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Recap: Generalized Linear Models

* Generalized linear model
y(x) = g(w'x + wy)

» g(-)is called an activation function and may be nonlinear.
» The decision surfaces correspond to

y(x) = const. <  WIX+wy = const.

» If g is monotonous (which is typically the case), the resulting

i decision boundaries are still linear functions of x.
% * Advantages of the non-linearity
£ > Can be used to bound the influence of outliers
ﬁ and “too correct” data points.
% » When using a sigmoid for g(-), we can interpret T
é the y(x) as posterior probabilities. g(a) = TFop(=a)
B. Leibe
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Recap: Basis Functions
¢ Generally, we consider models of the following form
M
Yi(X) = Y wigd(x) = whB(x)
j=0

~ where ¢;(x) are known as basis functions.
» In the simplest case, we use linear basis functions: ¢ (x) = z,.

* Other popular basis functions
1 1
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Gaussian Sigmoid
B. Leibe
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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning

wr e RS .
» Foundations
» Convolutional Neural Networks E‘. Lr

» Recurrent Neural Networks
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Recap: Extension to Nonlinear Basis Fcts.

* Generalization
» Transform vector x with M nonlinear basis functions ¢ (x):

M
Yr(x) = Zwkj¢j(x) + wko

Jj=1

* Advantages
» Transformation allows non-linear decision boundaries.

» By choosing the right d)j, every continuous function can (in principle)
be approximated with arbitrary accuracy.

* Disadvantage

» The error function can in general no longer be minimized in closed
form.

= Minimization with Gradient Descent
B. Leibe
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Recap: Iterative Methods for Estimation

* Gradient Descent (1 order)
w ) = wl) — ) VE(W)| 0

» Simple and general
» Relatively slow to converge, has problems with some functions

* Newton-Raphson (2" order)

WD = wl) — HVE(w)| )

where H = VVE(w) is the Hessian matrix, i.e. the matrix
of second derivatives.

» Local quadratic approximation to the target function

» Faster convergence
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Recap: Gradient Descent

* lterative minimization
» Start with an initial guess for the parameter values w,(c )
» Move towards a (local) minimum by following the gradient.

* Basic strategies

» “Batch learning” (7—+1) wl(cT) n 0E(w)
& g Owrj |y
OFE
. “Sequential updating” w,(:.H) = wl(;.) - n(W)
’ / OWkj |y

where

N
w) = Z E,(w
n=1

B. Leibe
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Recap: Gradient Descent

* Cases with differentiable, non-linear activation function

k(%) = glar) = g | D wrid;(xn)

J=0

¢ Gradient descent (again with quadratic error function)

RWTH/ACHET

Recap: Gradient Descent
* Example: Ouadr%;(ic error function

E(w) = (y(xn; W) — t,)°
* Sequential upd;t;lg leads to delta rule (=LMS rule)

wit™ = ) — 0 (g (ens W) — trn) ()
= W] — n0knd; (%)
- where
Okn = Yk(Xn; W) —tin

= Simply feed back the input data point, weighted by the
classification error.

B. Leibe
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Recap: Probabilistic Discriminative Models

* Consider models of the form
p(Cil@) = y(¢) =o(w'¢)
p(C2| @) —p(Ci|9)

* This model is called logistic regression.

with

* Properties
» Probabilistic interpretation
» But discriminative method: only focus on decision hyperplane
» Advantageous for high-dimensional spaces, requires less
parameters than explicitly modeling p(¢|C;) and p(C;,).

10
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s Withy, = (C1|gz5,l) we can write the likelihood as
t‘W Hy {17yn 1 b
 Define the error function as the negative log-likelihood g
E(w) = —Inp(tlw) s
v
= = {talnyn + (1 —t,) In(1 - y,)} g
£

OE,(w) _ dg(ar) e
aTkj = aw - (yk(xm ) tkn) ¢](xn) E
w,(;]—-ﬂ) = w]i;) — N0kn®;j(Xn) §
dg(ar)
J, n = ) —tkn S
K Dwr, (Y (Xn; W) — tkn) . 8
ide adapted from Berat Schiele B. Leibe
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Recap: Logistic Regression
* Let's consider a data set {¢,,,t,} withn=1,...,N,
where ¢,, = p(x,)and t,, € {0,1}, t = (t1,...,tn)7 .

» This is the so-called cross-entropy error function.
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Recap: Iteratively Reweighted Least Squares

* Update equations

W(T+1) _ W(T) _ (@TRQ)—1¢T(y _ t)

= (®"R®)"! {<I»TR<I>W(T) —37(y

—t)}

= (®"R®)'® Rz

with z=®w —R}(y —t)

* Very similar form to pseudo-inverse (normal equations)
» But now with non-constant weighing matrix R. (depends on w).
» Need to apply normal equations iteratively.

