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Course Outline

¢ Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

¢ Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Random Forests

¢ Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Topics of This Lecture

* Recap: Tricks of the Trade

¢ Convolutional Neural Networks
» Neural Networks for Computer Vision
» Convolutional Layers
» Pooling Layers

¢ CNN Architectures
» LeNet
» AlexNet
» VGGNet
» GoogLeNet
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Recap: Data Augmentation
¢ Effect

- Much larger training set W “ n \ "l " ﬁ
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Augmented training data
5

¢ During testing

» When cropping was used
during training, need to
again apply crops to get
same image size.
Beneficial to also apply
flipping during test.
Applying several ColorPCA
variations can bring another
~1% improvement, but at a
significantly increased runtime.
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(from one original image)
Jage souce: Lucas Beve
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Recap: Reducing the Learning Rate

¢ Final improvement step after convergence is reached

» Reduce learning rate by a
factor of 10.

Reduced

5 g
» Continue training for a few 5 leaming rate
epochs. =y
» Do this 1-3 times, then stop =
training. g
* Effect Epoch

» Turning down the learning rate will reduce
the random fluctuations in the error due to
different gradients on different minibatches.

=4

¢ Be careful: Do not turn down the learning rate too soon!
» Further progress will be much slower/impossible after that.

Machine Learning Wint¢

de adapted from Geoff Hinton B, Leibe

RWTHAACHE
Recap: Normalizing the Inputs
¢ Convergence is fastest if el
Mean
» The mean of each input variable 3 Cancallaton
over the training set is zero. K o
>
» The inputs are scaled such that > Yy
all have the same covariance. Euparaion
» Input variables are uncorrelated 4 R
if possible. Equalization
> .'.' :'o >

¢ Advisable normalization steps (for MLPs only, not for CNNs)
» Normalize all inputs that an input unit sees to zero-mean,
unit covariance.
» If possible, try to decorrelate them using PCA (also known as
Karhunen-Loeve expansion).
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Recap: Commonly Used Nonlinearities

I

g(a) = o(a)

1
TFexpl—a}

¢ Hyperbolic tangent
gla) = tanh(a)

2 = 20(2a) — 1

2

E" ¢ Softmax

§ __exp{-a}
9a) = =—————

P @)= el a)

E

=
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Recap: Commonly Used Nonlinearities (2)

* Rectified linear unit (ReLU) .
g(a) = max{0, a} sl

¢ Leaky RelLU
g(a) = max{fBa,a} B €0.01,0.3]

» Avoids stuck-at-zero units
» Weaker offset bias

* ELU
a, a=0
g(a)={e‘l—1, a<0
» No offset bias anymore

» BUT: need to store activations
B. Leibe
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Recap: Glorot Initialization  [clorot & Bengio, ‘10]

¢ Variance of neuron activations
» Suppose we have an input X with n components and a linear
neuron with random weights W that spits out a number Y.
» We want the variance of the input and output of a unit to be the
same, therefore n Var(W;) should be 1. This means

1 1
Var(W;) = — = —
ar(Wy) = — o~
= » Or for the backpropagated gradient
5] 1
E Var(W;) =
;cn (W) Tout.
E » As a compromise, Glorot & Bengio propose to use
3 ) 2
o Var(W) = ———
£ Tin + Nout
[=}
(o]
=

= Randomly sample the weights with this variance. That's it.
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Recap: He Initialization [He et al., “15]

¢ Extension of Glorot Initialization to ReLU units
» Use Rectified Linear Units (ReLU)
gla) = max {0,a}
» Effect: gradient is propagated with
a constant factor

g(a) [ 1, a>0
da 0, else

| * Same basic idea: Output should have the input variance
%, » However, the Glorot derivation was based on tanh units, linearity
E assumption around zero does not hold for ReLU.

E » He et al. made the derivations, proposed to use instead

2 L2

= Var(W) = =

£ "
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Recap: Batch Normalization [loffe & Szegedy '14]

* Motivation
» Optimization works best if all inputs of a layer are normalized.

