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Recap: Mixture of Gaussians (MoG)

* “Generative model”
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Mixture
p(z) /\{7& p(x|0;) component

. “Weight” of mixture
p(j) = m; component
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Recap: Estimating MoGs — Iterative Strategy

* Assuming we knew the mixture components...

J*1|9E p(j =2|z)

1 111 22 2 2 J

* Bayes decision rule: Decide j =1 if

p(j = 1zn) > p(j = 2|zn)
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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning

. Foundations \
» Convolutional Neural Networks E‘.

» Recurrent Neural Networks
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Recap: Estimating MoGs — Iterative Strategy

* Assuming we knew the values of the hidden variable...

J()

X

ML for Gaussian #1 I T ML for Gaussian #2

% assumed known —> 1 111 22 2 2 7
E h(j=1lzn) = 1111 00 0 0
£ h(j = 2lza) = 0 000 111
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Recap: K-Means Clustering

* |terative procedure
1. |Initialization: pick K arbitrary
centroids (cluster means)

2. Assign each sample to the closest
centroid.

3. Adjust the centroids to be the
means of the samples assigned
to them.

4. Go to step 2 (until no change)

« Algorithm is guaranteed to
converge after finite #iterations.
»  Local optimum
»  Final result depends on initialization.

ide credit Bernt Schigle B. Leibe
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Recap: EM Algorithm

* Expectation-Maximization (EM) Algorithm
» E-Step: softly assign samples to mixture components
WJN(xn‘IL]w %j)
—_—
P er TN (a1, Zie)
» M-Step: re-estimate the parameters (separately for each mixture

component) based on the soft assignments
N

N] « Z 7 (xn) = soft number of samples labeled j

n=1

Y5 (%n) Vi=1,....K, n=1,...,N

Machine Learning Winter ‘18

- 1
new A new ~new\T
B Ny (o) (% — ) (6 — f15°)
Nj = 7
ide adapted from Bernt Schiele B. Leibe

RWTH LGN
Discriminant Functions

* Bayesian Decision Theory p(Clx) = IM
» Model conditional probability densities (x)
p(z|Cy,) and priors p(Ck)
. Compute posteriors p(Cx|z) (using Bayes' rule)
. Minimize probability of misclassification by maximizing »(C|x)

* New approach
» Directly encode decision boundary
» Without explicit modeling of probability densities
» Minimize misclassification probability directly.

Machine Learning Winter ‘18
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Discriminant Functions

* Example: 2 classes
yi(z) > ya(z)
< yi(@) —ya(z) >0
& y(z) >0

* Decision functions (from Bayes Decision Theory)
y(z) =p(Ci|z) — p(Cal)

el | (@)
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Topics of This Lecture

* Linear discriminant functions
» Definition
» Extension to multiple classes

* Least-squares classification
» Derivation
» Shortcomings

* Generalized linear models
» Connection to neural networks
» Generalized linear discriminants & gradient descent
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Recap: Discriminant Functions
* Formulate classification in terms of comparisons

» Discriminant functions
y1(), .., yx (@)

» Classify z as class C, if

ye(x) > yi(z) Vi#k

* Examples (Bayes Decision Theory)
ye(z) = p(Cklv)
ye(z) = p(z|Ck)p(C)
yi(z) = logp(z|Ck) +logp(Cr)
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Learning Discriminant Functions

* General classification problem
» Goal: take a new input x and assign it to one of K classes C,.
» Given: training set X = {x,, ..., Xy}
with target values T ={t,, ..., ty}.
= Learn a discriminant function y(x) to perform the classification.

