e Algorithm is guaranteed to
converge after finite #iterations.
> Local optimum
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Slide credit: Bernt Schiele B. Leibe

> Final result depends on initialization.
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Recap: EM Algorithm

* Expectation-Maximization (EM) Algorithm IS
> E-Step: softly assign samples to mixture components
WJN(Xn“Lja Ej)

ngvzl WkN(anuka Ek)

> M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments

V5 (Xn) <

N
Nj + ) 7;(xn) = soft number of samples labeled ;
n=1
-new , 1V
J W
’\neW
Xn
J ﬂ 1
E?ew Z 73 Xn Xn . new>(xn B /:\L?GW)T
J n=1

Slide adapted from Bernt Schiele B. Leibe

Vi=1,....K, n=1,...

’\'e,-C
.6

, N

24
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks

B. Leibe

ions  Subsampling

Full connection
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RWNTH
Recap: Linear Discriminant Functions

* Basic idea
> Directly encode decision boundary
> Minimize misclassification probability directly.

* Linear discriminant functions y=0|x y >0
— wix -+ W
weight vector “bias”
(= threshold) , —W

> w, w, define a hyperplane in R”.

> If a data set can be perfectly classified by a linear discriminant, then
we call it linearly separable.
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RWNTH
Recap: Least-Sqguares Classification

* Simplest approach "ef;iz
-~ Directly try to minimize the sum-of-squares error =7
N
2
E(w) =) (y(Xn;w) — ty,)
n=1

Ep(W) = %Tr [XW - 1)’ XW - 1)}

> Setting the derivative to zero yields

I~

W = (X™X) I XTT =X'T
> We then obtain the discriminant function as
— T
y(x) = WTx = TT(XT ) X

> — Exact, closed-form solution for the discriminant function
parameters.

B. Leibe
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4 2 o0 2 4 6 8 4 2 0o 2 4 6 =
* Least-squares is very sensitive to outliers!

> The error function penalizes predictions that are “too correct”.

28

B. Leibe Image source: C.M. Bishop, 2006



RWTH
Recap: Generalized Linear Models

* Generalized linear model
y(x) = g(Ww' x4 wp)

> ¢( - ) is called an activation function and may be nonlinear.
> The decision surfaces correspond to

y(x) = const. < w*

X + wg = const.

> If g is monotonous (which is typically the case), the resulting decision
boundaries are still linear functions of x.

* Advantages of the non-linearity

> Can be used to bound the influence of outliers
and “too correct” data points.

» When using a sigmoid for g(-), we can interpret L
the y(x) as posterior probabilities. 1
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Recap: Linear Separability

* Up to now: restrictive assumption
> Only consider linear decision boundaries

* Classical counterexample: XOR

Ly

C
O

o &

Slide credit: Bernt Schiele

Ly

B. Leibe
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RWTH
Recap: Extension to Nonlinear Basis Fcts.

* Generalization
> Transform vector x W|th M nonlinear basis functions ¢.(x):

Z wkqu] _I_ WEo

* Advantages
> Transformation allows non-linear decision boundaries.

> By choosing the right cbj, every continuous function can (in principle)
be approximated with arbitrary accuracy.

* Disadvatage

> The error function can in general no longer be minimized in
closed form.

— Minimization with Gradient Descent
B. Leibe
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RWNTH
Recap: Probabillistic Discriminative Models

* Consider models of the form
p(Cilep) = y(p) =o(w' ¢)
with p(Calep) = 1—p(Ci|@)

* This model is called logistic regression.

* Properties
> Probabillistic interpretation
> But discriminative method: only focus on decision hyperplane

> Advantageous for high-dimensional spaces, requires less
parameters than explicitly modeling p(¢|C,) and p(C,).
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B. Leibe
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Recap: Logistic Regression

* Let’'s consider a dataset{¢, .t } withn =1,...,N,
where ¢, = ¢(xp)ind t, € {0,1} t=(t1,...,tn)"

* Withy, = p(Cy|o, ) we can write the likelihood as

p(t|w) = Hyn {T—ya}' ™

* Define the error function as the negative log-likelihood
E(w) = —Inp(tjw)

= — Z {tnIny, + (1 —%,)In(1 —y,)}

> This is the so-called cross-entropy error function.
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RWNTH
Recap: Iterative Methods for Estimation

* Gradient Descent (15t order)
w(t) = w() — ) VE(W)| )

> Simple and general
> Relatively slow to converge, has problems with some functions

* Newton-Raphson (2"d order)
wi ) = wl) — H 'VE(w)|

W(T)

where H = VV E(w); the Hessian matrix, i.e. the matrix of
second derivatives.

> Local guadratic approximation to the target function

> Faster convergence
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RWNTH
Recap: Iteratively Reweighted Least Squares

* Update equations

wi = w( — (TR®) 1! (y — t)
— (3"R®)" {(I)TR<I>W(T) — 7 (y — t)}
= (®'R®) @' Rz
with z=®w'™ —R1(y —t)

* Very similar form to pseudo-inverse (normal equations)
~ But now with non-constant weighing matrix R (depends on w).

> Need to apply normal equations iteratively.
= Iteratively Reweighted Least-Squares (IRLS)

35
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Recap: Softmax Regression

* Multi-class generalization

of logistic regression

-~ In logistic regression, we assumed binary labels ¢, € {0,1}

> Softmax generalizes this to

_ng = 1}){; wg_
Py =2|x;w
yocw)= | :

Py =Kx;w)_

K values in 1-of-K notation.

exp(wq X) |
B 1 exp(wj X)
K .
D et exp(ijx)
| exp(W ) |

> This uses the softmax function

exp(ax)

Zj exp(a;)

> Note: the resulting distribution is normalized.