¢ Idea
» Introduce intermediate layer that centers the activations of
the previous layer per minibatch.
» l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients
» Complication: centering + normalization also needs to be done
at test time, but minibatches are no longer available at that point.

— Learn the normalization parameters to compensate for the expected
bias of the previous layer (usually a simple moving average)

* Effect

» Much improved convergence (but parameter values are important!)
» Widely used in practice
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Recap: Dropout [Srivastava, Hinton '12]

a) Standard Neural Net

* ldea
Randomly switch off units during training.

» Change network architecture for each data point, effectively training
many different variants of the network.

When applying the trained network, multiply activations with the
probability that the unit was set to zero.

= Greatly improved performance
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Topics of This Lecture Neural Networks for Computer Vision

* How should we approach vision problems?

¢ Convolutional Neural Networks
» Neural Networks for Computer Vision
» Convolutional Layers

. Pooling Layers Face Y/N?
g ©
5] g . . .
§ £ ¢ Architectural considerations
El E » Input is 2D = 2D layers of units
£ £ » No pre-segmentation = Need robustness to misalignments
[ o
= = » Vision is hierarchical = Hierarchical multi-layered structure
£ £ . Vision is difficult = Network should be deep
© ©
= 13 = 14
B. Leibe B. Leibe
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Why Hierarchical Multi-Layered Models? Why Hierarchical Multi-Layered Models?
* Motivation 1: Visual scenes are hierarchically organized * Motivation 2: Biological vision is hierarchical, too
Object Face Object Face Inferotemporal
T T T T cortex
Object parts Eyes, nose, ... Object parts Eyes, nose, ... V. different
T T textures
© Primitive features Oriented edges © Primitive features Oriented edges V1: simple and
= T T & T T complex cells
.E . . E . . Photoreceptors,
] Input image Face image ] Input image Face image retina
2 2
£ £
3 3 IR
£ 2
S S
s s
! 15 16
de adaoted from Richard Turner B. Leibe de adapted from Richard Turper B. Leibe
RWTHAACHE RWTHAACHE

Hubel/Wiesel Architecture Why Hierarchical Multi-Layered Models?

* D. Hubel, T. Wiesel (1959, 1962, Nobel Prize 1981)

» Visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells

* Motivation 3: Shallow architectures are inefficient at
representing complex functions

TN
%

Hubel & Weisel Teatural hierarchy ' ,,‘.
topographical mapping hyFer—cnmp\ex high level .:‘:.: >.
R Y > XPX]

complex cells i D

TN
2\,
V%

&
@ mid level
D
P

= =

g g J

E 4 E [>5

2 i 2 BN

> simple cells . > o ofhe

i low level €

© ©

it 3 An MLP with 1 hidden layer However, if the function is deep,
% :5:’ can implement any function a very large hidden layer may
,Etg ,Etg (universal approximator) be required.

. 18
lide credit- Syetlana | azebnik Rl Ferquy 8. Leibe ide adapted from Richard Tirmer B Leibe




UNIVERS
What’'s Wrong With Standard Neural Netwo‘rks?

* Complexity analysis
» How many parameters does
this network have?

4l =30+ D

v«}\
20
&)

3 n?
» For a small 32x32 image "1"\‘
6] =3- 32" + 322 &= 3 10° .64.‘/. ,
pe>die
o 15>
i+ Consequences .<’ @
s . Hard to train ‘%4( n®
E’ » Need to initialize carefully .“. 0
s &y xrp
i » Convolutional nets reduce the
% number of parameters!
©
= 20

de adapted from Richard Turner B. Leibe

Ut
Convolutional Networks: Intuition

¢ Fully connected network
» E.g. 1000x1000 image
1M hidden units
= 1T parameters!

