Machine Learning — Lecture 17

Recurrent Neural Networks

21.01.2019

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de

(00)
S
| S
(O]
e
=
(@)]
=
c
| S
©
()
-1
(O]
=
e
(@)
©
=

leibe@vision.rwth-aachen.de

Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Random Forests

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks e | casanc

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

B. Leibe

RWNTH
Recap: Neural Probabilistic Language Model

“softmax” units (one per possible next word)

skip-layer K
connections

units that leafn to predict the output word from features of the input words

¢ 1

learned distributed learned distributed
encoding of word t-2 encoding of word t-1
1‘ table look-up 1‘ table look-up
index of word at t-2 index of word at t-1
e Core idea

> Learn a shared distributed encoding (word embedding) for the words
In the vocabulary.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language
Model, In IMLR, Vol. 3, pp. 1137-1155, 2003.

_ 3
Slide adapted from Geoff Hinton B. Leibe Image source: Geoff Hinton

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

RWTH
Recap: word2vec

INPUT PROJECTION OUTPUT

* Goal)

> Make it possible to learn high-quality
word embeddings from huge data sets
(billions of words in training set).

SUM

4,1 w(t)

NV

* Approach e CBOW
> Define two alternative learning tasks i
for learning the embedding: I

= — “Continuous Bag of Words” (CBOW))
= — “Skip-gram”
i - Designed to require fewer parameters. wm[
§ Skip-gram w(t+1)
e
= w(t+2)
O
©
=

4

Image source: Mikolov et al., 2015

B. Leibe

Recap: word2vec CBOW Model

Input layer

* Continuous BOW Model

> Remove the non-linearity
from the hidden layer

> Share the projection layer
for all words (their vectors
are averaged)

C = O OQ]

[O

Output layer

o
=
=
<
=
@]
bt
L

=000
=
=000l

= Bag-of-Words model Xop
(order of the words does not
matter anymore)

O mm OO O] [

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

(O

5

Image source: Xin Rong, 2015

B. Leibe

RWNTH
Recap: word2vec Skip-Gram Model

* Continuous Skip-Gram Model o Output layer
> Similar structure to CBOW . v,
J
> Instead of predicting the current :
word, predict words
within a certain range of ~ mputlayer. ~
the current word. : :
> Give less weight to the more f |y
. distant words N 1
5 o o
cC .
S V-dim -
(@)) o
g :
§ A Ve,
2 '
L O
£ S
g CxV-dim 3

B. Leibe Image source: Xin Rong, 2015

Problems with 100k-1M outputs

Input layer

0 0 Q]

* Weight matrix gets huge!
> Example: CBOW model
> One-hot encoding for inputs

= Input-hidden connections are

just vector lookups. Output layer

> This is not the case for the
hidden-output connections! Xop

> State h is not one-hot, and
vocabulary size is 1M.

— W', has 300x 1M entries

am OO O

[eNeNe]

* Softmax gets expensive!

> Need to compute normaliza- Yk
tion over 100k-1M outputs]

[O nm

(O

(e 0]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

v
Image source: Xin Rong, 2015

B. Leibe

Solution: Hierarchical Softmax

n(w,,1)

* |dea
> Qrganize words in binary search tree, words are at leaves

- Factorize probability of word w, as a product of node probabilities
along the path.

- Learn alinear decision function y = v, ,-h at each node to decide
whether to proceed with left or right child node.

= Decision based on output vector of hidden units directly.

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

8

Image source: Xin Rong, 2015

B. Leibe

Topics of This Lecture

* Recurrent Neural Networks (RNNSs)
> Motivation
> Intuition

* Learning with RNNs
> Formalization
> Comparison of Feedforward and Recurrent networks
> Backpropagation through Time (BPTT)

* Problems with RNN Training
> Vanishing Gradients
> Exploding Gradients
> Gradient Clipping

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

B. Leibe

RWNTH
Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt f Pt Pt
f f Pt Pt bt
* Up to now

> Simple neural network structure: 1-to-1 mapping of inputs to outputs

* This lecture: Recurrent Neural Networks
> Generalize this to arbitrary mappings

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

10

Image source: Andrej Karpathy

B. Leibe

CHEN
L. _ UNIVERSITY
Application: Part-of-Speech Tagging

Legend: Cii g. Get help on this page.

