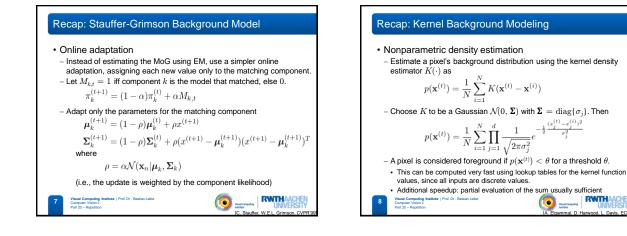
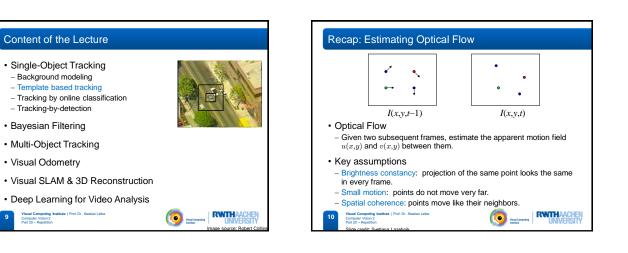
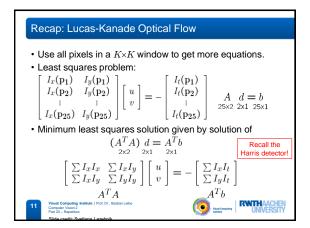
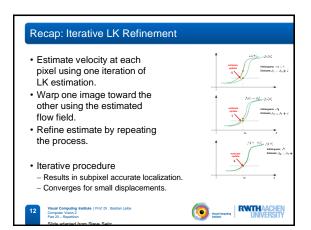


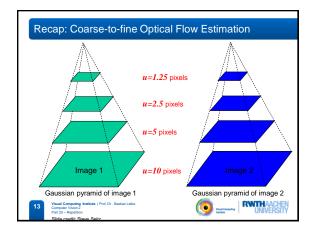
RWTHAAC

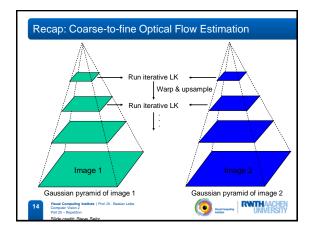


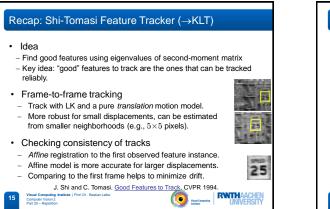












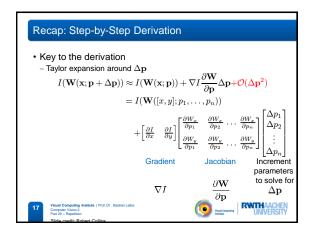
Goal

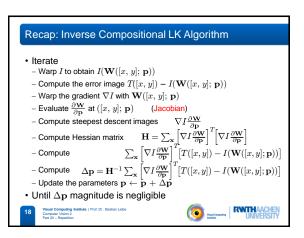
– Find the warping parameters \mathbf{p} that minimize the sum-of-squares intensity difference between the template image $T(\mathbf{x})$ and the warped input image $I(\mathbf{W}(\mathbf{x};\mathbf{p}))$.

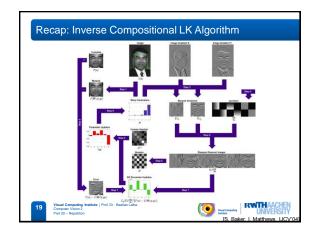
- LK formulation
 - Formulate this as an optimization problem $\arg\min_{\mathbf{p}} \sum_{\mathbf{r}} \left[I(\mathbf{W}(\mathbf{x};\mathbf{p})) T(\mathbf{x}) \right]^2$
- We assume that an initial estimate of ${\bf p}$ is known and iteratively solve for increments to the parameters $\Delta {\bf p}$:

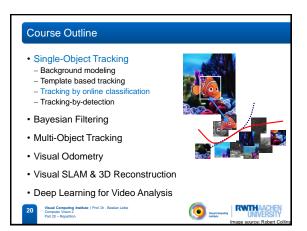
$$\arg\min_{\substack{\Delta \mathbf{p} \\ m_{\text{model}}^2 \\ \text{result}}} \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x}) \right]^2$$

