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Topics of This Lecture

* Recap: Nonlinear Support Vector Machines

* Analysis
» Error function

* Applications

* Ensembles of classifiers
» Bagging
» Bayesian Model Averaging

* AdaBoost
> Intuition
» Algorithm
» Analysis
» Extensions
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Recap: SVM — Dual Formulation
¢ Maximize
N 1 N N
Ly(a) =) ay, 5 Z Z An@mtntm (X5 Xn)
n=1 n=1m=1

under the conditions

0 Vn

Y

Qan

N
§ anly
n=1

0

* Comparison
» L, is equivalent to the primal form L,, but only depends on a,,.
» L, scales with O(D?).
» L, scales with O(NN®) — in practice between O(IN) and O(N?).
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ide adapted from Bernt Schiele B. Leibe

Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning

» Foundations
» Convolutional Neural Networks E‘. Lr

» Recurrent Neural Networks
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Recap: Support Vector Machine (SVM)

* Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

» Up to now: consider linear classifiers

wix+b=0

* Formulation as a convex optimization problem
» Find the hyperplane satisfying

1 2
argmin [Iw]|
under the constraints
ty(WTx, +b) >1 Vn
based on training data points x,, and target values ¢, € {—1,1}
4
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Recap: SVM for Non-Separable Data

* Slack variables
» One slack variable £, > 0 for each training data point.

* Interpretation
» &, = 0 for points that are on the correct side of the margin.
» &, = |t, — y(x,)| for all other points.

Point on decision
boundary: §, =1

Misclassified point:
£ >1

> We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

B. Leibe
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Recap: SVM — New Dual Formulation

* New SVM DuaI Maximize

N N
= Z p — Z Z Unmtnton(XE%,)
n=1m=1

N =

under the conditions o
This is all

0- ay,- C that changed!

N
Zantn =0
n=1

* This is again a quadratic programming problem
= Solve as before...

Machine Learning Winter ‘18

ide adapted from Bernt Schiele B. Leibe

Recap: The Kernel Trick

* Important observation
» ¢(x) only appears in the form of dot products ¢(x)T¢é(y):

y(x) = wio(x) +b

N
=) anta(x)"$(x) +b
n=1

. Define a so-called kernel function k(x,y) = ¢(x)To(y).

» Now, in place of the dot product, use the kernel instead:
Zantnk Xp,X) +b

» The kernel functlon |mpI|C|tIy maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!
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Topics of This Lecture
* Analysis
» Error function
%
£
B. Leibe =
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Recap: Nonlinear SVMs
* General idea: The original input space can be mapped to

some higher-dimensional feature space where the training
set is separable:

de credit Raymond Moope,

TRWTH/ T
Recap: Nonlinear SVM — Dual Formulation

* SVM Dual: Maximize

N N N
L(tf(a) = Z ap — 5 Z Z (l,,(lmf,,fmj! (X,“ Xn)

n=1 n=1m=1

-

under the conditions

0- a, - C
N
Zantn =0
n=1

* Classify new data pomts usmg

Za,,t,,ﬁ. (%, %)+

n=1
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SVM — Analysis
* Traditional soft-margin formulation
2 “Maximize
eRD § R+ ‘WH +C Z &n the margin”

subject to the constraints
tay(xn) = 1-6,

“Most points should
be on the correct
side of the margin”

* Different way of looking at it
» We can reformulate the constralnts into the objective function.

mln HWH2 +C Z [1- tny(xn)]
we
n=1
L, regularizer
4 = max{0,z}.

de adapted from Clhyistonh | amoert B, Leibe

“Hinge loss”
where [z]
12
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Recap: Error Functions
E(zn.)

Ideal misclassification erro

t, e {-1,1}

Not differentiable! ——M — |

-2 3 N4 1 3" n = tny(%n)

¢ |deal misclassification error function (black)
» This is what we want to approximate,
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.

= We cannot minimize it by gradient descent. e st b ég
RWTH//CHE
Error Functions (Loss Functions)
E(z,) Ideal misclassification erro
Squared erro
Hinge error

Robust to outliers!

Not differentiable! — | '

/

Favors sparse

/’ solutions!
) . 0 - Y—="% = tny(xn)
* “Hinge error” used in SVMs
» Zero error for points outside the margin (z, > 1) = sparsity

» Linear penalty for misclassified points (z, < 1)

» Not differentiable around z,= 1 = Cannot be optimized directly.