-- Verb - Adverb _ Preposition Article Interjection

- - - thought - - were secure after the - - with the
- : . alas! - - is fast approaching - . especially after - viciously
insulted the - on - - :

(0]
S
| S
(O]
e
=
(@)]
£
C
| S
©
(O]
—
(O]
£
O
(®)
©
=

11

Image source: http://rewordify.com

B. Leibe

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Application: Predicting the Next Word

INPUT (t) OQUTPUT (t)
Go g|e cat sat on the U n
E—
— CONTEXT (t) , cat sat on the mat
cat sat on the mat poem
cat sat on the mat story
—»
> 7 cat sat on the mat research
= Learn more
—
—
—»

g —

CONTEXT (t-1)

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur, Recurrent Neural Network
Based Language Model, Interspeech 2010.

_ 12
Slide credit: Andrej Karpathy, Fei-Fei Li B. Leibe Image source: Mikolov et al., 2010

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Application: Machine Translation

French words

English words

..

AN
T

B C

w Z <EOS>
A A A A A
> > >
F 7 A 7'y 7'y 7'y
<E0S> W X Y z

|. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence Learning with Neural Networks,

NIPS 2014.

Slide credit: Andrej Karpathy, Fei-Fei Li

B. Leibe

13

papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

RNNSs: Intuition

* Example: Language modeling
> Suppose we had the training sequence “cat sat on mat”

> We want to train a language model

p(next word | previous words)

> First assume we only have a finite, 1-word history.
> l.e., we want those probabilities to be high:
— p(cat | <S5>)

<S>and < E > are

Slide credit; Andrej Karpathy, Fei-Fei Li B. Leibe

(

— p(on | sat) start and end tokens.
(
(

14

RWNTHAACHEN
.. UNIVERSITY
RNNSs: Intuition

* Vanilla 2-layer classification net

10,001D class scores
(Softmax over 10k
words and a special

N R A

Hidden layer

y0 y1 y2 y3 y4 | <—

hO h1 h2 h3 h4

- <— (e.g., 500D vectors)

o h, = max {0, W, x4}
=

g

C

S Word embedding

5 x0 “X1t" th “X3“ X4t <— (300D vector for

= <START> ca sa on ma

.cc% each word)

=

. 15
Slide credit; Andrej Karpathy, Fei-Fei Li B. Leibe

RNNSs: Intuition

Slide credit: Andrej Karpathy, Fei-Fei Li

B. Leibe

y0 y1 y2 y3 y4
- hO h1 h2 h3 h4
1 [[[1 |
g x0 X1 X2 X3 x4
__qé START> “cat’ “sat” “on” “‘mat”
=

RWTHAACHEN
UNIVERSITY

* Turning this into an RNN (wait for it...)

10,001D class scores
(Softmax over 10k
words and a special
<END> token)

Y4 = Wy, hy

<—

Hidden layer
<— (e.g., 500D vectors)

h4 = INnax {0, thX4}

Word embedding
<— (300D vector for
each word)

16

Image source: Andrej Karpathy

RWNTHAACHEN
.. UNIVERSITY
RNNSs: Intuition

* Turning this into an RNN (done!)

10,001D class scores
(Softmax over 10k
words and a special

N R A

Hidden layer

y0 y y2 y3 y4 | <—

- <— (e.g., 500D vectors)

_:CI__J, h4 — INnax {0, thX4
£

1 | | | | | Wby}
k=

% Word embedding

o x0 X1 X2 X3 X4 |<— (300D vector for

- TR “cat’ “sat” “on” “mat” each word)

(@]

©

=

_ 17
Slide credit: Andrej Karpathy, Fei-Fei Li B. Leibe Image source: Andrej Karpathy

RWTHAACHEN

. UNIVERSITY
RNNSs: Intuition
* Training this on a
lot of sentences y0
would give us a
language model. T
. I.e.,gwayto ho
" predict
i p(next word |
g previous words) T
E’ X0
g

. 18
Slide credit; Andrej Karpathy, Fei-Fei Li B. Leibe

RNNSs: Intuition

* Training this on a
lot of sentences
would give us a
language model.

* |.e.,,away to
predict

p(next word |
previous words)

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Slide credit: Andrej Karpathy, Fei-Fei Li

yO
hO
x0 X1
<START> “cat”
B. Leibe

ACHEN
U _“ Lh In ﬂL U \L

sample!