B. Leibe
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RWNTH
Recap: Softmax Regression Cost Function

* Logistic regression
> Alternative way of writing the cost function

E(W) — Z {tn Iny, + (1 — tn) lﬂ(l — yn)}
= —ZZ{H B In P (g, = KJxn; W)}

* Softmax regression
» Generalization to K classes using indicator functions.

BE(w) = =) >, {W”_k”” 2wy x) >}

n=1k=1 Zg 1 eXp(Wj
N

Vaw, E(w) = —Z n=k)InP (y, = k|xp; w)]

B. Leibe
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks

B. Leibe

ions  Subsampling

Full connection
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RWNTH
Recap: Generalization and Overfitting

A

test error

training error

_I ——————————————

* Goal: predict class labels of new observations
> Train classification model on limited training set.

> The further we optimize the model parameters, the more the training
error will decrease.

> However, at some point the test error will go up again.
= Overfitting to the training set!

B. Leibe
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RWNTH
Recap: Support Vector Machine (SVM)

* Basic idea

> The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

> Up to now: consider linear classifiers

wix+b=0

* Formulation as a convex optimization problem

> Find the hyperplane satisfying
1

. 2
arg min - W]

under the constraints
tn(Wix, +b) >1 Vn

based on training data points x, and target values ¢, € {—1,1}
40
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Recap: SVM — Primal Formulation R

* Lagrangian primal form

N
1
L, = 5 I = Zan {t,(W'x, +b) — 1}
n=1

N
1
— 5 ||W||2 - Z 079 {tny(xn) — 1}
n=1

* The solution of Lp needs to fulfill the KKT conditions

> Necessary and sufficient conditions

é KKT:

§ tay(xn) =1 > 0 fx) > 0
: an {tny(xn) =1 = 0 Af(x) = 0
=

B. Leibe
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Recap: SVM — Solution

e Solution for the hyperplane
> Computed as a linear combination of the training examples

N
W = E AntnXy,
n=1

- Sparse solution: a,, # 0 only for some points, the support vectors
= Only the SVs actually influence the decision boundary!

» Compute b by averaging over all support vectors:

b= NLS Z t, — Z amtmxgbxn

nesS meS

B. Leibe
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Recap: SVM — Support Vectors

* The training points for which a, > 0 are called
“support vectors”.

* Graphical interpretation:

> The support vectors are the
points on the margin.

> They define the margin

e and thus the hyperplane. o) W
o °
S = All other data points can
= : S
o be discarded! . °
£ ®
= Origin R )
2 ¢ 8 A
:_—% o Margin
=
| 43
B. Leibe

Slide adapted from Bernt Schiele Image source: C. Burges, 1998



Recap: SVM — Dual Formulation

e Maximize Exg, S0

N N N “ereise 5
1 &
Li(@) = jan—5 ) ) Gntmbntm(X,%n)
n=1

n=1m=1

under the conditions

IV
-

Vn

Qn

N
E a'ntn
n=1

|
-

* Comparison
> L, is equivalent to the primal form L., but only depends on a,,.
» L, scales with O(D?).
> L, scales with O(IN®) — in practice between O(N) and O(N?).
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RWNTH
Recap: SVM for Non-Separable Data

e Slack variables
> One slack variable £, > o for each training data point.

* Interpretation
> &, = o for points that are on the correct side of the margin.
- &, = |t, — y(x,)| for all other points.

Point on decision
boundary: ¢, =1

Misclassified point:
&> 1

® o
> We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

B. Leibe
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Recap: SVM — New Dual Formulation

* New SVM Dual: Maximize

N 1 N N
Ly(a) =) an— . > anamtntm(x,Xn)
n—=1

n=1m=1

under the conditions
0- ay-

N
Zantn = 0
n=1

* This is again a quadratic programming problem
= Solve as before...

O This is all

Slide adapted from Bernt Schiele B. Leibe

Se
e
)(e,- .
Cis
€2
2

that changed!
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Recap: Nonlinear SVMs

* General idea: The original input space can be mapped to
some higher-dimensional feature space where the training
set is separable:

" o
o
. o
o ® x. N e ®
® . P x— Pp(x) o
S e |@ e
e o
w ‘‘‘‘‘‘‘‘‘ .
~ ¢ o ®e o ® @
= °
[ o )
[0} o
I= ) o o
§ o
o o o
o
(@)} ® o ® -
= o |©® ®
C ...."u... """"""""" .”.
E . el . .
o
— o
(0]
£
e
O
®©
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Recap: The Kernel Trick

* Important observation
> ¢(x) only appears in the form of dot products ¢(x)o(y):

y(x) = wig(x)+b

N
— Z antn¢(xn)T¢(X) +b
n=1

- Define a so-called kernel function k(x,y) = ¢(x) o(y).

> Now, in place of the dot product, use the kernel instead:

N
y(x) = Zantnk(xn,x)—l—b
n=1

> The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!
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R\WNTH
Recap: Kernels Fulfilling Mercer’'s Condition

* Polynomial kernel
k(x,y) = (x'y + 1)

* Radial Basis Function kernel

X — 2
k(X, y) = exp {— ( gf) } e.g. Gaussian
20

* Hyperbolic tangent kernel

k(x,y) = tanh(kx'y + ) e.g. Sigmoid

> And many, many more, including kernels on graphs, strings, and
symbolic data...

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Recap: Kernels Fulfilling Mercer’'s Condition

* Polynomial kernel
k(x,y) = (x'y + 1)

* Radial Basis Function kernel

X — 2
k(X, y) = exp {— ( gf) } e.g. Gaussian
20

* Hyperbolic tangent kernel

k(x, y)j]__uéaxqu e.g. Sigmoid

Actually, that was wrong in
the original SVM paper...

