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Recap: Linear Discriminant Functions
* Basicidea

~ Directly encode decision boundary
» Minimize misclassification probability directly.

=0
Y " y>0

* Linear discriminant functions

y(x) = wIx +wp y< 0

weight vector “bias”

(= threshold)
W

» W, w, define a hyperplane in RP. -1

» If a data set can be perfectly classified by a linear discriminant, then
we call it linearly separable.

ide adapted from Bernt Schiele B. Leibe
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Recap: Problems with Least Squares
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* Least-squares is very sensitive to outliers!

» The error function penalizes predictions that are “too correct”.

5
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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning -
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Recap: Least-Squares Classification

* Simplest approach
» Directly try to minimize the sum-of-squares error

N
BE(w) =Y (y(xn; W) — ta)*

Ep(W) = %Tr [XW - 1" XW - 1)}
» Setting the derivative to zero yields
W = (XTX)"IXTT = XIT = (XTX) ' XTT
> We then obtain the discriminant function as
y(x) = Wik = TT(XT)Ti
= Exact, closed-form solution for the discriminant function parameters.
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Recap: Generalized Linear Models

* Generalized linear model
T
y(x) = g(w"x + wo)
» g(+)is called an activation function and may be nonlinear.
» The decision surfaces correspond to

y(x) = const. <  WIx+wy = const.

» If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

* Advantages of the non-linearity
» Can be used to bound the influence of outliers
and “too correct” data points. -
» When using a sigmoid for g(-), we can interpret o ]

the y(x) as posterior probabilities. gla) = TFep(=a)
6
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Linear Separability

* Up to now: restrictive assumption
» Only consider linear decision boundaries

* Classical counterexample: XOR

Machine Learning Winter ‘18

ide credit: Bernt Schiele B. Leibe

Linear Basis Function Models

* Generalized Linear Discriminant Model

M1

yxw) = 3 wyy(x) = w'é(x)

=0
» where ¢;(x) are known as basis functions.
» Typically, ¢p(x) = 1, so that w, acts as a bias.
» In the simplest case, we use linear basis functions: ¢,(x) = z,.

* Let's take a look at some other possible basis functions...

Machine Learning Winter ‘18
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Linear Basis Function Models (3)
* Gaussian basis functions

dj(x) = cxp{——u = 'f”)Q}

252

0.75
0.5

025
* Properties

» Local 0
= A small change in z affects

only nearby basis functions.
» p;and s control location and

scale (width).

@
g
=
o
=
=
S
®
3
o
=
=
S
I}
=

12
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Generalized Linear Discriminants

* Generalization

» Transform vector x with M nonlinear basis functions ¢7](x):

M
k(%) = Y wi;d;(x) + wio
j=1

» Purpose of ¢,(x): basis functions

» Allow non-linear decision boundaries.
» By choosing the right ¢;, every continuous function can (in principle)
be approximated with arbitrary accuracy.
* Notation
M
yre(x) = E WP (x) with ¢o(x) =1
Jj=0 o
ide credit: Bernt Schiele B. Leibe
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Linear Basis Function Models (2)

* Polynomial basis functions

dyla) = ).

* Properties
» Global

= A small change in z affects all
basis functions.

* Result
» If we use polynomial basis functions, the decision boundary will
be a polynomial function of x.
= Nonlinear decision boundaries
= However, we still solve a linear problem in ¢(x).
1

lmage source: .\, Bishop, 200¢
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Linear Basis Function Models (4)

* Sigmoid basis functions

) T—p
o= (222)
> where
1
7la) = 1+ exp(—a)

* Properties
> Local
= A small change in z affects
only nearby basis functions.
» pjand s control location and
scale (slope).

13
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Topics of This Lecture

* Gradient Descent

* Logistic Regression
» Probabilistic discriminative models
» Logistic sigmoid (logit function)
» Cross-entropy error
» lteratively Reweighted Least Squares

* Softmax Regression
» Multi-class generalization
» Gradient descent solution

* Note on Error Functions
» Ideal error function
» Quadratic error
» Cross-entropy error

Machine Learning Winter ‘18
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* |dea (Gradient Descent)
» Iterative minimization

) L 0
» Start with an initial guess for the parameter values w( )

kj
» Move towards a (local) minimum by following the gradient.
W™ 0 OEW)
k kj
/ / OWkj |y

7: Learning rate

» This simple scheme corresponds to a 1st-order Taylor expansion
(There are more complex procedures available).

