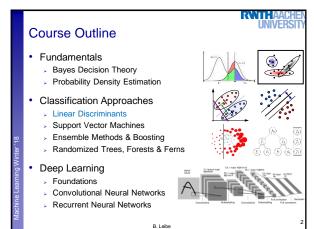
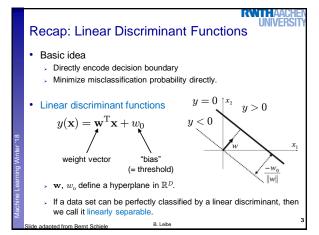
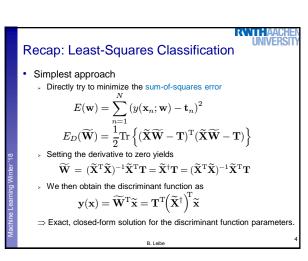
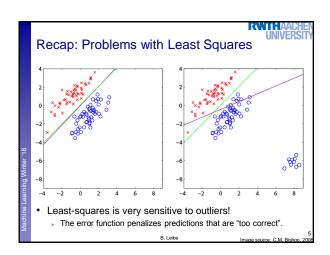
Machine Learning – Lecture 6 Linear Discriminants II 05.11.2018 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

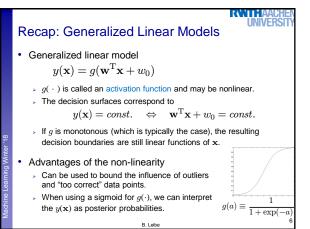
leibe@vision.rwth-aachen.de





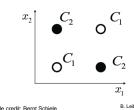






Linear Separability

- Up to now: restrictive assumption
 - > Only consider linear decision boundaries
- · Classical counterexample: XOR



Generalized Linear Discriminants

Generalization

Fransform vector ${\bf x}$ with M nonlinear basis functions $\phi_j({\bf x})$:

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

- \triangleright Purpose of $\phi_i(\mathbf{x})$: basis functions
- > Allow non-linear decision boundaries.
- $_{\succ}$ By choosing the right $\phi_{\it j}$, every continuous function can (in principle) be approximated with arbitrary accuracy.
- Notation

on
$$y_k(\mathbf{x}) = \sum_{j=0}^M w_{kj} \phi_j(\mathbf{x}) \qquad \text{ with } \ \phi_0(\mathbf{x}) = 1$$
 at Schiele

Linear Basis Function Models

· Generalized Linear Discriminant Model

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- ightarrow where $\phi_i(\mathbf{x})$ are known as basis functions.
- Figure Typically, $\phi_0(\mathbf{x})=1$, so that w_0 acts as a bias.
- > In the simplest case, we use linear basis functions: $\phi_d(\mathbf{x}) = x_d$.

Let's take a look at some other possible basis functions...

RWIHAAU

Linear Basis Function Models (2)

· Polynomial basis functions

$$\phi_j(x) = x^j.$$

- Properties
 - Global
 - \Rightarrow A small change in x affects all basis functions.

> If we use polynomial basis functions, the decision boundary will be a polynomial function of x.

0.5

-0.5

0.5

- ⇒ Nonlinear decision boundaries
- \Rightarrow However, we still solve a linear problem in $\phi(x)$.

Linear Basis Function Models (3) · Gaussian basis functions

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

- scale (width).

0.25 Properties \Rightarrow A small change in x affects only nearby basis functions. μ_j and s control location and

0.5

Linear Basis Function Models (4)

· Sigmoid basis functions

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

- Properties

 - \Rightarrow A small change in x affects only nearby basis functions.
 - ightarrow μ_j and s control location and scale (slope).

RWITHAACH

Topics of This Lecture

- Gradient Descent
- Logistic Regression
 - > Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Iteratively Reweighted Least Squares
- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution
- Note on Error Functions
- > Ideal error function Quadratic error
- Cross-entropy error

Gradient Descent

Learning the weights w:

> N training data points: $\mathbf{X} = {\mathbf{x}_1, ..., \mathbf{x}_N}$

> K outputs of decision functions: Target vector for each data point: $y_k(\mathbf{x}_n; \mathbf{w})$ $\mathbf{T} = \{\mathbf{t}_{\scriptscriptstyle 1},\,...,\,\mathbf{t}_{\scriptscriptstyle N}\}$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

Gradient Descent

- - > The error function can in general no longer be minimized in closed form
- Idea (Gradient Descent)
 - Iterative minimization
 - > Start with an initial guess for the parameter values $\,w_{kj}^{(0)}\,$
 - > Move towards a (local) minimum by following the gradient.

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

This simple scheme corresponds to a 1st-order Taylor expansion (There are more complex procedures available).