19

RWTHAACHEN

. UNIVERSITY
RNNSs: Intuition
* Training this on a
lot of sentences y0 y1
would give us a
language model. T T
. I.e.,gwayto 0 s 1
" predict
i p(next word |
g previous words) I I
% x0 X1
-.% <START> “cat”
=

. 20
Slide credit; Andrej Karpathy, Fei-Fei Li B. Leibe

RWTHAACHEN

. UNIVERSITY
RNNSs: Intuition
* Training this on a
lot of sentences y0 y1
would give us a
language model. T T
* |.e.,,awayto o Ll 1 sample!
" predict
i p(next word |
g previous words) I I
% x0 X1 X2 /
-% <START> “Cat” “Sat”
=

. 21
Slide credit; Andrej Karpathy, Fei-Fei Li B. Leibe

(00)
S
| S
(O]
e
=
(@)]
£
C
| S
©
(]
—
(O]
£
O
(@)
©
=

RNNSs: Intuition

* Training this on a
lot of sentences
would give us a
language model.

* |.e.,,away to
predict

p(next word |
previous words)

Slide credit: Andrej Karpathy, Fei-Fei Li

yO y1 y2
hO — h1 h2
%0 X1 X2
<START> “Cat" “Sat”

B. Leibe

RWTHAACHEN
UNIVERSITY

22

RWTHAACHEN

. UNIVERSITY
RNNSs: Intultion
* Training this on a
lot of sentences y0 y y2
would give us a sample!
language model. T T T

° l.e.,,awayto
predict

p(next word |

previous words) x I I /

x0 X1 X2 X3
<START> “Cat” ﬁsatﬂ ::Onn

(00)
S
| S
(O]
e
=
(@)]
=
c
| S
©
(]
-1
(O]
=
e
(@)
©
=

Slide credit; Andrej Karpathy, Fei-Fei Li B. Leibe

RNNSs: Intuition

* Training this on a
lot of sentences
would give us a
language model.

* |.e.,,away to
predict

p(next word |
previous words)

(00)
S
| S
(O]
e
=
(@)]
£
C
| S
©
(]
—
(O]
£
O
(@)
©
=

Slide credit: Andrej Karpathy, Fei-Fei Li

RWTHAACHEN

UNIVERSITY
y0 y1 y2 y3
hO > h1 h2 —> h3
%0 X1 X2 X3
‘cat” ‘sat” ‘on”

B. Leibe

24

RWTHAACHEN

. UNIVERSITY
RNNSs: Intultion
- . |
* Training this on a sample!
lot of sentences yO y1 y2 y3
would give us a
language model. T T T T
* le,awayto . ey ey (e
" predict
% p(next word |
g previous words) I I I I ¢
'_% <START> “Cat” “Sat" Hon" “mat”
=

LI

Slide credit; Andrej Karpathy, Fei-Fei Li B. Leibe

RWTHAACHEN
UNIVERSITY

samples <END>? Done!

RNNSs: Intuition

* Training this on a
lot of sentences yO y1 y2 y3 y4
would give us a
language model. T T T T T
. I.e.,{:lwayto 00—l h1 = 1o] ha =] ha
" predict
% p(next word |
g previous words) x x x I I
'_% <START> “cat” “sat” “on” “mat”
=

£V

Slide credit; Andrej Karpathy, Fei-Fei Li B. Leibe

RWTHAACHEN
UNIVERSITY

Topics of This Lecture

* Learning with RNNs
> Formalization
> Comparison of Feedforward and Recurrent networks
> Backpropagation through Time (BPTT)

(00)
S
| S
(O]
e
=
(@)]
£
C
| S
©
(]
—
(O]
£
O
(@)
©
=

27
B. Leibe

RNNSs: Introduction

* RNNSs are regular NNs whose
hidden units have additional
forward connections over time.

> You can unroll them to create T T T T
a network that extends over
time. o> T

> When you do this, keep in mind T T T T

that the weights for the hidden
units are shared between
temporal layers.

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

28

Image source: Andrej Karpathy

B. Leibe

RNNSs: Introduction

* RNNSs are very powerful,
because they combine two
properties:

> Distributed hidden state that T T T T

allows them to store a lot of
information about the past > W

efficiently.

> Non-linear dynamics that allows T T T T
them to update their hidden
state in complicated ways.

* With enough neurons and time, RNNs can compute
anything that can be computed by your computer.

(e 0]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

. 29
Slide credit: Geoff Hinton B. Leibe Image source: Andrej Karpathy

RWTH
Feedforward Nets vs. Recurrent Nets

* Imagine a feedforward network

> Assume there is a time delay
of 1 in using each connec- time %,
tion.