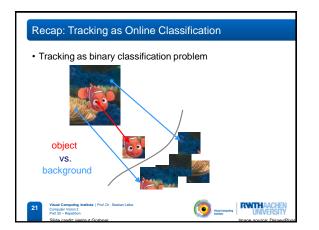
$$\text{The breakmant } | \text{Restrictions} | \text{Restrictions$$

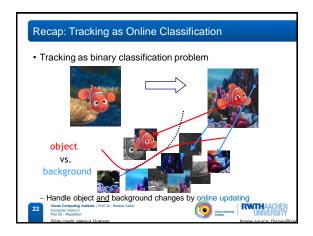




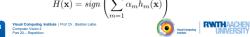


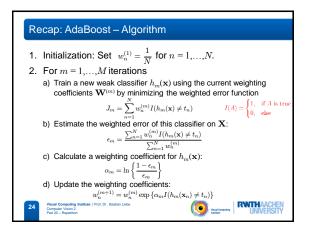


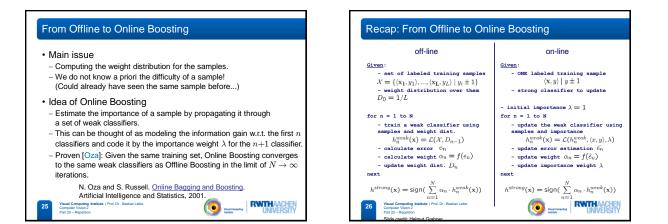


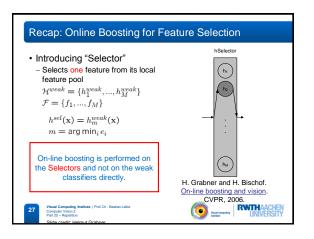


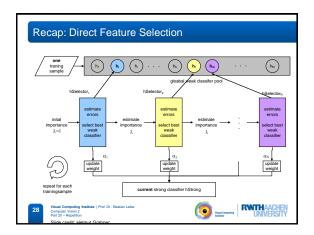
- Components
- $-h_m(\mathbf{x})$: "weak" or base classifier
- Condition: <50% training error over any distribution
- $-H(\mathbf{x})$: "strong" or final classifier
- · AdaBoost:
- Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers: $H(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})\right)$