¢ lIdeas to improve this
» Spatial correlation is local

Machine Learning Winter ‘18
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lide adapted from Marc'Aurelio Ranzatg B. Leibe Jmage source. Yann LeCu

Convolutional Networks: Intuition

¢ Convolutional net

» Share the same parameters
across different locations

» Convolutions with learned
kernels
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Jmage source. Yann L eCuy

lide adapted from Marc'Aurelio Ranzatg 8. Leibe

UNIVERS!
Convolutional Neural Networks (CNN, ConvNet)

C3:1, maps 16@10x10

G1: feature maps S4:1. maps 16@5x5
meur 2828 s

521 maps.
6@14x14

|
| Full conection | Gaussian comestons

ut Full connection

* Neural network with specialized connectivity structure
~ Stack multiple stages of feature extractors
» Higher stages compute more global, more invariant features
~ Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

Machine Learning Winter ‘18
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de credit Svetlana | azebnik B Leibe

Convolutional Networks: Intuition

¢ Locally connected net

» E.g. 1000x1000 image
1M hidden units
10x10 receptive fields

= 100M parameters!

\() * ldeas to improve this

» Spatial correlation is local
» Want translation invariance

Machine Learning Winter ‘18
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ide adapted from Marc'Aurelio Ranzatg B, Leibe

Image source. Yann L eCu

Convolutional Networks: Intuition

¢ Convolutional net

» Share the same parameters
across different locations

» Convolutions with learned
kernels

Learn multiple filters
» E.g. 1000x 1000 image

100 filters
10x10 filter size

= 10k parameters

* Result: Response map
» size: 1000x1000x 100
» Only memory, not params!

Machine Learning Winter ‘18
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ide adapted from Marc’Aurelio Ranzatg B. Leibe Jmage source. Yann 1 eCu



http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

RWTH/ACHEN RWTH/ACHEN
Important Conceptual Shift Convolution Layers
* Before
. Example
Hidden neuron image: 32x32x3 volume
in next layer Before: Full connectivity
32x32x3 weights
— Now: Local connectivity
" oulputiayer One neuron connects to, e.g.,
I per hidden layer 5x5x3 region.
= NG Bl Y 2 = Only 5x5x3 shared weights.
E E 3
= =
= ElN Note: Connectivity is
5 g » Localinspace (5x5 inside 32x32)
[} o .
._g ‘g » But full in depth (all 3 depth channels)
© ©
= =
26 27
de credit FeiFei |i Andre] Karpath, B. Leibe de adapted from FeiFeil | Andrej Karpath B. Leibe
RWTH/ACHEN RWTH/ACHEN
Convolution Layers Convolution Layers
Naming convention:
%2 depth dimension 2
—_—
E ﬂ @ ‘ HEIGHT
before: “hidden layer of 200 neurons” /wmu
now: “output volume of depth 200" J—
2 32 K 2
8 8
£ = 3
= =
"=+ All Neural Net activations arranged in 3 dimensions "= * All Neural Net activations arranged in 3 dimensions
© ©
g » Multiple neurons all looking at the same input region, g » Multiple neurons all looking at the same input region,
2 stacked in depth 2 stacked in depth
£ =
é é » Form a single [1x 1xdepth] depth column in output volume.
de adanted from FeiFeil i Andrei Karnath B. Leibe » de credit FeiFei 1i Andrei Karnath B. Leibe *
RWTHAACHE RWTHAACHE
Convolution Layers Convolution Layers
Example: Example:
7x7 input 7x7 input
assume 3x 3 connectivity assume 3x 3 connectivity
stride 1 stride 1
= =
5 3
£ =
2 ) . . 2 . . .
‘2 * Replicate this column of hidden neurons across space, = * Replicate this column of hidden neurons across space,
£ N . £ . .
5 with some stride. s with some stride.
2 2
S S
o i)
= =
} 31 32
lide credit- EeiEei | | Andrei Karpath, B. Leibe ide credit Eeifei i Andrei Karpath B. Leibe




Machine Learning Winter ‘18

Machine Learning Winter ‘18

Convolution Layers

Example:

7x7 input

assume 3x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.

lide credit: FeiFei | i Andrej Karpathy B Leibe

33

= 5x5 output

* Replicate this column of hidden neurons across space,
with some stride.

de credit FeiFei |i Andrei Karpath B Leibe

RWTH/ACHEN
Convolution Layers
Example:
7x7 input
assume 3x3 connectivity
stride 1

35
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RWTHAACHE
Convolution Layers
Example:
7x7 input
assume 3x 3 connectivity
stride 1

= 5x5 output

What about stride 2?