> And many, many more, including kernels on graphs, strings, and
symbolic data...
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RWNTH
Recap: Nonlinear SVM — Dual Formulation

* SVM Dual: Maximize S
N N Se2,
Z Ay, — — Z Z A At tmk (Xom, Xn)
nzl m=1

under the conditions

0:- a,- C
N
Zantn = 0
n=1

* Classify new data points using

N
= Z Aptnk(Xn,X)+ b
n=1

B. Leibe
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks

B. Leibe

ions  Subsampling

Full connection

52
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Recap: Classifier Combination

* We've seen already a variety of different classifiers
. k-NN

> Bayes classifiers

> Fisher’s Linear Discriminant

> SVMs

* Each of them has their strengths and weaknesses...

> Can we improve performance by combining them?

. 53
B. Leibe



(e 0]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

RWTH
Recap: Bayesian Model Averaging

* Model Averaging

» Suppose we have H different models h = 1,..., H with prior
probabilities p(h).
> Construct the marginal distribution over the data set

p(X) = > _p(X|h)p(h)

* Average error of committee .

Ecom = MEAV

> This suggests that the average error of a model can be reduced by a
factor of M simply by averaging M versions of the model!

> Unfortunately, this assumes that the errors are all uncorrelated. In

practice, they will typically be highly correlated.

) 54
B. Leibe



(e 0]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

RWTH
Recap: AdaBoost — “Adaptive Boosting”

* Main idea [Freund & Schapire, 1996]

> Instead of resampling, reweight misclassified training examples.
— Increase the chance of being selected in a sampled training set.
— Or increase the misclassification cost when training on the full set.

e Components
- h,(x): “weak” or base classifier
— Condition: <50% training error over any distribution
> H(x): “strong” or final classifier

* AdaBoost:

> Construct a strong classifier as a thresholded linear combination of
the weighted weak classifiers:

H(x) = sign Z Oy P (X)

B. Leibe
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Recap: AdaBoost — Intuition

O © Consider a 2D feature space
Weak ® ® 3 with positive and negative
Classifier 1 ~HNa----="""
@ o examples.
® o

Each weak classifier splits
the training examples with at
least 50% accuracy.

Examples misclassified by a
previous weak learner are
given more emphasis at
future rounds.
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Figure adapted from Freund & Schapire

Slide credit: Kristen Grauman B. Leibe



Recap: AdaBoost — Intuition

e © Weights

.
Weak . . Increased .l
O '9) o

Classifier 1 ~ o_-----""7"

© 0 Weak }.__': O
O O Classifier 2 q
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Figure adapted from Freund & Schapire

Slide credit: Kristen Grauman B. Leibe



Recap: AdaBoost — Intuition

@) O Weights 1———.’.
(]

Classifier1 ~ _o_--=---"""

© o Weak }.__': O
O @) Classifier 2 q

- Weak X .
= classifier 3 .l‘ O

< °'@®

=|  Final classifier is @
=\ combination of the weak .‘1.

S classifiers

-l

()

£

e

O

©

=
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Figure adapted from Freund & Schapire

Slide credit: Kristen Grauman B. Leibe



Recap: AdaBoost — Algorithm

1. Initialization: Set (! = Ltorn = 1,...,N. Exg,.c€
N C/Se 3.7

2. Form=1,...,M iterations

a) Train a new weak classifier h, (x) using the current weighting
coefficients W (™ by minimizing the weighted error function

N A i frria
J,. = ngm)f(hm(x) £ tn) I(A4) = {1. if A is true
n=1

0, else

b) Estimate the weighted error of this classifier on X:
Sy oV (i (x) # t)
m ij W (m)

c) Calculate a weighting coefficient for h, (x):

]-_ m
amzln{ ‘ }
em

d) Update the weighting coefficients:
wr,(lmﬂ) — wfzm) exp {am I (hm(Xn) #tn)}
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Recap: Comparing Error Functions

E(2)

—2 —I 0 1 2
> ldeal misclassification error function
> "Hinge error” used in SVMs
> Exponential error function
— Continuous approximation to ideal misclassification function.
— Seguential minimization leads to simple AdaBoost scheme.

— Disadvantage: exponential penalty for large negative values!

= Less robust to outliers or misclassified data points! 60
Image source: Bishop, 2006

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=




Recap: Comparing Error Functions

E(2)

—2 —1 0 1 2

ldeal misclassification error function

“Hinge error” used in SVMs

Exponential error function

“Cross-entropy error” E=-— Z {trIny, + (1 —t,) In(1 —y,)}
— Similar to exponential error for z>0.

— Only grows linearly with large negative values of z.

— Make AdaBoost more robust by switching = “GentleBoost” 61
Image source: Bishop, 2006
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks

B. Leibe

ions  Subsampling

Full connection
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Recap: Perceptrons

* One output node per class
y1(x) y2(x)  wk(x)

Output layer

Weights
Input layer
To=1 T1 X9 T4
* Outputs
> Linear outputs With output nonlinearity

d d
Yr(x) = Z Wiix; yk(X) =g (Z Wm%)

— Can be used to do multidimensional linear regression or
multiclass classification.

Slide adapted from Stefan Roth B. Leibe
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Recap: Non-Linear Basis Functions

e Straightforward generalization
y1(x) y2(x)  yk(x)

* Outputs
> Linear outputs

d
yr(x) = Z Wi (x:)

Output layer
Weights
Feature layer
Mapping (fixed)

Input layer

with output nonlinearity

d
Yk(x) =g (Z Wmcb(%))

: 64
B. Leibe
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RWNTH
Recap: Non-Linear Basis Functions

e Straightforward generalization
y1(x) y2(x)  yk(x)

Output layer
Weights
Feature layer
Mapping (fixed)

Input layer

* Remarks
> Perceptrons are generalized linear discriminants!
> Everything we know about the latter can also be applied here.
- Note: feature functions ¢(x) are kept fixed, not learned!

B. Leibe
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Recap: Perceptron Learning

* Process the training cases in some permutation
> If the output unit is correct, leave the weights alone.