RWITHAAC

Gradient Descent - Basic Strategies

"Batch learning"

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

Compute the gradient based on all training data:

$$\frac{\partial E(\mathbf{w})}{\partial w_{ki}}$$

Gradient Descent – Basic Strategies

"Sequential updating"

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

> Compute the gradient based on a single data point at a time:

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}}$$

Gradient Descent

Error function

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$E_n(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \left(\sum_{\tilde{j}=1}^{M} w_{k\tilde{j}} \phi_{\tilde{j}}(\mathbf{x}_n) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$

$$= \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$

3

Gradient Descent

Delta rule (=LMS rule)

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$
$$= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

where

$$\delta_{kn} = y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}$$

 \Rightarrow Simply feed back the input data point, weighted by the classification error.

Gradient Descent

· Cases with differentiable, non-linear activation function

$$y_k(\mathbf{x}) = g(a_k) = g\left(\sum_{j=0}^{M} w_{ki}\phi_j(\mathbf{x}_n)\right)$$

Gradient descent

$$\begin{array}{ll} \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} \; = \; \frac{\partial g(a_k)}{\partial w_{kj}} \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n) \\ \\ w_{kj}^{(\tau+1)} \; = \; w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n) \\ \\ \delta_{kn} \; = \; \frac{\partial g(a_k)}{\partial w_{kj}} \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \end{array}$$

Summary: Generalized Linear Discriminants

- · Properties
 - > General class of decision functions.
 - > Nonlinearity $g(\cdot)$ and basis functions ϕ_j allow us to address linearly non-separable problems.
 - > Shown simple sequential learning approach for parameter estimation using gradient descent.
 - Better 2nd order gradient descent approaches are available (e.g. Newton-Raphson), but they are more expensive to compute.
- Limitations / Caveats
 - > Flexibility of model is limited by curse of dimensionality
 - g(·) and φ_i often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters.
 - Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.

Topics of This Lecture

- Gradient Descent
- Logistic Regression
 - > Probabilistic discriminative models
 - > Logistic sigmoid (logit function)
 - Cross-entropy error
 - Iteratively Reweighted Least Squares
- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution
- Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

RWITHAAC

RWITHAAC

logistic sigmoid

function

Probabilistic Discriminative Models

· We have seen that we can write

$$p(C_1|\mathbf{x}) = \sigma(a)$$

= $\frac{1}{1 + \exp(-a)}$

· We can obtain the familiar probabilistic model by setting

$$a = \ln \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

Or we can use generalized linear discriminant models

$$a = \mathbf{w}^T \mathbf{x}$$

 $a = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$

Probabilistic Discriminative Models

· In the following, we will consider models of the form

$$p(C_1|\phi) = y(\phi) = \sigma(\mathbf{w}^T \phi)$$
$$p(C_2|\phi) = 1 - p(C_1|\phi)$$

• This model is called logistic regression.

Why should we do this? What advantage does such a model have compared to modeling the probabilities?

$$p(\mathcal{C}_1|\boldsymbol{\phi}) \ = \ \frac{p(\boldsymbol{\phi}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\boldsymbol{\phi}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\boldsymbol{\phi}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

Any ideas?

Comparison

- Let's look at the number of parameters...
 - > Assume we have an M-dimensional feature space ϕ .
 - And assume we represent $p(\phi|\mathcal{C}_k)$ and $p(\mathcal{C}_k)$ by Gaussians.
 - > How many parameters do we need?
 - For the means: 2M
 - For the covariances: M(M+1)/2
 - Together with the class priors, this gives M(M+5)/2+1 parameters!
 - > How many parameters do we need for logistic regression?

$$p(C_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma(\mathbf{w}^T \boldsymbol{\phi})$$

Just the values of w ⇒ M parameters.

 \Rightarrow For large M, logistic regression has clear advantages!

Logistic Sigmoid

- **Properties**
 - Definition: $\sigma(a) = \frac{1}{1 + \exp(-a)}$
 - Inverse:

$$a = \ln\left(\frac{\sigma}{1 - \sigma}\right)$$

"logit" function

Symmetry property:

$$\sigma(-a) = 1 - \sigma(a)$$

Derivative:

$$\frac{d\sigma}{da} = \sigma(1 - \sigma)$$

Logistic Regression

- Let's consider a data set {φ_n,t_n} with n = 1,...,N, where $\phi_n = \phi(\mathbf{x}_n)$ and $t_n \in \{0,1\}$, $\mathbf{t} = (t_1, \dots, t_N)^T$.
- With $y_n=p(\mathcal{C}_1|\phi_n)$, we can write the likelihood as $p(\mathbf{t}|\mathbf{w})=\prod_{n=1}^N y_n^{t_n}\left\{1-y_n\right\}^{1-t_n}$

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1 - t_n}$$

· Define the error function as the negative log-likelihood $E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w})$

$$= -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}\$$

> This is the so-called cross-entropy error function.

