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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Recap: Histograms
* Basic idea:
» Partition the data space into distinct

bins with widths A; and count the

number of observations, n,, in each

bin. 1

Ty
i =
Pi N’Ai 0
0 05 1

< » Often, the same width is used for all bins, A; = A.
E » This can be done, in principle, for any dimensionality D...
2 e
2 p. '
= [ ...but the required
3 ] number of bins
2 7m = grows exponen-
'E, tially with D!
=
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Announcements
* Exam dates
» According to rwth online, the exam dates are
» Isttry  Sat 02.03.2019 10:30 - 12:00h
» 2Mtry  Thu 21.03.2019 13:30 — 15:30h
» Exam registration will start in early December...
2
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Recap: Maximum Likelihood Approach
* Computation of the likelihood
. Single data point:  P(2n|0)
» Assumption: all data points X = {x1,...,x,}e independent
N
L(9) = p(x10) = ]| p(xl6)
n=1
» Log-likelihood N
E(f)=-L(0) = - np(xn|0)
n=1

* Estimation of the parameters 6 (Learning)

» Maximize the likelihood (=minimize the negative log-likelihood)
= Take the derivative and set it to zero.
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Recap: Kernel Density Estimation

* Approximation formula: K Exe,;:: ¥

y4e.9
(%) ~ 577

fixed V' fixed K
determine K determine V/

Kernel Methods K-Nearest Neighbor

* Kernel methods = * K-Nearest Neighbor
» Place a kernel window & _. LI » Increase the volume V/
at location x and count - until the K nearest
how many data points T data points are found.
fall inside it. -

de adanted from Bernt Schiele B. Leibe




Topics of This Lecture

* Mixture distributions
» Mixture of Gaussians (MoG)
» Maximum Likelihood estimation attempt

* K-Means Clustering
» Algorithm
» Applications

* EM Algorithm

» Credit assignment problem

» MoG estimation

» EM Algorithm
Interpretation of K-Means
Technical advice

v

v

* Applications
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Mixture of Gaussians (MoG)

* Sum of M individual Normal distributions

" /\ZA

T
2 » In the limit, every smooth distribution can be approximated this way
g (if M is large enough)
H M
©
= — . y
£ p(«]0) = p(«(0;)p(5)
it j=1
£
=
8
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Mixture of Gaussians (MoG)

* “Generative model”

“Weight” of mixture

p(j) = m; component
1 ) 3
p(x) 0 Mixture
e /\(7& plz|6;) component
£ z
=
2 I Mixture density
S ) M _
. /\A p(@l0) = > p(al6;)p()
S i=1
2 T
ide credit- Bernt Schiele. B. Leibe 13
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Mixture Distributions

* A single parametric distribution is often not sufficient
» E.g. for multimodal data
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Single Gaussian Mixture of two

Gaussians
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Mixture of Gaussians

Likelihood of measurement x
given mixture component j

M
p(el0) = Y BGOIF0]

1 — u;)?
p(@(0;) = N(xlu;,03) = 5 P {_(x 20/2@) }
J

J

M
i) = 7 wi O. e 1 L — Prior of
p(4) j with J and Zﬂ] 1 component j
j=1

* Notes
» The mixture density integrates to 1:

» The mixture parameters are

0 = (m1, 11,01, - - ., , T, o0 O ML)

12

de adanted from Bernt Schiele B. Leibe

©
g
=
=)
=
£
o
o
3
Py
=
=
S
)
=

Mixture of Multivariate Gaussians

0.5
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Mixture of Multivariate Gaussians
* Multivariate S{aussians
p(x|0) = le(xlé‘j)p(j)
iz
p10) = e { e )7 e )|

» Mixture weights / mixture coefficients:M

P(j)=77jwith 0- mj- 1and Zﬂjil | @
=1 (’
J 05 @("&‘L’

0= (71, by, Z1, - T Mg, B0r) of O

0 05 1

» Parameters:
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Mixture of Gaussians — 1st Estimation Attempt

* Maximum Likelihood N
- Minimize £ = —In L(0) = — Zlnp(xnw)
n=1
- Let's first look at p;:

)] E
=—=0 \/
Om; :

Hj

difficult, since

N (n |14 Elc)}
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This will cause problems!
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Mixture of Gaussians — 15t Estimation Attempt

* But...
N
2 onf Xn

. WJ‘N(Xu@ %)
s =

M) 7i(%n) = Zle m:_/\%;),zﬂ

* |.e. there is no direct analytical solution!

o8 _ (i, B, gy Br)
op;
» Complex gradient function (non-linear mutual dependencies)
» Optimization of one Gaussian depends on all other Gaussians!
» Itis possible to apply iterative numerical optimization here,
but in the following, we will see a simpler method.
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* “Generative model”