B. Leibe

= robustness
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Jmage source: Bishop, 200¢
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Topics of This Lecture

* Applications

B. Leibe

17
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Recap: Error Functions

Ideal misclassification erro
Squared error

t,e {—1.1}

Sensitive to outliers!

Penalizes “too correct”
data points!

N // s
e
* Squared error used in Least-Squares Classification

» Very popular, leads to closed-form solutions.

» However, sensitive to outliers due to squared penalty.

» Penalizes “too correct” data points

= Generally does not lead to good classifiers. 14

Image source: Bishop, 2001

3 Zn = tny(xn)

SVM - Discussion

* SVM optimization function

N
. 1 2
i, 303 1= bl

n=1
L, regularizer

Hinge loss

* Hinge loss enforces sparsity

v

Only a subset of training data points actually influences the decision
boundary.

This is different from sparsity obtained through the regularizer!

There, only a subset of input dimensions are used.

v

Unconstrained optimization, but non-differentiable function.
Solve, e.g. by subgradient descent
Currently most efficient: stochastic gradient descent

v

v

16
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TOWTHACHET]
Example Application: Text Classification

* Problem:
» Classify a document in a number of categories

* Representation:

» “Bag-of-words” approach

» Histogram of word counts (on learned dictionary)
— Very high-dimensional feature space (~10.000 dimensions)
— Few irrelevant features

* This was one of the first applications of SVMs
» T.Joachims (1997)

18
B. Leibe
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Example Application: Text Classification Example Application: Text Classification
* Results: * This is also how you could implement a simple spam filter...
SVM (poly) SVM (:bf)
degree d = width v =
Bayes|Rocchio|C4.5[k-NN|j 1 | 2 | 3 | 4 | 5 JJos|o8|10]12
[earn 95.9 | 96.1 [96.1]97.3 [[08.2]98.4[98.5[98.4]98.3||98.5]98.5]95.4] 95.3 |
acq 915 | 92.1 [85.3192.0[92.6/94.6]95.2]95.2]95.3]95.0/95.3]95.3|95.4
money-fx || 62.9 | 67.6 [69.4[78.2 [66.9]72.5]75.4|74.9 75.2”»74.0 75.4|76.3[75.9 DlCtanaf)’
|§rain 72.5 | 795 |80.1|82.2 [91.3]93.1[92.4[91.3|89.5][08.1|01.9|61.9|90.6 Mailb
crude || 810 | 81.5 |75.5 85.7 |[8G.0[87.3] 5.6 |88.0]87.5 |88.989.0| 88.9 | 882 ‘ ailbox
% trade 50.0 | 774 [59.2| 774 [[69.275.5|76.6| 77.3|77.1]|76.978.0|77.8| 76 8 % SVM
g interest || 58.0 | 725 |49.1[74.0 [[69.8[63.3[67.0]73.1|76.2]| 74.4 |75.0/76.2] 76.1 2
£ ship 78.7| 831 [80.9]79.2 |82.0[85.4|86.0 |86.5| 86.0 |85.4]86.5|87.6 | 87.1 s .,
2 'wheat 60.6 | 79.4 [85.5| 76.6 [|83.1[84.5]85.2|85.9|83.5 ||85.2[85.9]85.9|85.9 = Incoming email Word activations —
= corn 47.3 | 62.2 [B7T.7[77.9 [|86.0[86.5/85.3]85.7]83.9(/85.1|85.7[85.7|84.5 €
3 ] §4.2[85.1]85.9]86.2]85.9 | 86.4]86.5] 86.3 ] 86.2 3
é microave.|| 72.0 | 79.9 179.4/82.3 H combined: 86.0 combined: 86.4 E d
g S Trash
= =
19 20
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Example Application: OCR Historical Importance
* Handwritten digit EYT LYY -EAR T ESANERERS S ) e USPS benchmark
IAVETTRNEERIANNEI S 1r 2 s ]

recognition 33010330403 045LA100AT . 2.5% error: human performance
» US Postal Service Database 2906 12719121559“-.72955
. Standard benchmark task ; £AES

for many learning algorithms

* Different learning algorithms
» 16.2% error: Decision tree (C4.5)
» 5.9% error: (best) 2-layer Neural Network
» 5.1% error: LeNet 1 — (massively hand-tuned) 5-layer network