> If the output unit incorrectly outputs a zero, add the input vector to
the weight vector.

> If the output unit incorrectly outputs a one, subtract the input vector
from the weight vector.

* Translation
(r+1) _ . (7) :
W = Wg,; — 7 (Yk(Xn; W) — Tien) ¢5(Xn)
> This is the Delta rule a.k.a. LMS rule!

= Perceptron Learning corresponds to 1st-order (stochastic) Gradient
Descent of a quadratic error function!
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Slide adapted from Geoff Hinton B. Leibe
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Recap: Loss Functions

* We can now also apply other loss functions

> L, loss ) = Least-squares regression
L(tv y(X)) — Zn (y(xn) o tn)
> L, loss: — Median regression
L(t, y(x)) = 2., [y(xn) — tn]
© > Cross-entropy loss —> Logistic regression
5 L(t,y(x)) = = 2 {tnInyn + (1 —tn) In(1 — yn)}
23 - Hinge loss — SVM classification
: L(t,y(x)) = 22, [1 — try(Xn)] 4
é > Softmax loss = Multi-class probabilistic classification
L(ty(x) = =3, 5oy {1t = k) In 220090

67
B. Leibe
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Recap: Multi-Layer Perceptrons

* Adding more layers
y1(x) y2(x)

Slide adapted from Stefan Roth

Yi(X)

B. Leibe

Output layer

Hidden layer

Input layer
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RWNTH
Recap: Learning with Hidden Units

* How can we train multi-layer networks efficiently?
> Need an efficient way of adapting all weights, not just the last layer.

* |dea: Gradient Descent
> Set up an error function

E(W) = 3. Lltn, y(x,; W) + AQW)

with a loss L(-) and a regularizer Q(-).

. Eg., Lty W) =3 (y(x; W) —t,)° L, loss

B 0 L, regularizer
QW) = |[|[W||z (“weight decay”)

= Update each weight Wg’)in the direction of the gradient %V%l

v 69
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Recap: Gradient Descent

* Two main steps
1. Computing the gradients for each weight
2. Adjusting the weights in the direction of

the gradient

 We consider those two steps separately
> Computing the gradients: Backpropagation
> Adjusting the weights: Optimization techniques

B. Leibe
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RWNTH
Recap: Backpropagation Algorithm

* Core steps
' . E = L Z (t: —y:)?
1. Convert the discrepancy 9 i Yj
between each output and its j€E€output
target value into an error

derivate.

2. Compute error derivatives in

® each hidden layer from error

o derivatives in the layer above.

£

=

g

% 3. Use error derivatives w.r.t.

@ activities to get error derivatives OE X oE

2 w.r.t. the incoming weights ayj(k) aWj(ik_l)
g

=

71

Slide adapted from Geoff Hinton B. Leibe



Recap: Backpropagation Algorithm
0E

(k)
Y Oy(k)
O G O o _wP e _09(5) ok
) — A0 500 - (k) (k)
Zj(k) azj 6Zj ayj aj ay
(k-1)
O y. Q OF az(k) OE )
1 2 ZW-(-R_l)
ayi(k_l) ay(k 1) aZ(k) - Ji azj(k)

(k=1)
72

)

10 O 0.2 e
= J _(k-1)

= (k DT ® TN 5
= :

i * Efficient propagation scheme

% > yl.(k_l) Is already known from forward pass! (Dynamic Programming)
©

=

= Propagate back the gradient from layer £ and multiply with y;
B. Leibe

Slide adapted from Geoff Hinton
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RWNTH
Recap: MLP Backpropagation Algorithm

* Forward Pass * Backward Pass
y© = x h« % = J-L(t,y) + A5, Q
for k=1,...,ldo for k—lll ..,1 do
2(F) — W)y (k=1) h« 20 =hog(y™)
y™ = g (z) swo = by T+ A8
endfor h < 8?51) = WFETh
Yy = y(l) endfor

E=L(t,y) + \Q(W)

* Notes
~ For efficiency, an entire batch of data X is processed at once.

> (© denotes the element-wise product

B. Leibe



Recap: Computational Graphs

Forward-Mode Differentiation (;—X)
>

Apply operator 3%
to every node.

Apply operator 8—82
to every node.

> Forward differentiation needs one pass per node. Reverse-mode
differentiation can compute all derivatives in one single pass.

= Speed-up in O(#inputs) compared to forward differentiation!
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Slide inspired by Christopher Olah B. Leibe Image source: Christopher Olah, colah.github.io




Recap: Automatic Differentiation

* Approach for obtaining the gradients
y1(x) y2(x)  yr(x)

> Convert the network into a computational graph.

> Each new layer/module just needs to specify how it affects the
forward and backward passes.

> Apply reverse-mode differentiation.

= Very general algorithm, used in today’s Deep Learning packages
75
Image source: Christopher Olah, colah.github.io
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RWNTH
Recap: Choosing the Right Learning Rate

E(o)

* Convergence of Gradient Descent .
- Simple 1D example "‘
w1 _ ) _ ndE(W)
dW
- What is the optimal learning rate 7,7 . o
b) O
» If E/is quadratic, the optimal learning rate is given by the inverse of
the Hessian )
ZEW™)\
Tlovt =\ T qw2
. Advanced optimization techniques try to ;:LDOH t go beyond

approximate the Hessian by a simplified form.

> If we exceed the optimal learning rate,
)]

bad things happen! ————— O
. 76
B.Lebe | age source: Yann LeCun et al., Efficient BackProp (1998)
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RWNTH
Recap: Advanced Optimization Techniques

* Momentum

- Instead of using the gradient to change the position of the weight
“particle’, use it to change the velocity. -

> Effect: dampen oscillations in directions of high
curvature

> Nesterov-Momentum: Small variation in the implementation

=8 * RMS-Prop

:i—’- > Separate learning rate for each weight: Divide the gradient by a
= running average of its recent magnitude.