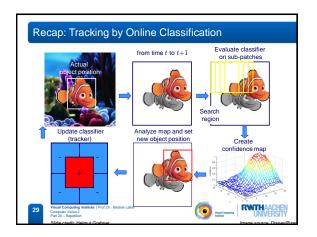


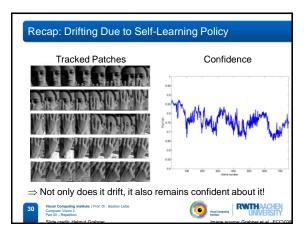


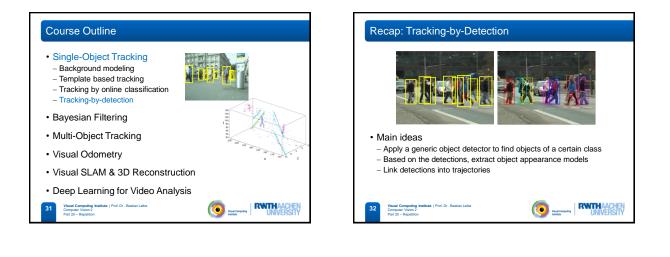


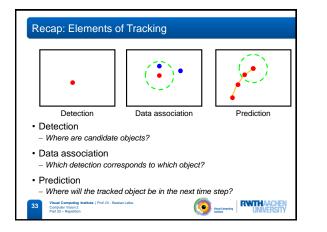


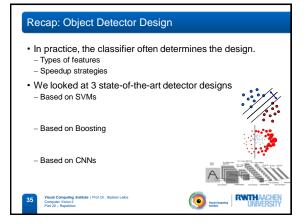


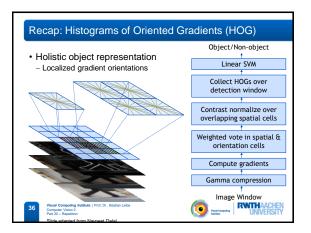


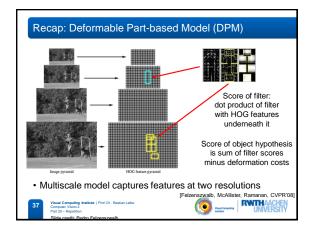


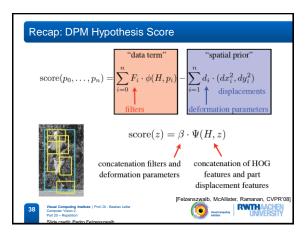


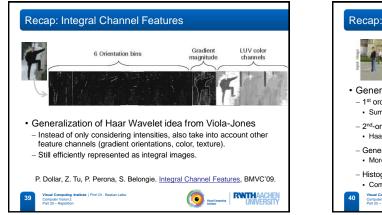


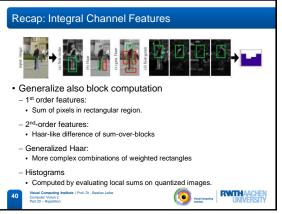


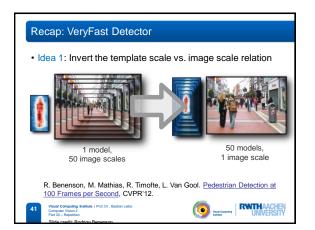


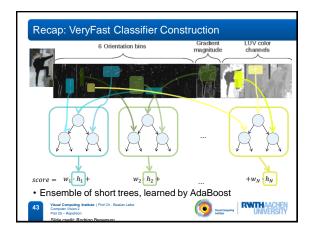


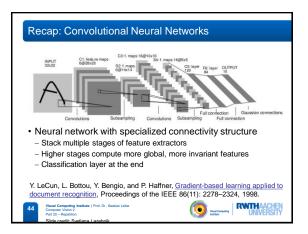


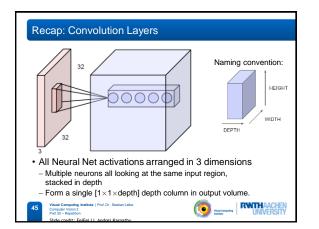


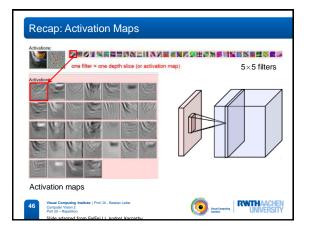


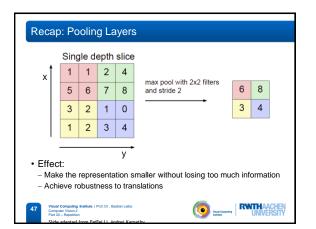


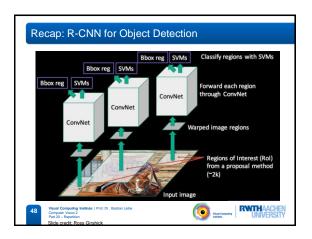


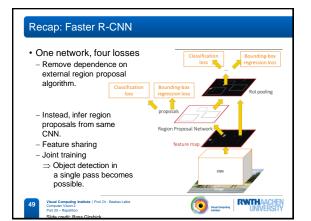