= lteratively Reweighted Least-Squares (IRLS) »




Topics of This Lecture

* Softmax Regression
» Multi-class generalization
» Gradient descent solution

* Note on Error Functions
» Ideal error function
» Quadratic error
» Cross-entropy error

* Linear Support Vector Machines
» Lagrangian (primal) formulation
» Dual formulation
» Discussion
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Softmax Regression Cost Function

* Logistic regression
» Alternative way of writing the cost function with indicator function I(-)

N
- Z {taIny, + (1 =) In(1 — y,)}

E(w)

3
-

I
M=

1
- Z Tty =k)InP (yn = klxn; W)}
k=0

n=1

* Softmax regression
» Generalization to K classes using indicator functions.

N K -
BEw) = > > {H(tnzk)lnfw}

n=1k=1 =1 CXP(W]' X

Machine Learning Winter ‘18
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Topics of This Lecture

* Note on Error Functions
» ldeal error function
» Quadratic error
» Cross-entropy error
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Softmax Regression
* Multi-class generalization of logistic regression

» In logistic regression, we assumed binary labels ¢,, € {0,1} .
» Softmax generalizes this to K values in 1-of-K notation.

» Note: the resulting distribution is normalized.

Py =1x;w) exp(w/ x)
) Py =2[x;w) 1 exp(w; x)
y(x;w) = = — .
: i1 exp(w;x) -

. Py = Klx;w) exp(wex)
g » This uses the softmax function
§ explag)
5 > exn(ay)
-
2
S
8
=

14
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Optimization
* Again, no closed-form solution is available
» Resort again to Gradient Descent
» Gradient
N
Vw B(w) = = [[(tn = k) In P (y, = klxn; w)]
n=1
= © Note
E > Vi E(w) is itself a vector of partial derivatives for the different
=3 components of w,.
E » We can now plug this into a standard optimization package.
g
2
S
8
= 6
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Note on Error Functions

Ideal misclassification erro

e {-1,1} Ezn)

Not differentiable! ———

2 - N\ 1 2" An = tny(xn)

* |deal misclassification error function (black)
» This is what we want to approximate (error = #misclassifications)
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 19

lmage source: Bishop, 2001
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Note on Error Functions

E(z,) Ideal misclassification erro
Squared erro

t, e {-1,1}

Sensitive to outliers!

Penalizes “too correct”
data points!

=2 -1 0 - [
* Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 20

Image source: Bishop, 200¢

2 Zn = tny(x'rz)
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Overview: Error Functions

* ldeal Misclassification Error
» This is what we would like to optimize.
» But cannot compute gradients here.

* Quadratic Error
-2 -1
» Easy to optimize, closed-form solutions exist.
» But not robust to outliers.

¢ Cross-Entropy Error
> Minimizer of this error is given by posterior class probabilities.
» Concave error function, uniqgue minimum exists.
» But no closed-form solution, requires iterative estimation.

= Looking at the error function this way gives us an analysis

tool to compare the properties of classification approaches.
22
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Generalization and Overfitting

test error

training error

* Goal: predict class labels of new observations
» Train classification model on limited training set.

» The further we optimize the model parameters, the more the
training error will decrease.

~ However, at some point the test error will go up again.
= Overfitting to the training set!

B. Leibe
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24

lmage souce: B Schiel
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Comparing Error Functions (Loss Functions)
\ E(ZW) Ideal misclassification erro

Squared error

Cross-entropy error

t,e {—1.1}

Robust to outliers!

Pl Zn = tny(xn)

¢ Cross-Entropy Error
» Minimizer of this error is given by posterior class probabilities.
» Concave error function, unique minimum exists.
» Robust to outliers, error increases only roughly linearly
» But no closed-form solution, requires iterative estima%ion. 21

mage source; Bishop, 200
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RWTH CHET
Topics of This Lecture
* Linear Support Vector Machines
» Lagrangian (primal) formulation
» Dual formulation
» Discussion
B. Leibe 3
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Example: Linearly Separable Data

* Overfitting is often a problem with
linearly separable data
» Which of the many possible decision
boundaries is correct?
» All of them have zero error on the
training set...

» However, they will most likely result in different
predictions on novel test data.
= Different generalization performance

* How to select the classifier with the best generalization
performance?

25
B. Leibe




Revisiting Our Previous Example...

* How to select the classifier with
the best generalization performance?
» Intuitively, we would like to select
the classifier which leaves maximal
“safety room” for future data points.
This can be obtained by maximizing the
margin between positive and negative
data points.
» It can be shown that the larger the margin, the lower the
corresponding classifier's VC dimension (capacity for overfitting).

5

* The SVM takes up this idea
» It searches for the classifier with maximum margin.

» Formulation as a convex optimization problem
= Possible to find the globally optimal solution!