Mixture of Multivariate Gaussians

B. Leibe
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* Minimization: o
OF N g p(xalf))
On; n=1 ZkK:I P(Xn|0k)

Mixture of Gaussians — 1st Estimation Attempt

N
= - Z (El(xn — 1)
n=1

RWTHACHE

7
m/\f(xn\uk, ) =

2o — )N (el 3)

p(xalf;) )
ZkK=1 P(%n|0k)
ﬂ'jN(xn‘l/'j» 3

Mixture of Gaussians — Oth
* Other strategy:

S(xD)
J(x)

» Observed data:

N
/1 !
= - (Xn - Nj) 176 =0
y ngl —1 TeN (Xn |1y, 2
* We thus obtain =;(x)
ZN71 Vi (xn)xn “responsibility” of
= ;= "7\,7 component j for x,
> one1 75 (Xn)
B. Leibe 18
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. see e » . X
» Unobserved data: 1111 22 2 2
— Unobserved = “hidden variable™: j|x
h(j = llan) = 1111 000 0
h(j = 2lan) = 0 000 111
20
ide credit- Bernt Schiele. B. Leibe

er Strategy
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Mixture of Gaussians — Other Strategy

* Assuming we knew the values of the hidden variable...

Jx)

X

ML for Gaussian #1 T I ML for Gaussian #2

RWTH/AACHET]

assumed known —> 1 111 22 2 2 i
hij=1lz,)= 1111 0 0 0
h(j=2lzn) = 0 000 111
= Zﬁ%\} h(j = 1|zn)zs iy = Zf%vl h(j = 2|zn)zn
Yic M = 1zn) iy h(j =2|zn) )
jde credic Berny Schiele B Leibe

Clustering with Hard Assignments

e Let's first look at clustering with “hard assignments”

JS(x)
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K-Means Clustering

* |terative procedure
1. |Initialization: pick K arbitrary
centroids (cluster means)

2. Assign each sample to the closest
centroid.

3. Adjust the centroids to be the
means of the samples assigned
to them.

4. Go to step 2 (until no change)

* Algorithm is guaranteed to
converge after finite #iterations.
»  Local optimum
»  Final result depends on initialization.

ide credit- Bernt Schigle B. Leibe
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Mixture of Gaussians — Other Strategy

* Assuming we knew the mixture components...

v |M

J*l\ér

p(j = 2|v)
1 111 22 2 2 J

* Bayes decision rule: Decide j =1 if
p(j = 1lan) > p(j =2|zn)

Machine Learning Winter ‘18
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Topics of This Lecture
* K-Means Clustering
» Algorithm
» Applications
%
2
= 24
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K-Means — Example with K=2
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Example Application: Image Compression

—

K-Means
Clustering

_/

Image source: C.M, Bishop, 200¢

K-Means Clustering

* K-Means optimizes the following 10007 %
objective function: \

J:ZZTnkan*“kHz ” &,

n=1k=1 e

Take each pixel K 3t
as one data point.

» where 1 2 3 4

1 if k = argmin; |[x,, — ujHZ
Tnk =

0 otherwise.

» le., my is an indicator variable that checks whether uy is the
nearest cluster center to point x,,.

» In practice, this procedure usually converges quickly to a local
optimum.

Set the pixel color
to the cluster mean.

Machine Learning Winter ‘18
Machine Learning Winter ‘18
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Example Application: Image Compression

Summary K-Means

K =10 Original image

* Pros
» Simple, fast to compute

» Converges to local minimum
of within-cluster squared error

¢ Problem cases
» Setting k?
» Sensitive to initial centers
» Sensitive to outliers
» Detects spherical clusters only

* Extensions

» Speed-ups possible through
efficient search structures

» General distance measures: k-medoids

Machine Learning Winter ‘18
Machine Learning Winter ‘18
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Topics of This Lecture EM Clustering

¢ Clustering with “soft assignments”
» Expectation step of the EM algorithm

S(x)

p(2|x) 001 02 0.8 0.99

i P
B © EM Algorithm ©
-E » Credit assignment problem E ° oo o oo o .
£ » MoG estimation £ .
A Ew Ao - IO
2 - gorithm E
£ - Interpretation of K-Means 5 1 .
S| . Technical advice g p(llz) 09908 02 001 j
g 2
g £
- ©
= s
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EM Clustering

* Clustering with “soft assignments”
» Maximization step of the EM algorithm
J(x)

N .
_ 2on=1 PUXn)%n

T (i)

EM Algorithm

* Expectation-Maximization (EM) Algorithm
» E-Step: softly assign samples to mixture components
TN (% 5, B5)
Dy TN (Xn g, Ei)
» M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments

(%) Vji=1,....K, n=1,...,N

X
®
é .o
£
s
2
= p(llz) o099 08 02 001 Maximum Likelihood
4 .
§ p(2|z) 00102 08 099 estimate
£
8
= 33
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T =1
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EM — Technical Advice

¢ When implementing EM, we need to take care to avoid
singularities in the estimation!
» Mixture components may collapse on single data points.
» E.g. consider the case X, = ¢71 (this also holds in general)
» Assume component j is exactly centered on data point x,,. This data
point will then contribute a term in the likelihood function

1
N(xp|xp,020) = — )
( 7l‘ n J ) /_271_0] px
40

» For o; — 0, this term goes to infinity!