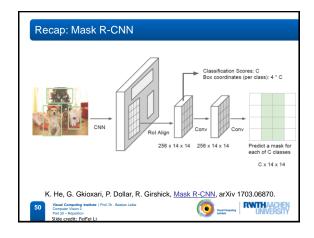


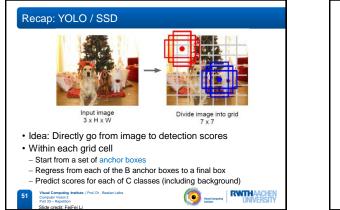


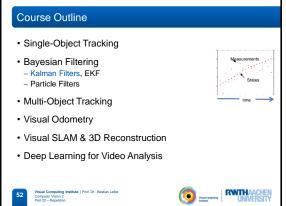






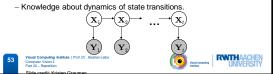


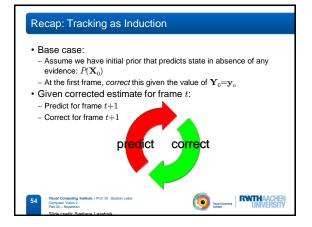


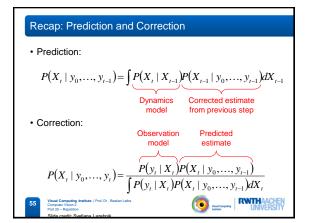


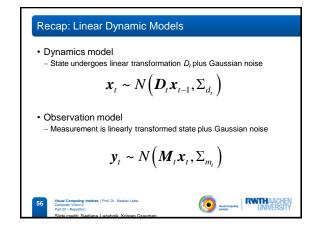
Recap: Tracking as Inference

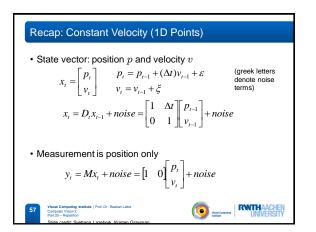
- Inference problem
- The hidden state consists of the true parameters we care about, denoted ${\bf X}.$
- The measurement is our noisy observation that results from the underlying state, denoted $\mathbf Y.$
- At each time step, state changes (from $\mathbf{X}_{t\text{-}1}$ to $\mathbf{X}_t)$ and we get a new observation $\mathbf{Y}_t.$
- Our goal: recover most likely state X_t given
- All observations seen so far.