* Replicate this column of hidden neurons across space,
with some stride.

lide credit: FeiFei 1 i Andrei Karpath 8. Leibe

37
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RWTHAACHET
Convolution Layers
Example:
7x7 input
assume 3x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.

34
de credit FeiFei || Andrej Karpath B Leibe

RWTHAACHET
Convolution Layers
Example:
7x7 input
assume 3x3 connectivity
stride 1

= 5x5 output

What about stride 2?

* Replicate this column of hidden neurons across space,
with some stride.

36
de credit: FeiFei 1§ Andrei Karpath B, Leibe
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RWTHAACHE
Convolution Layers
Example:
7x7 input
assume 3x 3 connectivity
stride 1

= 5x5 output

What about stride 2?
= 3x3 output

¢ Replicate this column of hidden neurons across space,
with some stride.

ide credit: FeiFeil i Andrei Karpath B Leibe




0/ 0/0/0/0

o o o o

with some stride.

Machine Learning Winter ‘18

ide credit- FeiFei | i Andrej Karpathy

Convolution Layers

* Replicate this column of hidden neurons across space,

* In practice, common to zero-pad the border.
» Preserves the size of the input spatially.

B. Leibe

RWTHAACHET
UNIVERSITY]

Example:

7x7 input

assume 3x3 connectivity
stride 1

= 5x5 output

What about stride 2?
= 3x3 output

39

Effect of Multiple Convolution Layers

RWTHAACHET
UNIVERSITY]

Low-Level
Feature

Mid-Level
Feature

High-Level Trainable
e —

Feature Classifier
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Feature vi: ion of ¢ net trained on from [Zeiler & Fergus 2013]
” 41
lide credit: Yann leCun B. Leibe
UNIVERSITY|

Convolutional Networks: Intuition

B. Leibe

Let's assume the filter is an
eye detector
» How can we make the
detection robust to the exact
location of the eye?

Solution:

» By pooling (e.g., max or avg)
filter responses at different
spatial locations, we gain
robustness to the exact spatial
location of features.

RWTHACOE
— . . UNIVERSITY
Activation Maps of Convolutional Filters
L3@7 WG SRR DN A A R SN NSRS
‘one filter = one depth slice (or activation map) 5x5 filters

Each activation map is a depth
slice through the output volume.

Activation maps

Machine Learning Winter ‘18
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ide adapted from EeiFei | i Andrej Karpath, B. Leibe

RWTHACHE
. i UNIVERSITY
Convolutional Networks: Intuition

¢ Let's assume the filter is an
eye detector
» How can we make the

detection robust to the exact
location of the eye?

Machine Learning Winter ‘18
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. UNIVERSITY|
Max Pooling
Single depth slice
X 111,24
max pool with 2x2 filters
5|67 8 and stride 2 6|8
32|10 3|4
11234
C
3 - .
i
2 y
2
=| * Effect:
@
3 ~ Make the representation smaller without losing too much information
o
£ » Achieve robustness to translations
£
. 44
ide adapted from FeiFeil i Andrei Karpathy B. Leibe




Max Pooling

Single depth slice

X 11124
max pool with 2x2 filters
5|67 8 and stride 2 6|8
3/12(1/|0 3| 4
11234
Y
* Note

» Pooling happens independently across each slice, preserving the
number of slices.

Machine Learning Winter ‘18

de adapted from FeiFei | i Andrej Karpath, B Leibe
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L,
CNNs: Implication for Back-Propagation

¢ Convolutional layers
» Filter weights are shared between locations
= Gradients are added for each filter location.