(@)

k=

= ¢ AdaGrad )

()] .

= « AdaDelta , Some more recent techniques, work better
= for some problems. Try them.

s ¢ Adam )

=

77
Image source: Geoff Hinton

B. Leibe
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Recap: Patience

e Saddle points dominate in high-dimensional spaces!

100 ' ] . . 10°
— Training error (MSE)
90} e—e Norm of the gradients

80}

70}

[
o
~N

Norm of the gradients

60 f

Training error (MSE)
A
N —
~———

= I} l‘ ' "‘1."‘l

[
o
-

40} 899 MM

30

20+

10 Il Il ! Il &00
0 100 200 300 400 50

— Learning often doesn'’t get stuck, you just may have to wait...
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Image source: Yoshua Bengio
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RWTH
Recap: Reducing the Learning Rate

* Final improvement step after convergence is reached

. Reduce learning rate by a 1
factor of 10. = Reduced
.~ Continue training for a few = learning rate
epochs. o
-~ Do this 1-3 times, then stop Z%
training. =
>
* Effect Epoch
> Turning down the learning rate will reduce
the random fluctuations in the error due to
different gradients on different minibatches.

* Be careful: Do not turn down the learning rate too soon!
> Further progress will be much slower after that.

(e 0]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

79

Slide adapted from Geoff Hinton B. Leibe
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Recap: Data Augmentation

 Effect

> Much larger training set

> Robustness against expected
variations

W P
polloh loah o
S b el

* During testing
> When cropping was used
during training, need to

% again apply crops to get ., s s : _ e

| el PN R

= . Beneficial to also apply e L o

| e, RN E Y

g -~ Applying several ColorPCA - e | .

© variations can bring another Augmented training data

S ~1% improvement, but at a (from one original image)

= significantly increased runtime. 50
B. Leibe

Image source: Lucas Beyer



Recap: Normalizing the Inputs

* Convergence is fastest if

> The mean of each input variable
over the training set is zero.

» The inputs are scaled such that P e
. KL-
all have the same covariance. Expansion

> Input variables are uncorrelated
If possible.

Mean
Cancellation

Covariance
Equalization

* Advisable normalization steps (for MLPs only, not for CNNSs)

> Normalize all inputs that an input unit sees to zero-mean,
unit covariance.

> If possible, try to decorrelate them using PCA (also known as
Karhunen-Loeve expansion).
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Image source: Yann LeCun et al., Efficient BackProp (1998)




Recap: Another Note on Error Functions
C A

E(Zn) |ldeal misclassification error
Squared error

Squared error on tanh

Zero gradient!

No penalty for
“too correct”
data points!

t, € {—1,1} N
) — 0 1 7 #n = tnY(Xn)

e Sqguared error on sigmoid/tanh output function
> Avoids penalizing “too correct” data points.
> But: zero gradient for confidently incorrect classifications!
= Do not use L, loss with sigmoid outputs (instead: cross-entropy)!
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Recap: Commonly Used Nonlinearities

UNIVERSITY
* Sigmoid /
gla) = o(a) |

1
1+exp{—a}

* Hyperbolic tangent
g(a) = tanh(a)
= 20(2a) — 1

* Softmax
eXP{—az‘}

ga) = S exp{—a,}
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RWNTH
Recap: Commonly Used Nonllnearltles (2)

* Rectified linear unit (ReLU)
g(a) = max{0, a}

* Leaky RelLU L_
g(a) = max{fa,a} B €1[0.01,0.3] |
> Avoids stuck-at-zero units

> Weaker offset bias :

-2

2_

* ELU

(@) = a, a=0 .
Gla) =1 ea _ 1, a<0

> No offset bias anymore

> BUT: need to store activations

B. Leibe 5 2 1 0 1 2 3

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=




0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Recap: Glorot Initialization  [Glorot & Bengio, “10]

 Variance of neuron activations

>

Suppose we have an input X with n components and a linear
neuron with random weights W that spits out a number Y.

We want the variance of the input and output of a unit to be the
same, therefore n Var(W,) should be 1. This means

1-':r-u':'l_I'(Ir:i":r.i-}I — 1 — 1

Or for the backpropagated gradient
1

Mot

Var(W;) =

As a compromise, Glorot & Bengio propose to use
2

Var(W) =
E'-I'[ ] MNin 7 Mout

— Randomly sample the weights with this variance. That's it.

B. Leibe
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RWTH
Recap: He Initialization [He et al., “15]

 Extension of Glorot Initialization to ReLU units
> Use Rectified Linear Units (ReLU)

g(a) = max{0,a}

> Effect: gradient is propagated with
a constant factor

s |

I, a>0
0, else

e Same basic idea: Output should have the input variance

> However, the Glorot derivation was based on tanh units, linearity

assumption around zero does not hold for ReLU.
> He et al. made the derivations, proposed to use instead
Var(W) = ——

Ttin

B. Leibe
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RWNTH
Recap: Batch Normalization [ioffe & Szegedy *14]

* Motivation
> Optimization works best if all inputs of a layer are normalized.

* |dea

> Introduce intermediate layer that centers the activations of
the previous layer per minibatch.

> l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients

* Effect
> (Typically) much improved convergence
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RWTH
Recap: Dropout [Srivastava, Hinton *12]

{
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“7)

{7

ik
X
Pa\

y

(a) Standard Neural Net (b) After applyving dropout.

* |dea
> Randomly switch off units during training.

> Change network architecture for each data point, effectively training
many different variants of the network.

> When applying the trained network, multiply activations with the
probability that the unit was set to zero.