Machine Learning Winter ‘18
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training example
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. We can always choose w, bsuchthat d— =dy = W

ide adapted from Bernt Schiele B. Leibe

< A
o Margin
1

lmage source: G Burges, 199
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Support Vector Machine (SVM)
* Margin of the hyperplane:  d_ +dy
> d,: distance to nearest pos. . .
training example .
» d_: distance to nearest neg. ™. . o

29

Support Vector Machine (SVM)

* We can choose w such that
wix, +b=+1 forone t,=-+1

wix, +b=-1 forone t,=—1

* The distance between those two hyperplanes is then the

margin 1
d_=dy=—
[[wll
2
d_+dy = —
T Wl

= We can find the hyperplane with maximal margin by
minimizing HW
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ide credit- Bernt Schigle B. Leibe
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Support Vector Machine (SVM)

* Let’s first consider linearly separable data
. Ntraining data points  {(%i,9:)}n, i € RY

. Target values t; € {-1,1}

X3

» Hyperplane separating the data

N

Machine Learning Winter ‘18

ide credit Bernt Schiele B. Leibe
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Support Vector Machine (SVM)

* Since the data is linearly separable, there exists a
hyperplane with

wix, +b>+1 for t,=+1
wix, +b- —1 for t,=-1

* Combined in one equation, this can be written as
tn(Wix, +b)>1 ¥n

= Canonical representation of the decision hyperplane.

» The equation will hold exactly for the points
on the margin T

tn(Wix,+b) =1

» By definition, there will always be at least
one such point.

Machine Learning Winter ‘18

de adanted from Bernt Schiele B. Leibe

Support Vector Machine (SVM)

* Optimization problem
» Find the hyperplane satisfying
arg min = |w]|*
w,b 2
under the constraints

tn(WTx, +b) >1 Vn

» Quadratic programming problem with linear constraints.
» Can be formulated using Lagrange multipliers.

* Who is already familiar with Lagrange multipliers?
» Let’s look at a real-life example...
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Recap: Lagrange Multipliers

* Problem
» We want to maximize K(x) subject to constraints f(x) = 0.

» Example: we want to get as close as
possible, but there is a fence.
» How should we move?

. We want to maximize VK
» But we can only move parallel
to the fence, i.e. along

VK =VK+AVf
with A # 0. 1

ide adapted from Mario Erit B. Leibe

Recap: Lagrange Multipliers

* Problem
» Now let's look at constraints of the form f(x) > 0.

» Example: There might be a hill from
which we can see better...

Optimize max L(x,\) = K(x) + Af(x)

v

¢ Two cases
> Solution lies on boundary
= f(x) =0 for some A >0
Solution lies inside f(x) >0
= Constraint inactive: A= 0
» In both cases
= Af(x)=0

v

B. Leibe
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SVM - Lagrangian Formulation

* Find hyperplane minimizing ||w||2 under the constraints
tn(WTxﬂ +b)—-1>0 Vn

* Lagrangian formulation
» Introduce positive Lagrange multipliers: ap >0 Vn

» Minimize Lagrangian (“primal form”)
N
1
L(W7 b, a) = 5} ”WH2 - Zlan {tn(WTxn + b) - 1}

» le., find w, b, and a such that

N

oL

=0 =Y ant,=0
n=1

oL

N
— =0 =|w :Z AptnXy
n—1

ob ow

37
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Recap: Lagrange Multipliers

* Problem
» We want to maximize K(x) subject to constraints f(x) = 0.

» Example: we want to get as close as
possible, but there is a fence.
» How should we move?

= Optimize N
maS\XL(x, A) = K(x) + Af(x)
X,

OL I
o ViK=0
oL |
N flz)=0

B. Leibe
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Recap: Lagrange Multipliers
* Problem
» Now let's look at constraints of the form f(x) > 0.
» Example: There might be a hill from
which we can see better...
~ Optimize max L(x,)) = K(x) + Mf(x)
1690 2o Karush-Kuhn-Tucker (KKT)
conditions: A > 0
* Two cases f(x) >0
» Solution lies on boundary /\f(x) =0

= f(x) =0 for some A >0
» Solution lies inside f(x) >0

= Constraint inactive: A = 0
» In both cases

= M(x)=0 [ Fence f o3

B. Leibe

SVM - Lagrangian Formulation
* Lagrangian primal form

1 N
L, = 5 Iw]|? — Zan {ta(WwTx, +b) — 1}
n=1

1 N
= FIWI* = an {tay(xa) — 1}
n=1

* The solution of L, needs to fulfill the KKT conditions
» Necessary and sufficient conditions

KKT:
ap > 0 A >0
bay(xa) =1 = 0 f6) = 0
an {tny(xn) —1} = 0 Af(x) =0

38
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SVM — Solution (Part 1)

* Solution for the hyperplane
» Computed as a linear combination of the training examples

N
w = E antnXy
n=1

» Because of the KKT conditions, the following must also hold

w T . KKT:

2 a, (tn(w xn+b)71) =0 M) =0

2

=

E, » This implies that a,, > 0 only for training data points for which

E T _

§ (tn(W'x, +b) —1) =0

% = Only some of the data points actually influence the decision

S boundary!