= This is very similar to how
an RNN works.

> Only change: the layers time ¢,
share their weights.

— The recurrent net is just a feedforward net that keeps
reusing the same weights.

(e 0]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

30

B. Leibe

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

RWNTH
Backpropagation with Weight Constraints

* Itis easy to modify the backprop algorithm to incorporate
linear weight constraints

- Toconstrain w; = wy, we start with the same initialization
and then make sure that the gradients are the same:

V’wl = V’wg

> We compute the gradients as usual and then use
OFE OF
- _|_ -
8w1 (9102

for both w, and w,.

Slide adapted from Geoff Hinton B. Leibe

31

Backpropagation Through Time (BPTT)

* Formalization

yt—l yt yt+1
> Inputs X, 4 T
h—l h ht+1
> Outputs Y, @ ‘@ P
. . W
. Hidden units h, — @ o @ W e
. ® - @ @]
- Initial state h, @) O O
. . Xt-1 X X1 H
> Connection matrices r
c -W,, l0o000| (e0cee| (0000
~ W
£
=
3 > Configuration h; =0 (Wypx; + Wphy 1 +b)
()
£ yt = softmax (Wp,h;)
©
= 32

B. Leibe Image source: Richard Socher

Recap: Backpropagation Algorithm
0E

(F)
O ©7 O xoobe wlp)
) — (k) (k) - (k) (k)
Zj(k) azj 6Zj ayj 0z z; ay
(k-1)
O @ O» g o L
@ S
ayi(k_l) 6y(k 2 az(k) 7 Jt azj(k)

2

10 O 0.2 e

= J _ o (k-1)

= (k DT ® TN 5
= :

i * Efficient propagation scheme

% > yl.(k_l) Is already known from forward pass! (Dynamic Programming)
= = Propagate back the gradient from layer £ and multiply with y(k 2 s

Slide adapted from Geoff Hinton B. Leibe

Backpropagation Through Time (BPTT)

Y1l'E1 Yt_llEt—l Ytl E,
hg h, h,_; h,
g >
Whh Whh Whh
‘Wmh ‘Wa?h ‘th
| |] | |
X1 Xt—1 X4

* Error function
> Computed over all time steps: F = Z E;
1<t<T

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

' 34
B. Leibe

RWTHAACHEN
Backpropagation Through Time (BPTT)
Y1lE1 Yt—llEt_l YtlEt
ho h1 ht—l
Whh
W | |
= I I | |
E X1 Xt—1 Xt
= . Backpropagated gradient
£ . aht . OE, OFE; Oh,
§ > or weig wij. &wij — aht 8107;3'
= 35

B. Leibe

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Backpropagation Through Time (BPTT)

Y1lE1 Yt—llEt_l ytl E,
oh;
h0 hl Oh; 4
>
Win
W N N
|] | |] | | |

X1 Xt—1 Xt

* Backpropagated gradient

- he OF; OF; Ohy +6Et oh; Oh;
> or wei o —
J ww 8wij 8ht 8wz—j 8ht 8ht_1 8w7;j

B. Leibe

36

(00)
S
| S
(O]
e
=
(@)]
k=
C
| S
©
(]
—
(O]
<
e
(@)
©
=

RWTH
Backpropagation Through Time (BPTT) "

Y1 yi— 1
El By by
h Ohg (9ht 1
0 Bhl 8ht 1
Wi,

ngh‘
I] | |] | |] |
X1 Xt—1 Xt

* Backpropagated gradient
0L, OE; Oh; N 0OE; Oh; 0Oh;_;

> For weight w, ..

> In general:

OE; OF; 0hy 0" hy
8wij N |<h< 8ht 6hk 8’6033

" Owy; Ohy Qwi; - Ohy Ohy_y Owyy |

37

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Backpropagation Through Time (BPTT) o

Y1 yi— 1
l,El Ey 4 by
h Ohg aht 1
0 ohq aht 1
Win
W:Bh‘
I] I I] I I] I

X1 Xt—1 Xt

* Analyzing the terms

| | OE; OE,; Ohs 0" hy,
> FOI‘ We|ght ww 8w23 o 1<§<t (8ht ahk 871]1]

- This is the “immediate” partial derivative (with h,_, as constant)

38

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Backpropagation Through Time (BPTT) B