1332513 302 R ELLL
140821213 I 285 RQ.L&JQJ.
A

* Different SVMs
» 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel  (0=0.3, 291 support vectors)

&
BRe1RAZRELILL [
Lolr23e) ey 1229 10v 1120204
910910155133)3730).28L1088
18743 22550824002 58808142
L2EISYl68EYE025206038 L6088
LEZASLRE30IREISARIALLRL

21
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Example Application: OCR Example Application: Object Detection
* Results * Sliding-window approach faj;me

» Almost no overfitting with higher-degree kernels.

degree of || dimensionality of | support | raw
polynomial feature space vectors | error m N
1 256 282 8.9 Classifier
2 =2 33000 227 4.7
2 3 ~ 1 x 108 274 4.0 2
& 4 =1 x10° 321 4.2 =
2 5 =1 x 10'2 374 4.3 2 , _
£ 6 1 x 101 377 45 2| * E.g. histogram representation (HOG)
E 7 ~ 1 x 1016 429 4.5 § » Map each grid cell in the input window to a
o ° histogram of gradient orientations.
g 5 . Train a linear SVM using training set of
= = pedestrian vs. non-pedestrian windows.

23
B. Leibe

[Dalal & Triggs, CVPR 2005:]
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Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

25
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So Far...

* We've seen already a variety of different classifiers
~ kNN

» Bayes classifiers

» Linear discriminants

» SVMs

¢ Each of them has their strengths and weaknesses...
» Can we improve performance by combining them?

27
B. Leibe
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Constructing Ensembles

* How do we get different classifiers?
» Simplest case: train same classifier on different data.
» But... where shall we get this additional data from?
— Recall: training data is very expensive!

* |dea: Subsample the training data

» Reuse the same training algorithm several times on different
subsets of the training data.

* Well-suited for “unstable” learning algorithms
» Unstable: small differences in training data can produce very
different classifiers
— E.g., Decision trees, neural networks, rule learning algorithms,...
» Stable learning algorithms
— E.g., Nearest neighbor, linear regression, SVMs,...
29

B. Leibe
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Topics of This Lecture
* Ensembles of classifiers
» Bagging
» Bayesian Model Averaging
B. Leibe %
RWTH CHET

Ensembles of Classifiers

* Intuition
» Assume we have K classifiers.
» They are independent (i.e., their errors are uncorrelated).
» Each of them has an error probability p < 0.5 on training data.
— Why can we assume that p won't be larger than 0.5?

» Then a simple majority vote of all classifiers should have a
lower error than each individual classifier...

28

de adanted from Bernt Schiele B. Leibe
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TOWTHACHET]
Constructing Ensembles

* Bagging = “Bootstrap aggregation” (Breiman 1996)
» In each run of the training algorithm, randomly select M samples
from the full set of N training data points.

» If M = N, then on average, 63.2% of the training points will be
represented. The rest are duplicates.

* Injecting randomness

» Many (iterative) learning algorithms need a random initialization
(e.g. k-means, EM)

» Perform mutliple runs of the learning algorithm with different
random initializations.

30
de adanted from Bernt Schiele B. Leibe
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Bayesian Model Averaging

* Model Averaging

» Suppose we have H different models h = 1,...,H with prior
probabilities p(h).
» Construct the marginal distribution over the data set

p(X) =Y p(X|h)p(h)

h=1

* Interpretation
» Just one model is responsible for generating the entire data set.
» The probability distribution over h just reflects our uncertainty
which model that is.
As the size of the data set increases, this uncertainty reduces,
and p(X|h) becomes focused on just one of the models.

v

B. Leibe

31

Model Averaging: Expected Error

e Combine M predictors y,,(x) for target output h(x).
» E.g. each trained on a different bootstrap data set by bagging.
» The committee prediction is given by

1 M
yoou (%) = 47 > ym(x)
m=1
» The output can be written as the true value plus some error.
Y(x) = h(x) +e(x)

» Thus, the expected sum-of-squares error takes the form

Ex = [{ym () = h()}| = Ex [em(x)]

B. Leibe
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Model Averaging: Expected Error
¢ Average error of committee
1
Ecom = J\—/[EAV

» This suggests that the average error of a model can be reduced by
a factor of M simply by averaging M versions of the model!

» Spectacular indeed...
» This sounds almost too good to be true...