= Improved performance

_ 88
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks

B. Leibe

ions  Subsampling

Full connection
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RWTHAACHEN

_ UNIVERSITY
Recap: Convolutional Neural Networks
C1: feature maps ik maps16@10x1804‘f maps 16@5x5
I3I\|2:<>:l3"2T S@Bx25 S2: f. maps -

CS:l1ayer fg:layer OUTPUT

S |T_ r"r
T

I | Fullconrlnection I Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

* Neural network with specialized connectivity structure
> Stack multiple stages of feature extractors
> Higher stages compute more global, more invariant features
> Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

(00)
S
| S
(O]
e
=
(@)]
£
C
| S
©
(]
—
(O]
£
O
(@)
©
=

90

Slide credit: Svetlana Lazebnik B. Leibe



10

Recap: CNN Structure

* Feed-forward feature extraction [ Feature maps }
1. Convolve input with learned filters ﬁ
2. Non-linearit

: y [ Normalization }

3. Spatial pooling
4. (Normalization) ﬁ

* Supervised training of convolutional { Spatial pooling }
filters by back-propagating 4
classification error [ Non-linearity

ﬁ

[ Input Image J

91

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Slide credit: Svetlana Lazebnik B. Leibe



RWTHAACHEN
UNIVERSITY

See
)(ef'C/'Se 5 ;

e Convolutional net

> Share the same parameters
across different locations

> Convolutions with learned
kernels

Recap: Intuition of CNNs

Learn multiple filters

> E.g. 1000x1000 image

100 filters
10x 10 filter size

= only 10k parameters

* Result: Response map
» size: 1000x1000x 100

~ Only memory, not params!

92
Image source: Yann LeCun

(00)
S
| S
(O]
e
=
(@)]
=
c
| S
©
(]
-1
(O]
=
e
(@)
©
=

Slide adapted from Marc’Aurelio Ranzato B. Leibe



Recap: Convolution Layers

- Naming convention:
~—_ HEIGHT
—-"'"'"'---.

—=00000Q
////’VWDTH

DEPTH
32

3

* All Neural Net activations arranged in 3 dimensions

> Multiple neurons all looking at the same input region,
stacked in depth

> Form a single [1x1xdepth] depth column in output volume.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



CHEN
. UNIVERSITY
Recap: Activation Maps

Activations:

ARG I SEEENACIIN AN IR EOAETERNERNE SR
one filter = one depth slice (or activation map) 5% 5 filters

ﬁl.l.l

HHIIIH

.H- Each activation map is a depth
slice through the output volume.

Activation maps
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Slide adapted from FeiFei Li, Andrej Karpathy ~ B- Leibe



Recap: Pooling Layers

Single depth slice

Jl1]1 2 4
max pool with 2x2 filters
5|16 | 7|8 and stride 2 6 | 8
312 1|0 3|4
11 2|3 | 4
y
* Effect:

> Make the representation smaller without losing too much information
> Achieve robustness to translations
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Slide adapted from FeiFei Li, Andrej Karpathy ~ B- Leibe
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Recap: AlexNet (2012)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012. 96

Image source: A. Krizhevsky, |. Sutskever and G.E. Hinton, NIPS 2012

ANEEBEEEe
\‘ 48 | > . . ., 192 192 128 2’0_6_‘8 )’_4‘8
j __'-5_ "\ 27 o, . 12 |\ /
[Ij , wr: 3 ﬁ N -X ' ~3 Fom 'd « f
m _ Q 3\ 13 ense ense
155 \T 3} 1600
: 192 192 128 Max =i
S(k\ Max 128 Max pooling 2048 2048
of 4 pooling pooling
o o
8« Similar framework as LeNet, but
g > Bigger model (7 hidden layers, 650k units, 60M parameters)
2 ~ More data (10° images instead of 103)
% > GPU implementation
o > Better regularization and up-to-date tricks for training (Dropout)
=
&
=



http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Recap: VGGNet (2014/15)

Main ideas
> Deeper network

> Stacked convolutional
layers with smaller
filters (+ nonlinearity)

> Detalled evaluation
of all components

Results

> Improved ILSVRC top-5
error rate to 6.7%.

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB imagp)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 [ conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128
maxpool
conv3-256 | conv3-256 | conv3-256 conv3-256 | conv3-256 f§ conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [ conv3-256
convl-256 | conv3-256 || conv3-256
conv3-256
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 || conv3-512
conv3-512
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool Ml 1
FC-4096 viallity uscu
FC-4096
FC-1000
soft-max
97
B. Leibe

Image source: Simonyan & Zisserman




CHEN

UNIVERSITY
Recap: GooglLeNet (2014)
* |deas: -
> Learn features at multiple scales
> Modular structure " Bl B
gl 8] Elgifligy.]
al & 1. Egﬁggigglﬂﬁﬁlﬁﬁiﬂ |
%'Eﬁﬂﬁﬁﬁﬁgg g2 1 adTE4d b B |08
girTad (o2 |08 | 08| - EJ _
LR AR R iu~ﬂ§€ ?!
2 | | ! Convolution
g Inception + copies Pqpllng
= module S50 .
= _ Other |
= e | |
3 SENSSIVNY [ (R ) pe— Auxiliary classification
@ T [ | [ | RIS outputs for training the
§ \m - lower layers (deprecated)
= (b) Inception module with dimension reductions 08

B. Leibe Image source: Szegedy et al.



Discussion
* GoogLeNet R
> 12x fewer parameters than AlexNet : EE =
— ~5M parameters | -
R el
> Where does the main reduction come from? a%Q
= From throwing away the fully connected (FC) layers. %?‘5 e
Taps =
* Effect . SN
> After last pooling layer, volume is of size [7x7x1024] et

?
> Normally you would place the first 4096-D FC layer :

here (Many million params). 3
> Instead: use Average pooling in each depth slice: .;-;%

— Reduces the output to [1x1x1024].

e

= Performance actually improves by 0.6% compared to §
when using FC layers (less overfitting?) =
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Slide credit: Andrej Karpathy B. Leibe Image source: Szegedy et al.