Y1 Yi— 1
'El Ey 4 E,
h dhg 5ht 1
0 ohq aht :
Wy

th‘
[1 | — ——
X1 Xt—1 X4

* Analyzing the terms

. OF; (8Et Oh a+hk)
- For weight w;;:
1<k<

wn, Oht Ohj, Ow;
Oh Oh,
- Propagation term: (ﬁ: 11 Oh;_4

t>i>k

39

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

RWTH
Backpropagation Through Time (BPTT)

° Summary
> Backpropagation equations

1<t<T
OB, _ 3 (8Et Ohy 8*%)
Ow; S Oht Ohy, Ow;;
h; .
Oht — 0 - H W, diag (o' (h;_1))
Ohp L 0h;, 4 .
t>1>k t>i>k

~ Remaining issue: how to set the initial state h,?
= Learn this together with all the other parameters.

B. Leibe

40

RWTHAACHEN
UNIVERSITY

Topics of This Lecture

* Problems with RNN Training
> Vanishing Gradients
> Exploding Gradients
> Gradient Clipping

(00)
S
| S
(O]
e
=
(@)]
£
C
| S
©
(]
—
(O]
£
O
(@)
©
=

) 41
B. Leibe

Problems with RNN Training

* Training RNNs is very hard

> As we backpropagate through the layers, the magnitude of the
gradient may grow or shrink exponentially

= Exploding or vanishing gradient problem!

> In-an RNN trained on long sequences (e.g., 100 time steps) the
gradients can easily explode or vanish.

> Even with good initial weights, it is very hard to detect that the
current target output depends on an input from many time-steps ago.

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

42

B. Leibe

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Exploding / Vanishing Gradient Problem

* Consider the propagation equations:

0L, _ Z OE; Ohy O hy,
8w@-j 8ht 6hk 8’11)7;3'

1<k<t

Ohs
Ohy,

H W pdiag (o

t2i>k t>i>k
T\
- (Whh)
» ift goestoinfinityandl =t — k.

= We are effectively taking the weight matrix to a high power.

> The result will depend on the eigenvalues of W, .

— Largest eigenvalue > 1 = Gradients may explode.
— Largest eigenvalue < 1 = Gradients will vanish.

— This is very bad...
B. Leibe

'(hi—1))

43

Why Is This Bad?

* Vanishing gradients in language modeling

> Words from time steps far away are not taken into consideration
when training to predict the next word.

* Example:

> ,Jane walked into the room. John walked in too. It was late in the
day. Jane said hi to ¢

— The RNN will have a hard time learning such long-range
dependencies.

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

44

Slide adapted from Richard Socher B. Leibe

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Gradient Clipping

* Trick to handle exploding gradients
> If the gradient is larger than a threshold, clip it to that threshold.

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

> threshold then

threshold -

S el o

> This makes a big difference in RNNs

Slide adapted from Richard Socher B. Leibe

45

Gradient Clipping Intuition

* Example
> Error surface of a single RNN neuron
> High curvature walls
> Solid lines: standard gradient descent trajectories
> Dashed lines: gradients rescaled to fixed size

_ 46
Slide adapted from Richard Socher B. Leibe Image source: Pascanu et al., 2013

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

Handling Vanishing Gradients

* Vanishing Gradients are a harder problem
> They severely restrict the dependencies the RNN can learn.
> The problem gets more severe the deeper the network is.

> It can be very hard to diagnose that Vanishing Gradients occur
(you just see that learning gets stuck).

* Ways around the problem
> Glorot/He initialization (more on that in Lecture 21)
> RelLU
> More complex hidden units (LSTM, GRU)

(e 0]
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

47

B. Leibe

RelLU to the Rescue

* |dea
- Initialize W, to identity matrix
> Use Rectified Linear Units (ReLU)

g(a) = max{0,a}

i Effe Ct 100 Pixel-by—pixel permuted MNIST
. » The gradient is propagated with
= a constant factor
(O} 70|
= dg(a) 1, a>0
E, da 0, else
é 301
® . . . e
4 = Huge difference in practice! /i");?‘“"“
GC) 107
E O0 1 2 3 4 ‘;‘3 6 7 8 9 10
8 Steps 10
=

B. Leibe

Slide adapted from Richard Socher

References and Further Reading

°* RNNSs

> R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training
recurrent neural networks, JMLR, Vol. 28, 2013.

> A. Karpathy, The Unreasonable Effectiveness of Recurrent Neural
Networks, blog post, May 2015.

0
S
| S
(O]
e
=
©))
=
c
| S
©
(]
-1
(O]
£
e
o
©
=

49

B. Leibe

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