* 2-class problem
» Binary target values: tn, €{0,1}

* K-class problem
. 1-of-K coding scheme, e.g.  tn =(0,1,0,0, 07T
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Linear Discriminant Functions

* 2-class problem
» y(x) > 0: Decide for class C,, else for class C,

* In the following, we focus on linear discriminant functions

y(x) = wTx +wp

weight vector “bias”
(= threshold)

» If a data set can be perfectly classified by a linear discriminant,
then we call it linearly separable.
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y(x) = wTx + wp
D
= Z w;T; + wo
i=1

D
= E W;iT; with g =1 constant
i=0
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Linear Discriminant Functions
* Notation T1 w1
> D Number of dimensions o wo
X = W =
rp wp

Extension to Multiple Classes

* Problem

» Both strategies result in regions for which
the pure classification result (y, > 0) is
ambiguous.
In the one-vs-all case, it is still possible
to classify those inputs based on the
continuous classifier outputs y, > y; Vj#k.

v

* Solution

» We can avoid those difficulties by taking
K linear functions of thgrform
Y (X) = Wi X +wpo
and defining the decision boundaries directly
by deciding for C,, iff y, > y; Vj=k.
» This corresponds to a 1-of-K coding scheme
t, = (0,1,0,...,0,0)T
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Linear Discriminant Functions

* Decision boundary y(x) = 0 defines a hyperplane
» Normal vector: W

» Offset: 7—r
kK y>0
Y= 0 x5
y <0
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Extension to Multiple Classes

* Two simple strategies

One-vs-all classifiers One-vs-one classifiers

not €

» How many classifiers do we need in both cases?

» What difficulties do you see for those strategies?
B. Leibe
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Extension to Multiple Classes

* K-class discriminant
» Combination of K linear functions
ye(x) = wkq,‘x + wio

» Resulting decision hyperplanes:
(Wk — Wj)TX + (wko — wjo) =0

» It can be shown that the decision regions of such a discriminant
are always singly connected and convex.

» This makes linear discriminant models particularly suitable for
problems for which the conditional densities p(x|w;) are unimodal.
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Topics of This Lecture

¢ Least-squares classification
» Derivation
» Shortcomings
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General Classification Problem

* Classification problem
» For the entire dataset, we can write

Y(X) =XW
and compare this to the target matrix T where

W = [wi,...,Wk]
xi t]
X = : T =
x% t%

» Result of the comparison: .
o Goal: Choose W such
XW-T that this is minimal!

21
B. Leibe

@
g
=
o
=
=
S
®
3
o
=
=
S
I}
=

RWTHAACHE

Least-Squares Classification using:
> a? =Tr{ATA}
¢ Multi-class case i

» Let's formulate the sum-of-squares error in matrix notation

—~ 1 - -~
Ep(W) = 5Tr {(XW ~T)T(XW — T)}
» Taking the derivative yields chain rule:
2 oy = L0 & W oz _ 020y
S (W) = EﬁTr{(xw ~T'XW-T)}  |5% = 57 ox%
1 d P P
- S S Tr{(XW - T)T(XW - T
29(XW - T)T(XW - T) r{( A )}
%(XW - T)T()N(W -T) ) using:
o e —Tr{A} =1
= X"(XW-T) 2N
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General Classification Problem

* Classification problem
» Let’s consider K classes described by linear models
T
Yk (X) = Wi X + wgo, k=1,....K

» We can group those together using vector notation

y(x) = WTx
© where wio ... WK
-§ — _ _ w11 e WK1
< W = [wy,...,Wk]| =
2
£ wip ... WKD
S
_E » The output will again be in 1-of-K notation.
§ = We can directly compare it to the target value t = [tl, L. 7tk]T
20
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Least-Squares Classification

* Simplest approach
» Directly try to minimize the sum-of-squares error
> We could write this as

Blw) = 2303 (b w) — t4n)?

1k=1

N K
n=1k=
N K

(Wl — trn)

b =

n=

k=1

» But let’s stick with the matrix notation for now...

> (The result will be simpler to express and we’'ll learn some
nice matrix algebra rules along the way...)

Machine Learning Winter ‘18
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Least-Squares Classification

* Minimizing the sum-of-squares error

a%ED(W) =XT(XW -T)

0

XW =

T

W = (XTX)1XTT
= X'T “pseudo-inverse”
> We then obtain the discriminant function as

y(x) = WTx = TT<)~(T)T>~(

= Exact, closed-form solution for the discriminant function parameters.
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Problems with Least Squares

Least-squares is very sensitive to outliers!
» The error function penalizes predictions that are “too correct”.