* Anditis... Can you see where the problem is?

» Unfortunately, this result depends on the assumption that the
errors are all uncorrelated.

» In practice, they will typically be highly correlated.
» Still, it can be shown that
Ecoum - Eav

B. Leibe

35
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Note the Different Interpretations!

* Model Combination (e.g., Mixtures of Gaussians)
~ Different data points generated by different model components.
» Uncertainty is about which component created which data point.
= One latent variable z, for each data point:

p(X) = Hp(xn) = H Zp(xnvzn)

n=1 z,

* Bayesian Model Averaging
» The whole data set is generated by a single model.
» Uncertainty is about which model was responsible.
= One latent variable z for the entire data set:

p(X) = Zp(xv z)

B. Leibe

Model Averaging: Expected Error
* Average error of individt}e/[al models
1
Eav = Hmzﬂ Ey [em(x)?]
* Average error of committee Ym(X) = h(X) + € (%)

1 XM 2 L XM 2]
Ecom =Ex {M;ym(x)*h(x)} = Ex {Fm:fm()()}

* Assumptions
» Errors have zero mean:

=

Ex [em(x)] =0
Ex [en ()65 (x)] = 0

» Errors are uncorrelated:

St iy
S
PeCtacy s,

1
* Then: Ecom = M]EAV

B. Leibe
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AdaBoost — “Adaptive Boosting”

* Main idea [Freund & Schapire, 1996]
» lteratively select an ensemble of component classifiers
» After each iteration, reweight misclassified training examples.
— Increase the chance of being selected in a sampled training set.
— Or increase the misclassification cost when training on the full set.
¢ Components
> h,(x): “weak” or base classifier
— Condition: <50% training error over any distribution
» H(x): “strong” or final classifier
* AdaBoost:

» Construct a strong classifier as a thresholded linear combination of
the weighted weak classifiers:
M

H(x) = sign (Z amhm(x)>

m=1

36
B. Leibe




AdaBoost: Intuition

o @ Consider a 2D feature space

Weak ® L) with positive and negative
Classifier 1 ==
examples.

Each weak classifier splits
the training examples with at
least 50% accuracy.

Examples misclassified by a
previous weak learner are
given more emphasis at
future rounds.

Machine Learning Winter ‘18

ide credit- Kristen Grauman B. Leibe

37

Eigure adapted from Freund & Schapir

AdaBoost: Intuition

Weights
Weak Increased
Classifier 1 ]
Weak

Y Classifier 2 ———
Weak ————————
classifier 3 @

The final classifieris a

linear combination of .‘..

the weak classifiers

Machine Learning Winter ‘18

ide credit- Kristen Grauman B Leibe Eiqwe adapted fiom Freund

39

chapils

AdaBoost — Algorithm

e 1
1. Initialization: Set w! = 5 forn=1,...,N.
2. Form=1,...,M iterations
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W™ by minimizing the weighted error function
N
= (m) o JL A
I len I(hum(x) # tn) i {u dlse
n—
b) Estimate the weighted error of this classifier on X:
o S () # )
ZInVZI wil”
c) Calculate a weighting coefficient for h,,(x):

Q= 7

true

How should we

d) Update the weighting coefficients: do this exactly?

w;"”'l) =7
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AdaBoost: Intuition

e @ Weights ..
Weak ® e o Increased ° !
Classifier 1 .2 _--=--"" °
L) Weak '@
L ] (] Classifier 2 —— @
38
de credit: Kristen Grauman B. Leibe Eiqure adaoted from Freund & Schapir

AdaBoost — Formalization

* 2-class classification problem
» Given: training set X = {x,, ..., Xy}
with target values T ={t,, ..., ty }. ¢, € {-1,1}.
» Associated weights W={wy, ..., wy} for each training point.

* Basic steps
» In each iteration, AdaBoost trains a new weak classifier h,,(x) based
on the current weighting coefficients W),
» We then adapt the weighting coefficients for each point
- Increase w,, if x,, was misclassified by h,,,(x).
- Decrease w, if x,, was classified correctly by h,,,(x).
» Make predictions using the final combined model

M
H(x) = sign Z amhm(x)>
m=1

40
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AdaBoost — Historical Development

* Originally motivated by Statistical Learning Theory
» AdaBoost was introduced in 1996 by Freund & Schapire.
» It was empirically observed that AdaBoost often tends not to overfit.
(Breiman 96, Cortes & Drucker 97, etc.)
As a result, the margin theory (Schapire et al. 98) developed, which
is based on loose generalization bounds.
— Note: margin for boosting is not the same as margin for SVM.
— A bit like retrofitting the theory...
» However, those bounds are too loose to be of practical value.

v

* Different explanation (Friedman, Hastie, Tibshirani, 2000)
» Interpretation as sequential minimization of an exponential error
function (“Forward Stagewise Additive Modeling”).
» Explains why boosting works well.
» Improvements possible by altering the error function.