Machine Learning Winter ‘18
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Gradient Descent
* Problem
» The error function can in general no longer be minimized in
closed form.

TRWTH/ACHEN
Gradient Descent — Basic Strategies

¢ “Sequential updating”
N

w) =Y En(w)

W™D = ™ OF,(w)
kj - kj X
(T e

2 7: Learning rate
£
% » Compute the gradient based on a single data point at a time:
5 OE,(w)
S -
2 8wkj
=
8
5 23

ide credit- Bernt Schiele. B. Leibe
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Gradient Descent
* Learning the weights w:
» N training data points: X ={x,, ..., Xy}
» K outputs of decision functions: Yi(X, W)
» Target vector for each data point: T={t, .. ty}

» Error function (least-squares error) of linear model
N
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K
B(w) = 733 r(n; W) — tin)
n=1k=1
M 2
1
= 522 D i (Xn) = ten
n=1k=1 \j=1
de credit Berny Schiele B. Leibe 16
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Gradient Descent — Basic Strategies
* “Batch learning”
W™ — ™ _ OE(w)
k kj 5
! ! OWkj |y
n: Learning rate
> Compute the gradient based on all training data:
OE(w)
ide credit Bernt Schigle B. Leibe 22
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Gradient Descent
* Error function
N LN K [ 2
=D Eaw) = 3200 | D wk s (6n) ~ tan
n=1 n=1k=1 \j=1
1K (M 2
En(w) = 52 Z Wi b (Xn) —
k=1 \j=1
OB, (w) M
Dwe; 2 wi95(%n) = tin | &5(xn)

j=1

= (Yr(Xn; W) = tn) 5 (xn)

24
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Gradient Descent

* Delta rule (=LMS rule)

wiT™ = ) — 0 (g (03 W) — tan) ()

w](g‘;) - 775kn¢] (Xn)
» where

Oen = Yu(Xn; W) — tin

= Simply feed back the input data point, weighted by the
classification error.

Machine Learning Winter ‘18
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Summary: Generalized Linear Discriminants

* Properties
» General class of decision functions.

Nonlinearity g(-) and basis functions ¢; allow us to address linearly

non-separable problems.

» Shown simple sequential learning approach for parameter estimation
using gradient descent.

» Better 2" order gradient descent approaches are available

(e.g. Newton-Raphson), but they are more expensive to compute.

v

* Limitations / Caveats
» Flexibility of model is limited by curse of dimensionality
- g(-) and ¢, often introduce additional parameters.

— Models are either limited to lower-dimensional input space
or need to share parameters.

» Linearly separable case often leads to overfitting.
— Several possible parameter choices minimize training error. 27
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Probabilistic Discriminative Models

* We have seen that we can write
p(Cix) = o(a)

logistic sigmoid

function
1
1+ exp(—a)

¢ We can obtain the familiar probabilistic model by setting
2 _ np(x|cl)p(cl)
£ p(x|C2)p(Cz2)
E * Or we can use generalized linear discriminant models
§ a=wlx
E or a=wlp(x)

29
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Gradient Descent

* Cases with differentiable, non-linear activation function

yr(x) = glar) = g | D wrid;(xn)

Jj=0

* Gradient descent

M _ M (Y (Xns; W) — trn) ¢5(Xn)

Owy; Owy;
wii ™ = wfl) — mknds(xa)
Og(ax,)
Okn = Yk (Xn; W) — tin
e (0505 W) = th) )
ide credit: Bernt Schiele B. Leibe

Topics of This Lecture

* Logistic Regression
» Probabilistic discriminative models
» Logistic sigmoid (logit function)
» Cross-entropy error
» lteratively Reweighted Least Squares

28
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TWTH G
Probabilistic Discriminative Models

* In the following, we will consider models of the form
p(Cil¢) = y(d) =o(w'9)
with p(Clp) = 1-p(Ci]9)
* This model is called logistic regression.
* Why should we do this? What advantage does such a

model have compared to modeling the probabilities?