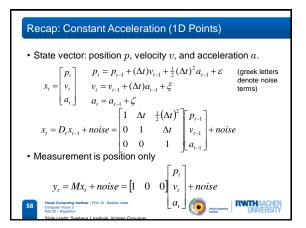


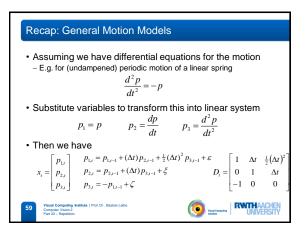


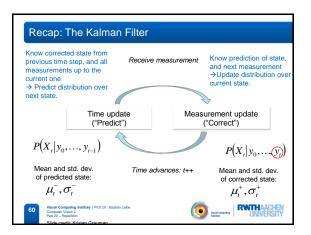


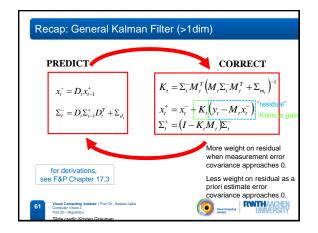


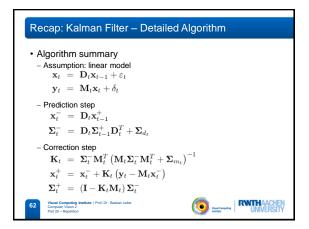


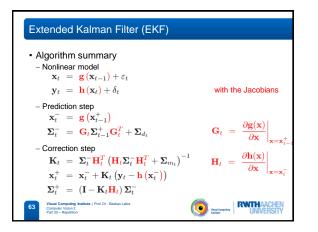


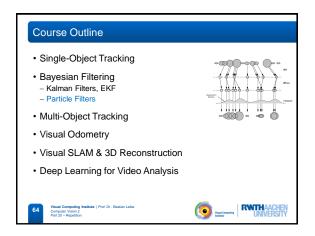


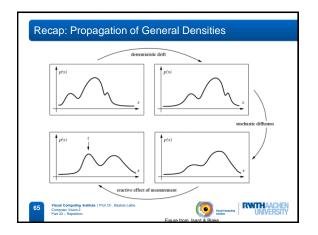


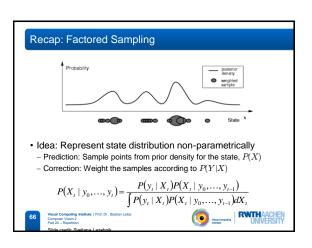


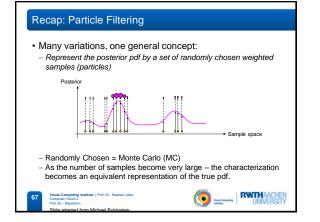


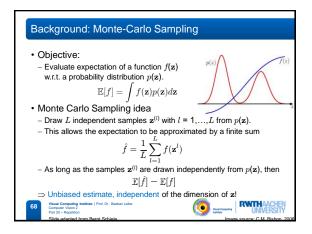


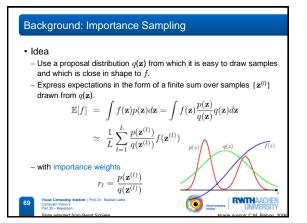


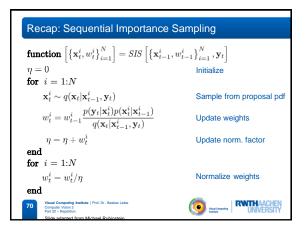


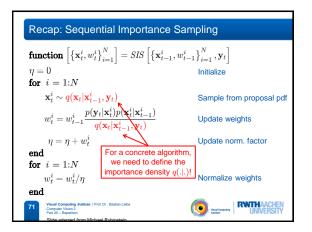


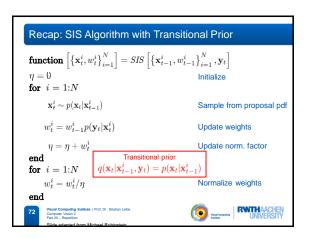


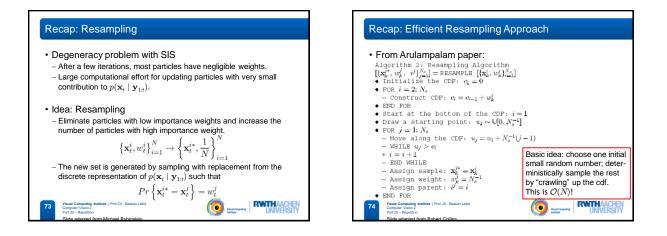


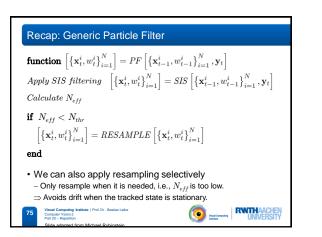


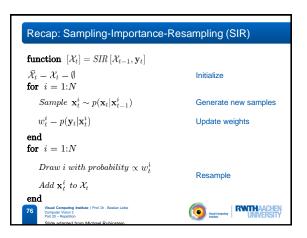


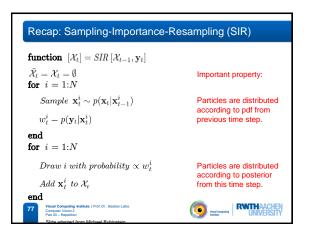


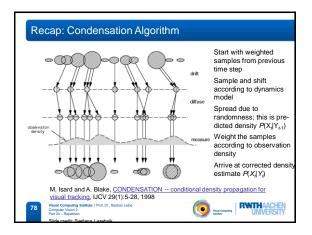


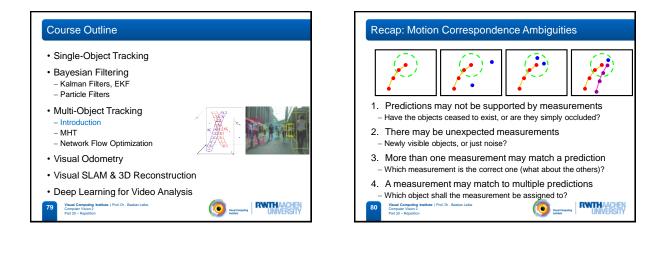


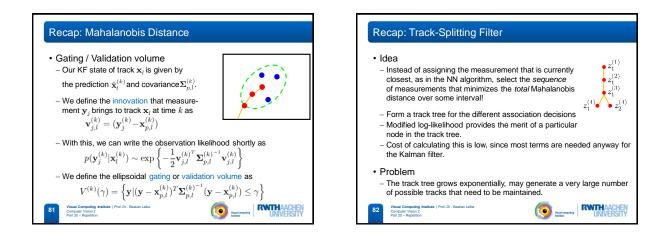






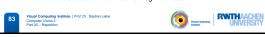


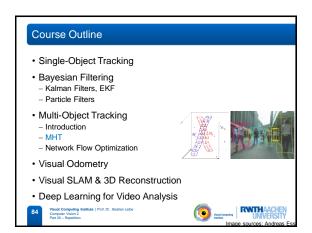




Recap: Pruning Strategies

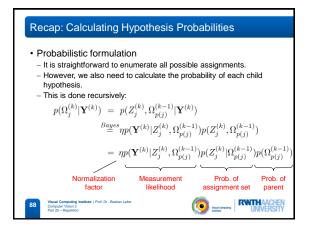
- · In order to keep this feasible, need to apply pruning
- Deleting unlikely tracks
- May be accomplished by comparing the modified log-likelihood λ(k), which has a χ² distribution with kn₂ degrees of freedom, with a threshold α (set according to χ² distribution tables).
 Problem for long tracks: modified log-likelihood gets dominated by
- old terms and responds very slowly to new ones. ⇒ Use sliding window or exponential decay term.
- Merging track nodes
- If the state estimates of two track nodes are similar, merge them.
 E.g., if both tracks validate identical subsequent measurements.