42
B. Leibe
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AdaBoost — Minimizing Exponential Error

* Exponential error function
N
E= Z €xp {7tnf7n(xn)}
n=1

» where f,,(x) is a classifier defined as a linear combination of base

classifiers hy(x):
m

= —Zalhl

@
3
£
=| * Goal
E » Minimize E with respect to both the weighting coefficients ¢, and the
5 o
< parameters of the base classifiers h(x).
£
<
8
=
43
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AdaBoost — Minimizing Exponential Error
ol 1
E= Z wflm> exp {7 itnamhm(xn)}
n=1
» Observation:
— Correctly classified points: ¢,h,,(x,) = +1 = collectin 7,
— Misclassified points: t,h,(x,) == = collectin F,,
- » Rewrite the error function as
"E E=em/? Z w;"”)
= n
s €Tom
2
£
3
E = (e"‘"’/z ) Zw " (R (%) 7 )
S
]
=
45
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AdaBoost — Minimizing Exponential Error
* Minimize with respect to h,,(x): _9E . 0
M Ol (%)
E= (eam/z —om/z) Zw(M) I(hn (%) # o) + e 0m/2 Zw(m
n=1
%/—/ %/—/
= const. = const.

= This is equivalent to minimizing
Im = Z Wy, 7£ tn)
(our weighted error function from step 2a) of the algorithm)

= We’re on the right track. Let’s continue...
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AdaBoost — Minimizing Exponential Error

* Sequential Minimization
» Suppose that the base classifiers h,(x),..., h,,.,(x) and their
coefficients a,,.. are fixed.

Qg

= Only minimize W|th respect to a,, and h,,(x).

E= Zexp{ tofm(Xn)}  with  fm(x Zazhi(x

n=1
2 N 1
g = Z exp {—tnfm,l(xn) - 5t‘nozmhm(xn)}
i n=1 "
E = const.
g N 1
2 = ng’”) exp{fgtnamhm(xn)}
8 n=1
= a4

B. Leibe
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AdaBoost — Minimizing Exponential Error

N
1
E= Z wﬁbm) exp {7§tnamhm(xn)}

n=1
» Observation:
— Correctly classified points: ¢,h,,(x,) = +1 = collectin 7,,
— Misclassified points: t,h,(x,) = - = collectin F,
- » Rewrite the error function as
| ST @
@
E
g >
2
£
g N
é _ (eam/z _ e*&m/?) Z’wff'”f (X)) 7 t) + e/ Z“’ m)
5 n=1
©
= 6
B. Leibe 4
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AdaBoost — Minimizing Exponential Error
A . OF
* Minimize with respectto a,: 35—
N m .
E= (e”m/z - e"’”"/z) Z W I (R (Xp) # tn) + e/ Zwﬁf”)
n=1 n=1

N
G/ o2 +%/ —(hn/l) wa I(han(x0) £ 12) Zefum/Z S

n=1 n=1

v —am /2
weighted P _ € /
error m - em/2 + e—am/2

1
em 4 1

1—en
&y = In -
m

= Update for the « coefficients:
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AdaBoost — Minimizing Exponential Error AdaBoost — Final Algorithm

* Remaining step: update the weights 1. Initialization: Set  w() = ]17_Jr n=1,.,N.

- Recallthat & . 2. Form=1,...,M iterations
F = Z wﬁ:") exp {, _tnamhm(xn)} a) Train a new weak classifier h,,(x) using the current weighting
— 2 coefficients W™ by minimizing the weighted error function
n=1 N

m+1)

T =Y W I (X) # t)

n=1
b) Estimate the weighted error of this classifier on X:

This becomes wib

in the next iteration.