46

B. Leibe

Topics of This Lecture

* CNN Architectures
» LeNet
» AlexNet
» VGGNet
» GoogLeNet

Machine Learning Winter ‘18

B. Leibe
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ImageNet Challenge 2012

* ImageNet
» ~14M labeled internet images
» 20k classes

» Human labels via Amazon -
Mechanical Turk Y

IMAGNE

¢ Challenge (ILSVRC)
» 1.2 million training images
» 1000 classes
» Goal: Predict ground-truth
class within top-5 responses

» Currently one of the top benchmarks in Computer Vision

[Deng et al., CVPR'09]
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CNN Architectures: LeNet (1998)

€3:1. maps 16@10x10

G1: feature maps S4:1. maps 16@5x5
meur 2828 s

3232 52 1. maps.
6@14x14

|
' | Ful condection | Gaussian comestons
lut Convolut Full connection

« Early convolutional architecture
» 2 Convolutional layers, 2 pooling layers
» Fully-connected NN layers for classification
» Successfully used for handwritten digit recognition (MNIST)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

48

ide credit- Svetlana | azebnik. B. Leibe

T Max
pooling

ax
pooling

¢ Similar framework as LeNet, but
» Bigger model (7 hidden layers, 650k units, 60M parameters)
» More data (106 images instead of 103)
» GPU implementation
~ Better regularization and up-to-date tricks for training (Dropout)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012.

L A Kiizhouskor | Suusks

50

WG Hinton NIPS 201



http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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ILSVRC 2012 Results

TWTHAACHE
CNN Architectures: VGGNet (2014/15)

—

CNN Architectures: VGGNet (2014/15)

* Main ideas

AlexNet . | conv |:Convolutional layer
= g Max-pooling I
é g g E ’g‘ g a3 Pool lax-pooling layer
L EEEIE ¥ fc | :Fully-connected layer
% % % % ~’<§ %S % Softmax | : Softmax layer
SR 2 %2 & o3 3
VGGNet
e 8
= o o
s AR 30 A0 A St
= g
= s 5 5 3 3 € &
2 2 2 2 2 2 2
* AlexNet almost halved the error rate £ 3 RS 2 3 3 - S
[
» 16.4% error (top-5) vs. 26.2% for the next best approach g
- . . Q
= A revolution in Computer Vision £ K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale
= -
. . . . . . g lo| ,
» Acquired by Google in Jan ‘13, deployed in Google+ in May ‘13 < Image Recognition, ICLR 2015
B. Leibe B. Leibe 5 Hirokatsy Kat; 5\?

Comparison: AlexNet vs. VGGNet

* Receptive fields in the first layer
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» Deeper network » AlexNet: 11x11, stride 4
» Stacked convolutional » Zeiler & Fergus: 7x7, stride 2
layers with smaller ~ VGGNet: 3x3, stride 1
filters (+ nonlinearity)
» Detailed evaluation
of all components * Why that?
» If you stack a 3x3 on top of another 3x3 layer, you effectively get
= a 5x5 receptive field.
. -
Results 2 » With three 3x3 layers, the receptive field is already 7x7.
- Improved ILSVRC top-5 = . But much fewer parameters: 3-32 = 27 instead of 72 = 49.
error rate to 6.7%. 2 - ! L -
3| comasrz € ~ In addition, non-linearities in-between 3x3 layers for additional
i2 s L
Mainly used % discriminativity.
.{5:,
s
B. Leibe . 54 B. Leibe 55
RWTHAACHE RWTHAACHE
CNN Architectures: GooglLeNet (2014/2015) GoogLeNet Visualization
S I o i s [l e ) | 1] lsalsn
il ) ol : i Bifgpndgplie
- il & T LR BRR
. e gafua] 10304 B | EARE
il L ! fa7ad s
(a) Inception module, naive version (b) Inception module with dimension reductions AR L]
@ i Convolution
N ~§ Irrlrrl:oestllltl);n + copies Pooling
¢ Main ideas s Other
» “Inception” module as modular component E
» Learns filters at several scales within each module £ Auxiliary classification
% outputs for training the
C. Szegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions, £ lower layers (deprecated)
arXiv:1409.4842, 2014, CVPR'15, 2015. :E‘S
B. Leibe 56 B. Leibe 57



http://arxiv.org/pdf/1409.1556
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/43022.pdf