- Only keeping the most likely N tracks
- Rank tracks based on their modified log-likelihood.







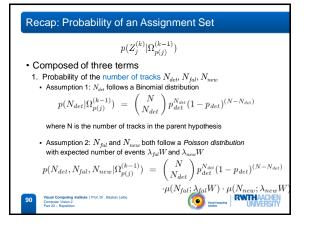
Z_j	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_{fa}	\mathbf{x}_{nt}
\mathbf{y}_1	0	0	1	0
\mathbf{y}_2	1	0	0	0
\mathbf{y}_3	0	1	0	0
\mathbf{y}_4	0	0	0	1
rement car has only a can have	n originate single no at most o	on-zero v one asso	value. ciated me	oject. easurement per time sterexcept for $\mathbf{x}_{ta}, \mathbf{x}_{nt}$

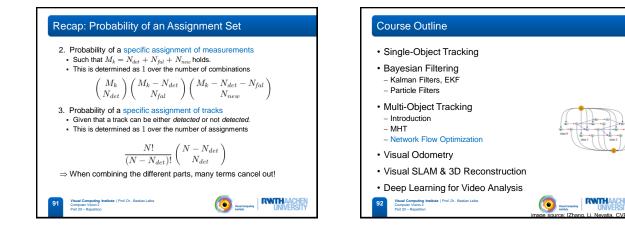


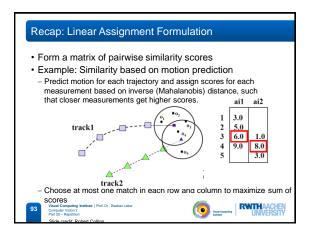
Recap: Measurement Likelihood

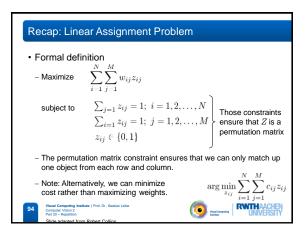
- Use KF prediction
- Assume that a measurement $\mathbf{y}_{i}^{(k)}$ associated to a track \mathbf{x}_{j} has a Gaussian pdf centered around the measurement prediction $\hat{\mathbf{x}}_{j}^{(k)}$ with innovation covariance $\widehat{\mathbf{\Sigma}}_{j}^{(k)}$
- Further assume that the pdf of a measurement belonging to a new track or false alarm is uniform in the observation volume W (the sensor's field-of-view) with probability W^{-1} .
- Thus, the measurement likelihood can be expressed as $M_{\rm h}$

$$\begin{split} p\left(\mathbf{Y}^{(k)}|Z_{j}^{(k)},\Omega_{p(j)}^{(k-1)}\right) &= \prod_{i=1}^{1} \mathcal{N}\left(\mathbf{y}_{i}^{(k)};\hat{\mathbf{x}}_{j},\widehat{\boldsymbol{\Sigma}}_{j}^{(k)}\right)^{\phi_{i}} W^{-(1-\delta_{i})} \\ &= W^{-(N_{fal}+N_{new})} \prod_{i=1}^{M_{k}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)};\hat{\mathbf{x}}_{j},\widehat{\boldsymbol{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}} \\ \overset{\text{Vaud Computing builted | Pol. D. Batton Labe}}{\bigvee_{p \neq 22} - k_{perpendic}} \end{split}$$