CHEN
. .. UNIVERSITY
Recap: Visualizing CNNs

Feature Feature Feature Classifier

Low-Level| |Mid-Level _|High-Level Trainable
— —

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]
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Slide credit: Yann LeCun B. Leibe



Recan: Residual Networks

AlexNet, 8 layers % VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

ResNet, 152 layers
(ILSVRC 2015)

e Core component
> Skip connections

> This makes it possible

to train (much) deeper _
networks. H(x) = F(x) + x

oo

i . X

g bypassing each layer

= - Better propagation of weight layer
(@)) .

£ gradients to the deeper F(x) l relu
S layers -

E weight layer
=

L

&

=

101
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RWTH
Recap: Analysis of ResNets

Building block
* The effective paths in ResNets — == |
are relatively shallow AT LA )
> Effectively only 5-17 active modules
O

* This explains the resilience to deletion |,

> Deleting any single layer only affects a

subset of paths (and the shorter ones . >

- less than the longer ones). o~ i f2 O

3l « New interpretation of ResNets ea ESGSTERAMERC frpeR e
% » ResNets work by creating an ensemble i ““““““““““
= of relatively shallow paths B I
g > Making ResNets deeper increases the ‘; ------------------------
0 size of this ensemble For
§ > Excluding longer paths from training e
= does not negatively affect the results. path fenath 102

Image source: Veit et al., 2016



RWTH
Recap: R-CNN for Object Detection

ConvNet

ConvNet

ConvNet

. 103
Slide credit: Ross Girshick B. Leibe



* One network, four losses

> Remove dependence on
external region proposal
algorithm.

Recap: Faster R-CNN for Object Detection

Classification
loss

Bounding-box
regression loss

> Instead, infer region
proposals from same
CNN.

> Feature sharing
> Joint training

= Object detection in
a single pass becomes
possible.

%m@/ —
/

o

Classification
loss

.

Region Proposal Network

feature map

Bounding-box
regression loss

H.
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Slide credit: Ross Girshick
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RWNTH
Recap: Fully Convolutional Networks

“tabby cat”

* CNN

600 P
At S S L

1

convolutionalization

tabby cat heatmap

00,00 %
5 s s

oo

* |ntuition

> Think of FCNs as performing a sliding-window classification,
producing a heatmap of output scores for each class
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105
Image source: Long, Shelhamer, Darrell




RWNTH
Recap: Semantic Image Segmentation

* Encoder-Decoder Architecture
> Problem: FCN output has low resolution
> Solution: perform upsampling to get back to desired resolution
> Use skip connections to preserve higher-resolution information
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Image source: Newell et al.




Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks

jons  Subsampling Full connection
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RWNTH
Recap: Neural Probabilistic Language Model

“softmax” units (one per possible next word)

skip-layer K
connections

units that leafn to predict the output word from features of the input words

¢ 1

learned distributed learned distributed
encoding of word t-2 encoding of word t-1
1‘ table look-up 1‘ table look-up
index of word at t-2 index of word at t-1
e Core idea

> Learn a shared distributed encoding (word embedding) for the words
In the vocabulary.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language
Model, In IMLR, Vol. 3, pp. 1137-1155, 2003.

. 108
Slide adapted from Geoff Hinton B. Leibe Image source: Geoff Hinton
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http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

RWTH
Recap: word2vec

INPUT PROJECTION OUTPUT

* Goal e

> Make it possible to learn high-quality
word embeddings from huge data sets
(billions of words in training set).

SUM

Hj )

NV

* Approach e CBOW
> Define two alternative learning tasks i
for learning the embedding: I
= — “Continuous Bag of Words” (CBOW) )
= — “Skip-gram”
i - Designed to require fewer parameters. wm[
§ Skip-gram w(t+1)
e
= w(t+2)
O
©
=
109

B. Leibe Image source: Mikolov et al., 2015



Recap: word2vec CBOW Model

Input layer

* Continuous BOW Model

> Remove the non-linearity
from the hidden layer

> Share the projection layer
for all words (their vectors
are averaged)

C = O OQ]

[O

Output layer

o
=
=
<
=
@]
bt
L

=000
=
=000l

= Bag-of-Words model Xop
(order of the words does not
matter anymore)

O mm OO O] [
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Image source: Xin Rong, 2015

B. Leibe



RWNTH
Recap: word2vec Skip-Gram Model

* Continuous Skip-Gram Model o Output layer
> Similar structure to CBOW . v,
J
> Instead of predicting the current :
word, predict words
within a certain range of ~ mputlayer. ~
the current word. : :
> Give less weight to the more f |y
. distant words N 1
5 o o
- .
S V-dim -
(@)) o
g ;
§ A Ve,
2 '
L O
£ S
g CxV-dim .

B. Leibe Image source: Xin Rong, 2015



RWTH
Recap: Problems with 100k-1M outputs

Input layer

0 0 Q]

* Weight matrix gets huge!
> Example: CBOW model
> One-hot encoding for inputs

= Input-hidden connections are

just vector lookups. Output layer

> This is not the case for the
hidden-output connections! Xop

> State h is not one-hot, and
vocabulary size is 1M.

— W', has 300x 1M entries

am OO O

[eNeNe]

* Softmax gets expensive!

> Need to compute normaliza- Yk
tion over 100k-1M outputs ]

[ O nm

(O
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Image source: Xin Rong, 2015
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Recap: Hierarchical Softmax

n(w,,1)

* |dea
> Qrganize words in binary search tree, words are at leaves

- Factorize probability of word w, as a product of node probabilities
along the path.

- Learn alinear decision function y = v, ,-h at each node to decide
whether to proceed with left or right child node.