& - Therefore z Soal i I (%) # ta)
g (mt1) () ! ] i {
£ w{mH = (™ exp _§tna7nhm(x’n) s
o _ o c) Calculate a weighting coefficient for h,,(x):
= - € —€m
E = w{™ exp {omI (I (%) # tn)} § o =10 €m
2 " e " 2 d) Update the weighting coefficients:
= i i =
§ = Update for the weight coefficients. § u.f:nﬂ ) — wf;n} exp {am ] (h (%) % )}
49 50
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AdaBoost — Analysis Recap: Error Functions
« Result of this derivation fae {=1,1} E(z) Ideal misclassification erro
» We now know that AdaBoost minimizes an exponential error
function in a sequential fashion.
» This allows us to analyze AdaBoost’s behavior in more detail.
» In particular, we can see how robust it is to outlier data points.
© © Not differentiable! ——
§ § ) R 1 3" n = ty(Xn)
(=] j=J . r . .
£ = * Ideal misclassification error function (black)
3 3 » This is what we want to approximate,
2 2 > Unfortunately, it is not differentiable.
< S
g § » The gradient is zero for misclassified points.
8 Leibe 51 = We cannot minimize it by gradient descent. 52
lmage source: Bishop, 2008
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Recap: Error Functions Recap: Error Functions
t E(zn) Ideal misclassification errol E(zn) Ideal misclassification erro
tp € {—1,1} oo -
Squared erro Squared error
Hinge error

Sensitive to outliers! Robust to outliers!

Penalizes “too correct”
data points!

\ Not differentiable! / Favors sparse
N ’ \ / / solutions!
N\ S A /!
-2 -1 0 o 2T tny(Xn) -2 - 0 Y—="% = tny(Xn)

* Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 53

Jmage source: Bishop, 2001

* “Hinge error” used in SVMs
» Zero error for points outside the margin (z, > 1) = sparsity
» Linear penalty for misclassified points (z, < 1) = robustness
» Not differentiable around z,= 1 = Cannot be optimized directly.
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B. Leibe lmage source. Bishop, 2001
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RWTHAACHEN
Discussion: AdaBoost Error Function

E(z,,_) Ideal misclassification erro|
Squared error
Hinge error
Exponential erro
\, ,/’;
\\\ ///
) 7 0 = 7 5 Zn = tny(x'rz)
* Exponential error used in AdaBoost
» Continuous approximation to ideal misclassification function.
» Sequential minimization leads to simple AdaBoost scheme.
» Properties?
. 55
B. Leibe Image source: Bishop. 200
RWTH//CHE
Discussion: Other Possible Error Functions
E(z,) Ideal misclassification erro
Squared error
Hinge error
Exponential erro

Cross-entropy error

E==3 {talny, + (1 —t,)In(1 -y}

3 Zn = tny(xfrz)

¢ “Cross-entropy error” used in Logistic Regression
» Similar to exponential error for z2>0.
» Only grows linearly with large negative values of z.
= Make AdaBoost more robust by switching to this error function.

“ 0 57
= “GentleBoost B. Leibe

Jmage source: Bishop, 200¢
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References and Further Reading

¢ More information on Classifier Combination and Boosting
can be found in Chapters 14.1-14.3 of Bishop’s book.

i o

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

* A more in-depth discussion of the statistical interpretation
of AdaBoost is available in the following paper:
» J. Friedman, T. Hastie, R. Tibshirani, Additive Loqistic Regression: a

Statistical View of Boosting, The Annals of Statistics, Vol. 38(2),
pages 337-374, 2000.
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RWTH/ACHET
Discussion: AdaBoost Error Function
E(z,,) Ideal misclassification errol
Squared error
Hinge error
Sensitive to outliers! Exponential error

3 Zn = tny(xn)

* Exponential error used in AdaBoost
» No penalty for too correct data points, fast convergence.
» Disadvantage: exponential penalty for large negative values!
= Less robust to outliers or misclassified data points!

" 56
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Image source: Bishop, 200

Summary: AdaBoost

* Properties

» Simple combination of multiple classifiers.

» Easy to implement.

» Can be used with many different types of classifiers.
— None of them needs to be too good on its own.
— In fact, they only have to be slightly better than chance.

» Commonly used in many areas.

» Empirically good generalization capabilities.

* Limitations
» Original AdaBoost sensitive to misclassified training data points.
— Because of exponential error function.
— Improvement by GentleBoost
» Single-class classifier
— Multiclass extensions available

58
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http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf