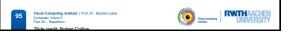


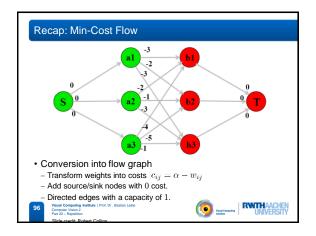


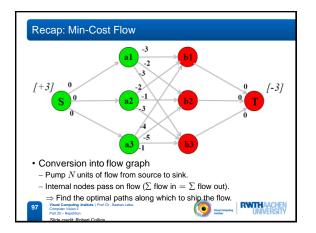
Recap: Optimal Solution

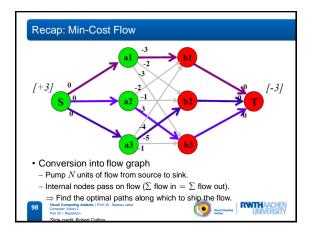
· Greedy Algorithm

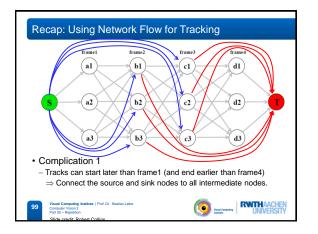
- Easy to program, quick to run, and yields "pretty good" solutions in practice.
- But it often does not yield the optimal solution
- · Hungarian Algorithm
- There is an algorithm called Kuhn-Munkres or "Hungarian" algorithm specifically developed to efficiently solve the linear assignment problem.
- Reduces assignment problem to bipartite graph matching.
- When starting from an $N \times N$ matrix, it runs in $\mathcal{O}(N^3)$.
- \Rightarrow If you need LAP, you should use it.