Gradient of the Error Function

• Error function
$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1-t_n) \ln(1-y_n)\}$$
• Gradient

$$\begin{aligned} \nabla E(\mathbf{w}) &= -\sum_{n=1}^{N} \left\{ t_n \frac{\frac{d}{d\mathbf{w}} y_n}{y_n} + (1 - t_n) \frac{\frac{d}{d\mathbf{w}} (1 - y_n)}{(1 - y_n)} \right\} \\ &= -\sum_{n=1}^{N} \left\{ t_n \frac{y_n (1 - y_n)}{y_n} \phi_n - (1 - t_n) \frac{y_n (1 - y_n)}{(1 - y_n)} \phi_n \right\} \\ &= -\sum_{n=1}^{N} \left\{ (t_n - t_n y_n - y_n + t_n y_n) \phi_n \right\} \\ &= \sum_{n=1}^{N} (y_n - t_n) \phi_n \end{aligned}$$

Gradient of the Error Function

· Gradient for logistic regression

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \boldsymbol{\phi}_n$$

- Does this look familiar to you?
- · This is the same result as for the Delta (=LMS) rule

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})\phi_j(\mathbf{x}_n)$$

- We can use this to derive a sequential estimation algorithm.
 - > However, this will be quite slow...

A More Efficient Iterative Method...

· Second-order Newton-Raphson gradient descent scheme $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \mathbf{H}^{-1} \nabla E(\mathbf{w})$

where $\mathbf{H} = \nabla \nabla E(\mathbf{w})$ is the Hessian matrix, i.e. the matrix of second derivatives.

- **Properties**
 - > Local quadratic approximation to the log-likelihood.
 - Faster convergence.

RWITHAAC

Newton-Raphson for Least-Squares Estimation

Let's first apply Newton-Raphson to the least-squares error function:

$$\begin{split} E(\mathbf{w}) &= \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^T \boldsymbol{\phi}_n - t_n \right)^2 \\ \nabla E(\mathbf{w}) &= \sum_{n=1}^{N} \left(\mathbf{w}^T \boldsymbol{\phi}_n - t_n \right) \boldsymbol{\phi}_n = \boldsymbol{\Phi}^T \boldsymbol{\Phi} \mathbf{w} - \boldsymbol{\Phi}^T \mathbf{t} \\ \mathbf{H} &= \nabla \nabla E(\mathbf{w}) &= \sum_{n=1}^{N} \boldsymbol{\phi}_n \boldsymbol{\phi}_n^T = \boldsymbol{\Phi}^T \boldsymbol{\Phi} \qquad \text{where} \quad \boldsymbol{\Phi} = \begin{bmatrix} \boldsymbol{\phi}_1^T \\ \vdots \\ \boldsymbol{\phi}_N^T \end{bmatrix} \end{split}$$

Resulting update scheme:

$$\begin{split} \mathbf{w}^{(\tau+1)} &= \mathbf{w}^{(\tau)} - (\mathbf{\Phi}^T\mathbf{\Phi})^{-1}(\mathbf{\Phi}^T\mathbf{\Phi}\mathbf{w}^{(\tau)} - \mathbf{\Phi}^T\mathbf{t}) \\ &= (\mathbf{\Phi}^T\mathbf{\Phi})^{-1}\mathbf{\Phi}^T\mathbf{t} & \text{Closed-form solution!} \end{split}$$

Newton-Raphson for Logistic Regression

Now, let's try Newton-Raphson on the cross-entropy error

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n = \mathbf{\Phi}^T(\mathbf{y} - \mathbf{t})$$

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} y_n (1 - y_n) \boldsymbol{\phi}_n \boldsymbol{\phi}_n^T = \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi}$$

where ${f R}$ is an $N\!\! imes\!N$ diagonal matrix with $R_{nn}=y_n(1-y_n)$.

 \Rightarrow The Hessian is no longer constant, but depends on \boldsymbol{w} through the weighting matrix ${f R}$.