= 39
ide adapted from Bernt Schiele B. Leibe

SVM - Solution (Part 2)

* Solution for the hyperplane
» To define the decision boundary, we still need to know b.
» Observation: any support vector x,, satisfies

KKT:
thy(xn) =ty E UmtmXox, +b] =1 [fx)>0
meS
< Using t2 = 1 we can derive: b=t, — Z At mX o X,
E > g lp . n mtmXmXn
é meS
E » In practice, it is more robust to average over all support vectors:
€
3 1
T
E b= — E tn - E anLtmmen
= Ns
S nes meS
= 41
B. Leibe
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SVM - Dual Formulation

* Improving the scaling behavior: rewrite L, in a dual form

1 N
L,= 5 Iwl)® — Zan {tn(wan +b) — 1}
n=1

1 N N 0 N
= 2w Dt b ;ﬁ a
n=1 =1 n=1
«©
3 ul oL
_E » Using the constraint Z ant, =0 we obtain 20
= et b
£ 1 N N
% L,= 3 w||? — Zantanxn + Z an,
£ n=1 n=1
8
=
44

ide adapted from Bernt Schiele B. Leibe
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SVM — Support Vectors

* The training points for which a,, > 0 are called
“support vectors”.

* Graphical interpretation:
» The support vectors are the
points on the margin.
» They define the margin
and thus the hyperplane. o

= Robustness to “too correct”
points!

8, A
o Margin

40
de adapted from Bernt Schiele B Leibe Image source: C Burges, 199

SVM - Discussion (Part 1)

* Linear SVM
» Linear classifier
» SVMs have a “guaranteed” generalization capability.
» Formulation as convex optimization problem.
= Globally optimal solution!

* Primal form formulation
» Solution to quadratic prog. problem in M variables is in O(M?).
> Here: D variables = O(D?)
» Problem: scaling with high-dim. data (“curse of dimensionality”)

43

de adanted from Bernt Schiele B. Leibe
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SVM — Dual Formulation

1 N N
L,= 3 Iwl)® — Z antnWix, + Zan
n=1 n=1

’ . ud . aLP
» Using the constraint w = E anpty Xy, we obtain —=0
ow

n=1

1 N N N
L,= 3 Iw||? — Zantn Z AmtmXE X, + Z an,
n=1 m=1 n=1

1 N N N
=5 W7 =2 > antmtutm(x5%0) + > an
n=1

n=1m=1

45
de adanted from Bernt Schiele B. Leibe




SVM — Dual Formulation

1 N N N
L= Wiz =3 anamtntm(xnxn) + > an
n=1m=1 n=1
1 1 al
» Applying 5 [w]|*= inw and again using w :"z::l ptnXp
1 1o &
2—wTw =3 Z Z UG tptom (XE %,)

n=1m=1

» Inserting this, we get the Wolfe dual

N 1 N N
Ld(a) = Zan — 5 Z Z anamtntm(x;xn)
n=1

n=1m=1

Machine Learning Winter ‘18

ide adapted from Bernt Schiele B. Leibe
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SVM - Discussion (Part 2)

* Dual form formulation
» In going to the dual, we now have a problem in N variables (a,,).
» Isn’t this worse??? We penalize large training sets!

* However...
1. SVMs have sparse solutions: a,, # 0 only for support vectors!
= This makes it possible to construct efficient algorithms
— e.g. Sequential Minimal Optimization (SMO)
— Effective runtime between O(N) and O(N?).

2. We have avoided the dependency on the dimensionality.

= This makes it possible to work with infinite-dimensional feature
spaces by using suitable basis functions ¢(x).

= We'll see that in the next lecture...
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SVM — Dual Formulation
* Maximize
N 1 N N
T
Ld(a) = Z ap — 5 Z Z anamtntm(xmxn)
n=1 n=1m=1
under the conditions
a, > 0 Vn
N
Z apt, = 0
n=1
» The hyperplane is given by the Ng support vectors:
Ns
w :Z AntnXy
n=1 47
de adapted from Bernt Schiele B. Leibe
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References and Further Reading

* More information on SVMs can be found in Chapter 7.1 of
Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

* Additional information about Statistical Learning Theory and
a more in-depth introduction to SVMs are available in the
following tutorial:

» C. Burges, A Tutorial on Support Vector Machines for Pattern

Recognition, Data Mining and Knowledge Discovery, Vol. 2(2), pp.
121-167 1998.

49
B. Leibe



http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf

