

Topics of This Lecture Recap: Tricks of the Trade Convolutional Neural Networks Neural Networks for Computer Vision Convolutional Layers Pooling Layers CNN Architectures LeNet AlexNet VGGNet GoogLeNet

Recap: Glorot Initialization [Glorot & Bengio, '10] • Variance of neuron activations • Suppose we have an input X with n components and a linear neuron with random weights W that spits out a number Y. • We want the variance of the input and output of a unit to be the same, therefore n $Var(W_i)$ should be 1. This means $Var(W_i) = \frac{1}{n_{in}}$ • Or for the backpropagated gradient $Var(W_i) = \frac{1}{n_{out}}$ • As a compromise, Glorot & Bengio propose to use $Var(W) = \frac{2}{n_{in} + n_{out}}$ \Rightarrow Randomly sample the weights with this variance. That's it.

Method	top-1 val. error (%) to	op-5 val. error (%)	top-5 test error
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)		7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)			8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)			11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)		16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-
VGGNet and GoogLeNet Comparison: human perforn http://karpathy.github.io/2014/09/02/what-i-learn	mance ~5% [Ka	arpathy]	n-imagenet/