RWITHAAI

Iteratively Reweighted Least Squares

· Update equations

$$\begin{split} \mathbf{w}^{(\tau+1)} &= \mathbf{w}^{(\tau)} - (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \\ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi} \mathbf{w}^{(\tau)} - \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \right\} \\ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{R} \mathbf{z} \end{split}$$

with
$$\mathbf{z} = \mathbf{\Phi} \mathbf{w}^{(au)} - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t})$$

- Again very similar form (normal equations)
 - \triangleright But now with non-constant weighing matrix R (depends on w).
 - > Need to apply normal equations iteratively.
 - ⇒ Iteratively Reweighted Least-Squares (IRLS)

Summary: Logistic Regression

- Properties
- \rightarrow Directly represent posterior distribution $p(\phi|\mathcal{C}_{\iota})$
- Requires fewer parameters than modeling the likelihood + prior.
- Very often used in statistics.
- It can be shown that the cross-entropy error function is concave
 - Optimization leads to unique minimum
 - But no closed-form solution exists.
 - Iterative optimization (IRLS)
- > Both online and batch optimizations exist
- Caveat
 - Logistic regression tends to systematically overestimate odds ratios when the sample size is less than ~500.

Topics of This Lecture

- Gradient Descent
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Iteratively Reweighted Least Squares
- Softmax Regression
 - > Multi-class generalization
 - > Gradient descent solution
- Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

Softmax Regression

- · Multi-class generalization of logistic regression
 - In logistic regression, we assumed binary labels $t_n \in \{0,1\}$.
 - Softmax generalizes this to K values in 1-of-K notation.

Softmax generalizes this to
$$K$$
 values in 1-of- K notation.
$$\mathbf{y}(\mathbf{x}; \mathbf{w}) = \begin{bmatrix} P(y=1|\mathbf{x}; \mathbf{w}) \\ P(y=2|\mathbf{x}; \mathbf{w}) \\ \vdots \\ P(y=K|\mathbf{x}; \mathbf{w}) \end{bmatrix} = \frac{1}{\sum_{j=1}^K \exp(\mathbf{w}_j^\top \mathbf{x})} \begin{bmatrix} \exp(\mathbf{w}_1^\top \mathbf{x}) \\ \exp(\mathbf{w}_2^\top \mathbf{x}) \\ \vdots \\ \exp(\mathbf{w}_K^\top \mathbf{x}) \end{bmatrix}$$

> This uses the softmax function

$$\frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

> Note: the resulting distribution is normalized.

Softmax Regression Cost Function

- · Logistic regression
 - > Alternative way of writing the cost function

$$\begin{split} E(\mathbf{w}) &= -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\} \\ &= -\sum_{n=1}^{N} \sum_{k=0}^{1} \left\{ \mathbb{I} \left(t_n = k \right) \ln P \left(y_n = k | \mathbf{x}_n; \mathbf{w} \right) \right\} \end{split}$$

- Softmax regression
 - Generalization to K classes using indicator functions.

$$E(\mathbf{w}) \ = \ -\sum_{n=1}^{N} \sum_{k=1}^{K} \ \left\{ \mathbb{I} \left(t_n = k \right) \ln \frac{\exp(\mathbf{w}_k^{\intercal} \mathbf{x})}{\sum_{j=1}^{K} \exp(\mathbf{w}_j^{\intercal} \mathbf{x})} \right\}$$

Optimization

- · Again, no closed-form solution is available
 - Resort again to Gradient Descent
 - Gradient

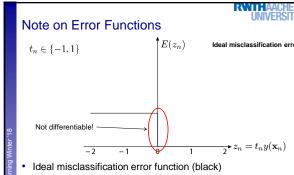
$$\nabla_{\mathbf{w}_{k}} E(\mathbf{w}) \ = \ -\sum_{n=1}^{N} \left[\mathbb{I}\left(t_{n} = k\right) \ln P\left(y_{n} = k | \mathbf{x}_{n}; \mathbf{w}\right) \right]$$

- Note
 - $holdsymbol{
 abla}_{w_k} E(\mathbf{w})$ is itself a vector of partial derivatives for the different components of \mathbf{w}_k .
 - > We can now plug this into a standard optimization package.

Topics of This Lecture

- Gradient Descent
- Logistic Regression
 - > Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - > Iteratively Reweighted Least Squares
- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution
- Note on Error Functions
 - Note on Error Function
 - Ideal error functionQuadratic error
 - Cross entrepy o
 - Cross-entropy error

B. Leib



- > This is what we want to approximate (error = #misclassifications)
- > Unfortunately, it is not differentiable.
- > The gradient is zero for misclassified points.
- \Rightarrow We cannot minimize it by gradient descent.

Image source: Bishop, 2006

Note on Error Functions $t_n \in \{-1,1\}$ Ideal misclassification error squared error $E(z_n)$ Ideal misclassification error squared error $\sum_{n=1}^{\infty} \frac{1}{2} z_n = t_n y(\mathbf{x}_n)$ • Squared error used in Least-Squares Classification $\sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac$