B p(¢]C1)p(Cy)
p(Cil¢) = P(@[CP(C1) + p(PIC2)p(Ca)

* Anyideas?
30
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Comparison

* Let’s look at the number of parameters...
» Assume we have an M-dimensional feature space ¢.
» And assume we represent p(¢|C,) and p(C;) by Gaussians.
» How many parameters do we need?
— For the means: 2M
M(M+1)12
— Together with the class priors, this gives M(M+5)/2+1 parameters!

— For the covariances:

» How many parameters do we need for logistic regression?
p(Cilg) = y(d) =o(w'¢)

— Just the values of w = M parameters.

= For large M, logistic regression has clear advantages!

Machine Learning Winter ‘18
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Logistic Regression

* Let's consider a data set {¢,,,t, } with n =1,...,N,
where ¢,, = p(x,)and t,, € {0,1}, t = (t1,...,tn)7 -

* Withy,, = p(Cy|¢,,), we can write the likelihood as

N
p(tiw) = ] ol (1=} ™"
n=1

* Define the error function as the negative log-likelihood
E(w) = —Inp(t|w)

= = {talnyn + (1 —t,) In(1—y,)}

» This is the so-called cross-entropy error function.

Machine Learning Winter ‘18
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Gradient of the Error Function

¢ Gradient for logistic regression
N

VE(W) = Z(yn 7tn)¢n

n=1

¢ Does this look familiar to you?

* This is the same result as for the Delta (=LMS) rule
(r+1) _ () .
W5 = Wi — N(Yr(Xn; W) — tin) P (xn)
* We can use this to derive a sequential estimation algorithm.
» However, this will be quite slow...
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Logistic Sigmoid
* Properties 1

- Definiion:  o(a) = ————
1+ exp(—a)

o
a-ln(lig)

» Inverse: “logit” function

» Symmetry property:
o(—a) =1—o0(a)
do
» Derivative: —=0(1-—
2 —o1-0)

32
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RWTH ACHEN
Gradient of the Error Function p—
* Error function N ZZ‘/; = yn(1 = yn)d,,
E(w) = = {talnyn+ (1 —ta)In(1 - y,)}
* Gradient n;1 ., . :
- - awhn (g _y,y a7 Yn)
VE(w) = ;{tn (-t B }
N
_ yx((lfyn) 1 ynm
;{tn—% b= (1=t L,
N
= 72{(tn —tnlly — Yn +M)¢n}
Nn:l
=Y Wn—ta)o,
n=1 34
RWTH ACHEN

A More Efficient Iterative Method...

* Second-order Newton-Raphson gradient descent scheme
wl™) = w() _ H 'VE(w)

where H = VVE(w) is the Hessian matrix, i.e. the matrix
of second derivatives.

* Properties

» Local quadratic approximation to the log-likelihood.
~ Faster convergence.

36
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Newton-Raphson for Least-Squares Estimation

* Let’s first apply Newton-Raphson to the least-squares
error function:

N
1 2
E(w) = 52 (WT¢n - tn)
n=1
N
VEW) = Y (W', —tn) ¢, = dw— 3"t
i ¢l
H=VVE(w) = ¢, 0" =o7® where & = :

n=1 T
N

* Resulting update scheme:
w™D = w() _(@T®) (T dw() — &)
=@ ®) ot Closed-form solution!
37
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Iteratively Reweighted Least Squares

* Update equations
w) =w — (@"R®) '@ (y - t)
= (8"R®)"! {@TR@wW — 3T (y - t)}
= (#"R®) 9 Rz
with z=®w — R}y —t)

* Again very similar form (normal equations)
» But now with non-constant weighing matrix R (depends on w).
» Need to apply normal equations iteratively.
= lteratively Reweighted Least-Squares (IRLS)

Machine Learning Winter ‘18
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Topics of This Lecture

* Softmax Regression
» Multi-class generalization
» Gradient descent solution
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Newton-Raphson for Logistic Regression

* Now, let's try Newton-Raphson on the cross-entropy error
function:

N
E(w) = =Y {talnyn + (1 —t,)In(1 - y)}
n=1
N % = yn(l—yn)®
VE(W) = Z(yn - tn)¢71, = (I)T(y - t)
n=1

N
H=VVEW) = > y(1-yn)0,0, = &' RE
n=1

where R is an Nx N diagonal matrix with Ry,;, = yn (1 — yn) -

= The Hessian is no longer constant, but depends on w through the
weighting matrix R..