= Decision based on output vector of hidden units directly.
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Image source: Xin Rong, 2015
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RWTH
Recap: Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt f Pt Pt
f f Pt Pt bt
* Up to now

> Simple neural network structure: 1-to-1 mapping of inputs to outputs

* Recurrent Neural Networks
> Generalize this to arbitrary mappings
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Image source: Andrej Karpathy
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RWTH
Recap: Recurrent Neural Networks (RNNSs)

* RNNSs are regular NNs whose
hidden units have additional
connections over time.

> You can unroll them to create T T T T
a network that extends over
time. W

> When you do this, keep in mind T T T T

that the weights for the hidden
are shared between temporal
layers.

* RNNSs are very powerful

> With enough neurons and time, they can compute anything that can
be computed by your computer.
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Image source: Andrej Karpathy
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Recap: Backpropagation Through Time (BPTT)'

* Configuration hy =0 (Wypxs + Wrphe_1 +b)

y+ = softmax (Wp,h)
* Backpropagated gradient

| | OF, OE; Oht 0T hy,
> For weight w, ;: Ow;, _ Z (8ht Ohy awij)

1<k<t 116




Recap: Backpropagation Through Time (BPTT)'

* Analyzing the terms

| | OE; OE,; Ohs 0" hy,
> FOI‘ We|ght ww 8w23 o 1<§<t (8ht ahk 871]1]

- This is the “immediate” partial derivative (with h,_, as constant)
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Recap: Backpropagation Through Time (BPTT)

Y1lE1
Wi,
Oh
hy on| [
> >
Win
W:Bh‘
o0 | ] |
4 X1
_|CI_J,
= ¢ Analyzing the terms
g _ OF; OF; Oh; 0T hyg
§ > Forwelghth-j: E = 5, O O
z,) 1] 1<k<t t k 1]
® . Pro tion term: — =
g pagation term O H o,

t>i>k 118



RWNTH
Recap: Backpropagation Through Time (BPTT)

* Summary 5)(8;22
: : 6.
> Backpropagation equations g

1<t<T
OB, _ 3 (8Et Ohy a+hk)
Ow; S Oht Ohy, Ow;;
h; .
Oht — 0 - H W, diag (o' (h;_1))
Ohp L 0h;, 4 .
t>1>k t>i>k

~ Remaining issue: how to set the initial state h,?
= Learn this together with all the other parameters.
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RWTH
Recap: Exploding / Vanishing Gradient Problem

* BPTT equations:

0L, _ Z OE; Ohy O hy,
8w@-j 8ht 6hk 8’11)7;3'

1<k<t
Oh, H
— = W, diag (o' (h;_1))
Oy, t2i>k t>i>k
l
— (W;h)

(if t goes to infinityand [ = t — k.)

= We are effectively taking the weight matrix to a high power.
> The result will depend on the eigenvalues of W, .

— Largest eigenvalue > 1 = Gradients may explode.
— Largest eigenvalue < 1 = Gradients will vanish.
— This is very bad...
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Recap: Gradient Clipping

* Trick to handle exploding gradients
> If the gradient is larger than a threshold, clip it to that threshold.

Slide adapted from Richard Socher

B. Leibe

A 0E 0.35
g < 00 0.30
if ||g|| > threshold then oo :
~ ,  threshold 0.15
o ST el 8 s
" end if
(O]
=
=
o . L .
I= > This makes a big difference in RNNs
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RWTH
Recap: Long Short-Term Memory Bre, 08
Is@6,2

& O, ®
1 f

A
4 N ) 4 )
—»>—® ® > >
GEani>
A aelling A
Iclillclrlltalnhlljl
_}T > >
\I 4 | 4 \I 4
O :
Neural Network Pointwise Vector
’ LayerW Opleremon Transfer Concatenate Copy

* LSTMs

> Inspired by the design of memory cells
> Each module has 4 layers, interacting in a special way.
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Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Elements of LSTMSs

* Forget gate layer

- Look at h, ; and x, and output a
number between 0 and 1 for each ;i
dimension in the cell state C, ;.

0: completely delete this,
1: completely keep this.

Tt

=0 (Wy-lhi1, 4] + b
* Update gate layer fo=0 Wyl 2] 7)

added to the state.

(co)

% » Decide what information to store

1= In the cell state.

= |

2 > Sigmoid network (input gate layer) [(5%
c - -
= decides which values are updated. he_s

(<))

o - tanh layer creates a vector of new T

k= -

- candidate values  that could be i = o (Wi-[he1, a4 + by)
=

Cy = tanh(We-[he_1, z¢] + 23

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Elements of LSTMSs

* Qutput gate layer

> Output is a filtered version of our
gate state.

> First, apply sigmoid layer to decide
what parts of the cell state to
output.

> Then, pass the cell state through a
tanh (to push the values to be
between -1 and 1) and multiply it

with the output of the sigmoid gate.

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

he A\
Eanh>
Ot 0
hi—y e he

r >

or =0 (Wo [hi—1,7] + bo)
hi = o * tanh (Cy)

124

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RWTH
Recap: Gated Recurrent Units (GRU)

e Simpler model than LSTM “I
- . hi_1 a2 —~ ,\\
> Combines the forget and input >
gates into a single update gate z,. Zi_éjh
> Similar definition for a reset gate r,, ¢ 5 j‘“
but with different weights. : P

i |

> In both cases, merge the cell state

and hidden state.
2t =0 (Wz : [ht—laxt])

* Empirical results re =0 (Wy - [hy—1, 2¢])

> Both LSTM and GRU can learn much g, — tanh (W - [ry * he_1, 2¢])
longer-term dependencies than _
regular RNNs he = (1—2z)xhi—1 + 2z % hy

> GRU performance similar to LSTM
(no clear winner yet), but fewer
parameters.
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Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

A INVERSITY
Any More Questions?

Good luck for the exam!
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