UNIVERSITY| . UNIVERSITY
Results on ILSVRC Newer Developments: Residual Networks
Method Ttop-T val_eror (%) [1op-5 val_error (%) 1op-3 test error (%9
VGG (2 nets. auli-crop f*dde"“ E.‘Tl-' [ 37 [ 68 6.8 | AlexNet,8layers =y VGG, 19 layers 5 GoogleNet, 22 layers mimm
[VGG (1 uet. muli-ciop & dense eval.) | 244 | 71 | 7.0 | (ILSVRC 2012) E; (ILSVRC 2014) A (ILSVRC 2014) ==
VGG (ILSVRC sul 7 nets, deuse eval) | 247 [ 73 [ 73 | ¥ + e —
GoogLeNel (Szegedy et al, 2013) (I uet) - 79 = + e
GoogLeNet (Szegedy e al, 2014) (7 nets) B 67 * ¥ F
MSRA (He et al.. 2014) (11 nets) - - 8.1 % o 4
MSRA (He et al., 2014) (1 net} 279 91 9.1 % L] ———
[Clarifai (Russakovsky et al.. 2014) (multiple nets) - - 7 e =l
[Clarifai (Russakovsky et al., 2014) (1 net) - 123 4 “Esss
Zeiler & Fergus (Zeiler & Fergus. 2013) (6 nets) 360 K : o
Pl | Zeiler & Teigus (Zetler & Feigus, 2013) (1 net) 375 16.1 © i =
BB | OverFeat (Senmaet et al.. 2019) (7 nets) 340 136 < sy g
§o8 | OverFeat (Sermanet et al.. 2014) (1 net) 337 - i} . e
I8 [Krizhevsky et al. (Krizhevsky et al.. 2012) (5 nets) 381 164 £ [ — =
Bl [Krizhevsky etal {Krizhevsky et al, 2012) (1 net) 107 - = L 3 =
2 2 £l =
£ L £ + =
5l * VGGNet and GoogLeNet perform at similar level 3
3 3
2 » Comparison: human performance ~5% [Karpathy] 2
s b 012014/09/02IhatHearmed: ing-againsta-convet E
= M M =
58 59
B. Leibe . B. Leibe
. UNIVE UNIVERSITY|
Newer Developments: Residual Networks ImageNet Performance
282
AlexNet, 8 layers $ VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)

¢ Core component
~ Skip connections

258
152 layers
A
\‘ 16.4
\ R S8
1 22 layers | 19 layers.
67 7.3

© ©
T ; x T
£ bypassing each layer £
= » Better propagation of = 357 o | stayers || stayers shallow
g gradients to the deeper F(x) 2 . 1 S N _. .
5 layers 4 - = N =,
3 5 . 3 ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
o > We ILanegzg this o ResNet  GoogleNet VGG MexNet
£ mechanism in more £
H(x)=F(x)+ ificati R
é detail later... () (x)+x é ImageNet Classification top-5 error (%)
B. Leibe B. Leibe 61
RWTHAACHE VTHAACHET]
. UNIVERSITY] UNIVERSITY]
Understanding the ILSVRC Challenge
* Imagine the scope of the I M H‘ G E N E T
problem!
. ) g ——— ]
» 1000 categories e b ]
» 1.2M training images
» 50k validation images
¢ This means...
@ » Speaking out the list of category ©
5 names at 1 word/s... 5
£ i =
s ...takes 15mins. s
g » Watching a slideshow of the validation images at 2s/image... g
E ..takes a full day (24h+). E
2 » Watching a slideshow of the training images at 2s/image... 2
£ £
8 ...takes a full month. 8
= =
} 62 63
B. Leibe
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TWTHAACHE
. . UNIVERSITY]
More Finegrained Classes

PASCAL

Persian cat Siamese cat

i

-
keeshond miniature schnauzer standard schnauzer giant schnauzer

Egyptian cat

tabby lynx

dogs

dalmatian

64
B. Leibe
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TWTHAACHE
. Lo UNIVERSITY]
Quirks and Limitations of the Data Set
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¢ Generated from WordNet ontology
~ Some animal categories are overrepresented
» E.g., 120 subcategories of dog breeds

= 6.7% top-5 error looks all the more impressive
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