B. Leibe
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Topics of This Lecture

Generalized linear models
» Connection to neural networks
» Generalized linear discriminants & gradient descent

B. Leibe
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Generalized Linear Models
* Consider 2 classes:
p(x|C1)p(C1)
C =
PO = R eC) T PG G
B 1
T 1 p(xIC2)p(Ca)
1 + z(x 31521(715
1
e
p(x|C1)p(C1)
ith = p
e np(x\cz)l)(@)

ide credit- Bernt Schiele
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Problems with Least-Squares

* Another example:

* Deeper reason for the failure E

» 3classes (red, green, blue)
» Linearly separable problem
» Least-squares solution:
Most green points are misclassified!

» Least-squares corresponds to
Maximum Likelihood under the
assumption of a Gaussian conditional distribution.

» However, our binary target vectors have a distribution that is clearly
non-Gaussian!

= Least-squares is the wrong probabilistic tool in this case!

28
C.M, Bishop, 200
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Generalized Linear Models

Linear model

y(x) = wrx +wyp

Generalized linear model
T
y(x) = g(w"x + wo)
» g(-)is called an activation function and may be nonlinear.

» The decision surfaces correspond to

y(x) = const. < WIx 4wy = const.

» If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

30
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Logistic Sigmoid Activation Function
Example: Normal distributions
g( a) — 1 with identical covariance
~ 1+exp(—a)
7 te(ala) p(1b)
,.//
/ T
/ p(al|z) p(b|z)
//:;
R e I R S R T
ide credit Bernt Schigle B. Leibe
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Normalized Exponential
* General case of K > 2 classes:

p(x|Cr)p(Cy
p(Cilx) = %
23 P(xICi)p(C;)
exp(ag)

>_; exp(a;)

with  a, = Inp(x|Ci,)p(Cr)
» This is known as the normalized exponential or softmax function
» Can be regarded as a multiclass generalization of the logistic

sigmoid.

ide credit: Bernt Schiele B. Leibe
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Relationship to Neural Networks
* Multi-class case
D
uw(x) =g Z Wy T; | with g = 1 constant
=0

* Multi-class perceptron

»i(x) Y(X)  outputs

thresholds weights

Relationship to Neural Networks

* 2-Class case
D

yx)=g Zwiri with g =1 constant
i=0

* Neural network (“single-layer perceptron”)

W(x)

output

threshold weights

Machine Learning Winter ‘18

x, =1 inputs

ide credit Bernt Schiele B. Leibe
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Logistic Discrimination
* If we use the logistic sigmoid activation function...

1 y(x)
g(a) = 1 +6Xp(*(l)

threshold

y(x) = g(w'x +wo)

... then we can interpret the y(z) as posterior probabilities!

Machine Learning Winter ‘18
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output
weights

0=1 f - — x, inputs

Wio Wi
X, =1  S—— X, inputs
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Other Motivation for Nonlinearity Discussion: Generalized Linear Models

* Recall least-squares classification ‘ * Advantages
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» One of the problems was that data
points that are “too correct” have a
strong influence on the decision
surface under a squared-error criterion.

N
Bw) = (xuiw) —t)° :

Reason: the output of y(x,,;w) can grow
arbitrarily large for some x,,: o e

v

Y w) = wx + up

» By choosing a suitable nonlinearity (e.g.
a sigmoid), we can limit those influences

y(x;w) = g(wrx 4 wp) : L

B. Leibe
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» The nonlinearity gives us more flexibility.
» Can be used to limit the effect of outliers.
» Choice of a sigmoid leads to a nice probabilistic interpretation.

* Disadvantage
» Least-squares minimization in general no longer leads to a
closed-form analytical solution.
= Need to apply iterative methods.
= Gradient descent.
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Linear Separability

* Up to now: restrictive assumption
» Only consider linear decision boundaries

* Classical counterexample: XOR

Machine Learning Winter ‘18

39
ide credit: Bernt Schiele B. Leibe

Generalized Linear Discriminants

* Model

M
ye(x) =D wijd;(x) = ye (W)

Jj=0
» K functions (outputs) y;(x;w)

* Learning in Neural Networks
» Single-layer networks: ¢; are fixed, only weights w are learned.
> Multi-layer networks: both the w and the qu are learned.