38
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Summary: Logistic Regression

* Properties

» Directly represent posterior distribution p(¢|C;,)
» Requires fewer parameters than modeling the likelihood + prior.
» Very often used in statistics.
» It can be shown that the cross-entropy error function is concave
— Optimization leads to unique minimum
— But no closed-form solution exists
— lterative optimization (IRLS)
» Both online and batch optimizations exist

* Caveat

» Logistic regression tends to systematically overestimate odds ratios
when the sample size is less than ~500.

40
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RWTH CHET
Softmax Regression
* Multi-class generalization of logistic regression

» In logistic regression, we assumed binary labels ¢, € {0,1} .
» Softmax generalizes this to K values in 1-of-K notation.

Py =1x;w) exp(wy x)
) Py = 2|x;w) 1 exp(wj x)
y(x;w) = . =— .
: S exp(w, )
Py = K|x;w) exp(W )

» This uses the softmax function
explag)

> exn(ay)
» Note: the resulting distribution is normalized.

42
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RWTH/ACHEN
Softmax Regression Cost Function

* Logistic regression
» Alternative way of writing the cost function

N
E(w) = — Z {t,Iny, + (1 —t,) In(1 —y,)}

3
-

N 1
= - ZZ {I(tn = k) In P (yn = klxn; w)}
1k=0

n

«©
é * Softmax regression
% » Generalization to K classes using indicator functions.
= (w) ii { ( ) exp(w} x) }
3 E(w) = — I, =k)ln —(p—"———
° =1 k=1 = exp(w)x)
=
8
s
B. Leibe 43
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Topics of This Lecture
Cd
3
=
2
= * Note on Error Functions
% » ldeal error function
£ » Quadratic error
g . Cross-entropy error
B. Leibe 46
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Note on Error Functions
t e {_1 1} E(zn) Ideal misclassification errol
fn :

Squared error

Sensitive to outliers!

Penalizes “too correct”
data points!

>

) I 0 2 Zn = tny(xfrz)

* Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 48

Jmage source: Bishop, 2001
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Optimization

* Again, no closed-form solution is available
» Resort again to Gradient Descent

» Gradient
N
Vi, B(W) = = [L{tn = k) In P (yn = klxa; w)]
n=1
* Note
> Vi E(w) is itself a vector of partial derivatives for the different
components of w.
» We can now plug this into a standard optimization package.
44
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Note on Error Functions

Ideal misclassification erro

fne{-1,1} Elzn)

Not differentiable! ———

- 3 o 1 3" A = tny(xn)

* |deal misclassification error function (black)
» This is what we want to approximate (error = #misclassifications)
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 47

lmage source: Bishop, 2001
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Comparing Error Functions (Loss Functions)
\ E(zﬂ) Ideal misclassification erro

Squared error

Cr‘oss—emropy error

ty e {—1.1}

Robust to outliers!

] Zn = tny(xn)

* Cross-Entropy Error
» Minimizer of this error is given by posterior class probabilities.
» Concave error function, unique minimum exists.
» Robust to outliers, error increases only roughly linearly
» But no closed-form solution, requires iterative estimaEion. 49

mage source. Bishon, 200
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Overview: Error Functions

* ldeal Misclassification Error
» This is what we would like to optimize.
» But cannot compute gradients here.

* Quadratic Error
-2 -1
» Easy to optimize, closed-form solutions exist.
» But not robust to outliers.

* Cross-Entropy Error
» Minimizer of this error is given by posterior class probabilities.
» Concave error function, uniqgue minimum exists.
» But no closed-form solution, requires iterative estimation.

= Looking at the error function this way gives us an analysis
tool to compare the properties of classification approaches.
5
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References and Further Reading

* More information on Linear Discriminant Functions can be
found in Chapter 4 of Bishop’s book (in particular Chapter
4.1-4.3).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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