= Need to introduce regularization
> Enforce minimum width for the Gaussians
. E.g. instead of X!, use (2 + o, I)"!
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Credit Assignment Problem

* “Credit Assignment Problem”

» If we are just given x, we don’t know which mixture component this
example came from 2

p(x|0) = Zﬂjp(ij)

» We can however evaluate the posterior probability that an observed
x was generated from the first mixture component.

i~ 1lx _ p(] = 17X‘9)
p(j =1[x,0) U
p(j =1,x|0) = p(x|j = 1,0)p(j = 1) = p(x[61)p(j = 1)
p(x|01)p(5 = 1)

p(j=1x,0) = m—0——F—= =y;(®
Zj:l p(xl6;)p(5) “responsibility” of

de credit Bernt Schiele B Leibe component jforx. %

EM Algorithm — An Example

-2

."-‘{-:
-2 0 2 -2 0 2 -2 0 2
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EM — Technical Advice (2)

* EM is very sensitive to the initialization
» Will converge to a local optimum of E.
» Convergence is relatively slow.

= Initialize with k-Means to get better results!

» k-Means is itself initialized randomly, will also only find a
local optimum.

» But convergence is much faster.

* Typical procedure
» Run k-Means M times (e.g. M = 10-100).
» Pick the best result (lowest error J).
» Use this result to initialize EM
— Set y; to the corresponding cluster mean from k-Means.

— Initialize X; to the sample covariance of the associated data points.
B. Leibe
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K-Means Clustering Revisited K-Means Clustering Revisited

* Interpreting the procedure
1. Initialization: pick K arbitrary
centroids (cluster means) i

* K-Means clustering essentially corresponds to a Gaussian
Mixture Model (MoG or GMM) estimation with EM whenever
» The covariances are of the K Gaussians are set to X; = 0>

2. Assign each sample to the closest - For some small, fixed o

centroid. (E-Step)

3. Adjust the centroids to be the
means of the samples assigned
to them. (M-Step)

4. Go to step 2 (until no change) i
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Summary: Gaussian Mixture Models Topics of This Lecture
* Properties
» Very general, can represent any (continuous) distribution.
» Once trained, very fast to evaluate.
» Can be updated online.

¢ Problems / Caveats

» Some numerical issues in the implementation
= Need to apply regularization in order to avoid singularities.

» EM for MoG is computationally expensive
— Especially for high-dimensional problems!
— More computational overhead and slower convergence than k-Means
— Results very sensitive to initialization
= Run k-Means for some iterations as initialization!

» Need to select the number of mixture components K.

= Model selection problem (see later lecture)
B. Leibe

Machine Learning Winter ‘18

* Applications
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Applications Application: Background Model for Tracking

* Mixture models are used in

* Train background MoG for each pixel

. L 1 I Gaussian
many practical applications. » Model “common* appearance L |Mixture
» Wherever distributions with complex o variation for each background pixel. j\—
or unknown shapes need to be » Initialization with an empty scene. 4 |
represented... :

» Update the mixtures over time
— Adapt to lighting changes, etc.

* Used in many vision-based tracking
applications
» Anything that cannot be explained
by the background model is labeled
as foreground (=object).

» Easy segmentation if camera is fixed.

* Popular application in Computer Vision
» Model distributions of pixel colors.
» Each pixel is one data point in, e.g., RGB space.
= Learn a MoG to represent the class-conditional densities.
= Use the learned models to classify other pixels.

© ©
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C. Stauffer, E. Grimson, Learning Patterns of Activity Using Real-Time Tracking
|IEEE Trans. PAMI, 22(8):747-757, 2000.
B. Leibe
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http://people.csail.mit.edu/people/stauffer/Home/_papers/vsam-pami-tracking.pdf
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Application: Image Segmentation

() input image (b) user input (c) inferred segmentation

* User assisted image segmentation
» User marks two regions for foreground and background.
» Learn a MoG model for the color values in each region.
» Use those models to classify all other pixels.
= Simple segmentation procedure
(building block for more complex applications)

B. Leibe
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References and Further Reading

* More information about EM and MoG estimation is available
in Chapter 2.3.9 and the entire Chapter 9 of Bishop’s book
(recommendable to read). Eas ]

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

* Additional information
» Original EM paper: =
— A.P. Dempster, N.M. Laird, D.B. Rubin, ,Maximum-Likelihood from

incomplete data via EM algorithm”, In Journal Royal Statistical Society,
Series B. Vol 39, 1977

» EM tutorial:

— J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models*,
TR-97-021, ICSI, U.C. Berkeley, CA,USA
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http://www.mmp.rwth-aachen.de/teaching/ml/dempster-em-jrss77.pdf
http://www.mmp.rwth-aachen.de/teaching/ml/bilmes-emgentletutorial-tr97.pdf