» We will take a closer look at neural networks from lecture 11 on. For
now, let’s first consider generalized linear discriminants in general...

Machine Learning Winter ‘18
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Gradient Descent
* Problem
» The error function can in general no longer be minimized in
closed form.

* |dea (Gradient Descent)
» Iterative minimization

) L 0
» Start with an initial guess for the parameter values w( )

kj

» Move towards a (local) minimum by following the gradient.
) _ ) OBEW)
ki =Wk TN G
Wi | w(r)

7: Learning rate

» This simple scheme corresponds to a 1st-order Taylor expansion
(There are more complex procedures available).
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Generalized Linear Discriminants

* Generalization

» Transform vector x with M nonlinear basis functions ¢ (x):
M
yre(x) = D wijd (%) + weo
Jj=1

» Purpose of ¢,(x): basis functions

» Allow non-linear decision boundaries.
» By choosing the right ¢;, every continuous function can (in principle)
be approximated with arbitrary accuracy.
* Notation
M
yre(x) = E WP (x) with ¢o(x) =1
j=0 41
ide credit: Bernt Schiele B. Leibe
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Gradient Descent

* Learning the weights w:

» N training data points: X ={x,, ..., Xy}
» K outputs of decision functions: Yi(X,, W)
» Target vector for each data point: T={t, .. ty}

» Error function (least-squares error) of linear model
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1 N K
E(w) = 5 SN w0 W) = trn)”
n=1k=1
LN K [ 2
502 | 2wk (xn) — tin
n=1k=1 \j=1
43
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Gradient Descent — Basic Strategies

* “Batch learning”
OE(w)

(T+1) (r)
w, ) =w ) —
& & Owgj |y

n: Learning rate

» Compute the gradient based on all training data:
OE(w)
8wkj

45
de credit Bernt Schiele B, Leibe
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Gradient Descent — Basic Strategies

* “Sequential updating”
N

w) =Y En(w)

T . OE,,(w)

Wk |y
& 7: Learning rate
£
§, » Compute the gradient based on a single data point at a time:
§ OF,(w)
3 - 7
2 8’wk j
£
8
= 46
ide credit: Bernt Schiele B. Leibe

Gradient Descent

* Delta rule (=LMS rule)

wit™ = W) — 0 (g (03 W) — tan) ()

wk] 775kn¢] (Xn)
» where

Oen = Yu(Xn; W) — tin

= Simply feed back the input data point, weighted by the
classification error.

Machine Learning Winter ‘18
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Summary: Generalized Linear Discriminants

* Properties
» General class of decision functions.
Nonlinearity g(-) and basis functions ¢; allow us to address
linearly non-separable problems.
» Shown simple sequential learning approach for parameter
estimation using gradient descent.
~ Better 2" order gradient descent approaches available
(e.g. Newton-Raphson).

v

* Limitations / Caveats
» Flexibility of model is limited by curse of dimensionality
— g(-) and ¢; often introduce additional parameters.

— Models are either limited to lower-dimensional input space
or need to share parameters.

» Linearly separable case often leads to overfitting.
— Several possible parameter choices minimize training error. 50
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Gradient Descent
* Error function
N 1 N K M 2
= E, = — n _t n
2P = 52 2| e

2

1 E (M
B = 53 Z Wiy b3 (%n) — tin
] OE,(w) M
é’ Owy;j - ,Z Wi (xn) = tin | 65(xn)
€ J=1
2 = (Un(Xn3 W) — tan) &5 (%)
= a7
ide credit: Bernt Schiele B. Leibe
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Gradient Descent

* Cases with differentiable, non-linear activation function

yr(x) = glar) = g | D wrid;(xn)

Jj=0

* Gradient descent

. OB, (w) _ glax)

§ awkj = awk]_ (yk (Xn; W) - tkn) ¢j (Xn)

§ w,&?l) = w;(@;) — 0Bk (Xn)

: dg(ax)

E Okn = ——— (Ur(Xn; W) — tgn

: b = S (s W) i) )
ide credit- Rernt Schiele B. Leibe
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References and Further Reading

* More information on Linear Discriminant Functions can be
found in Chapter 4 of Bishop’s book (in particular Chapter
4.1).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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