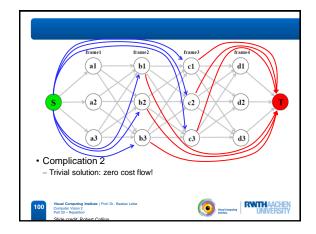


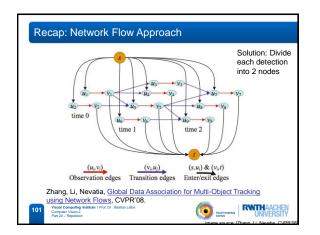


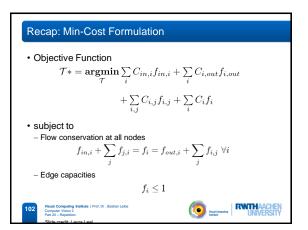


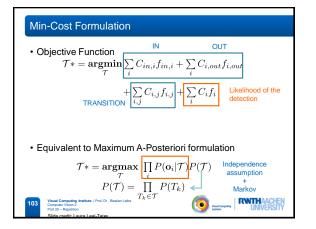


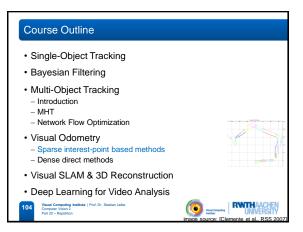


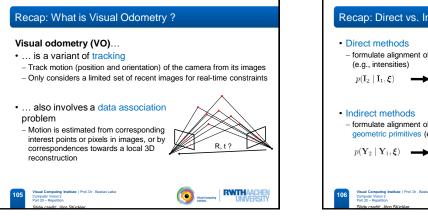


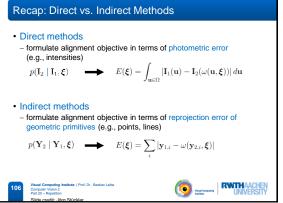


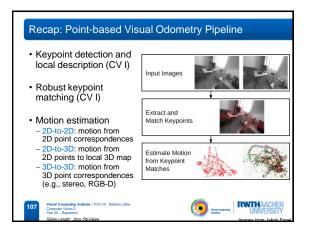


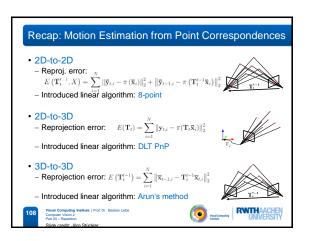


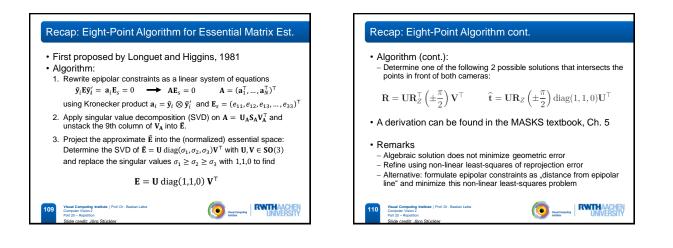


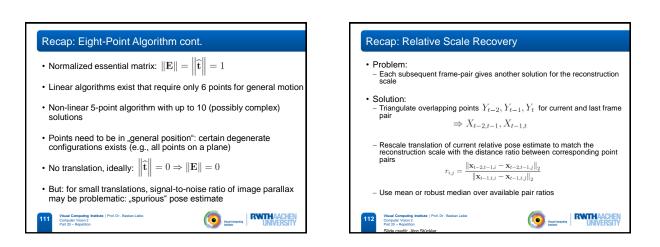


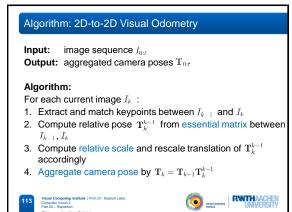


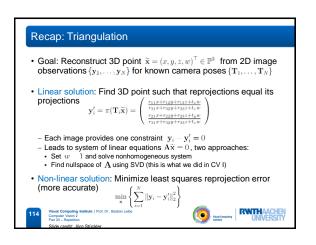


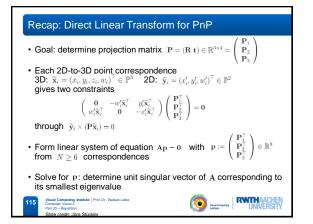


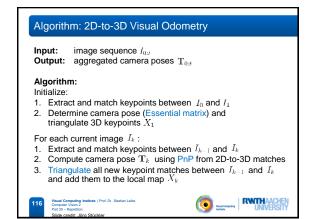


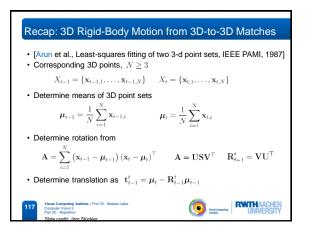


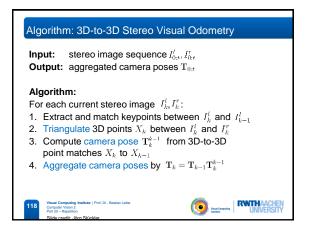


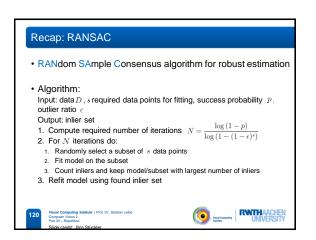


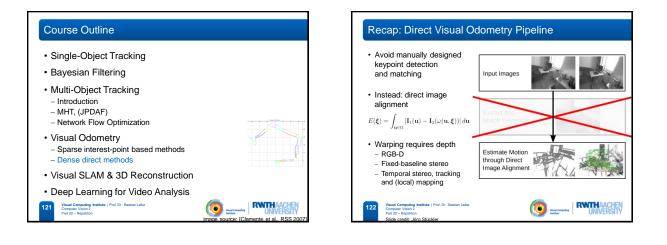


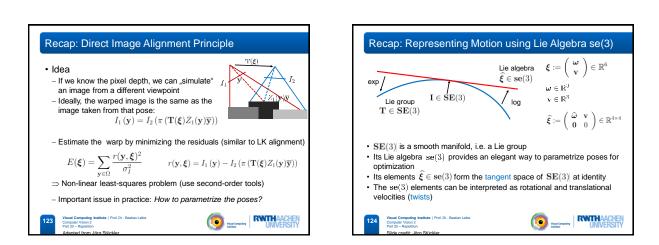


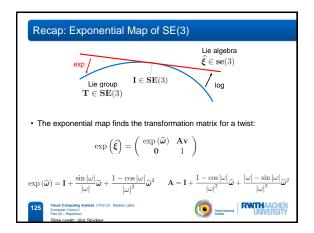


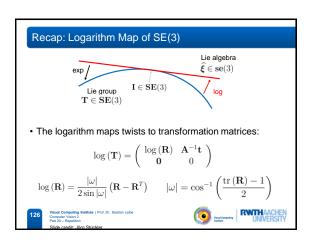


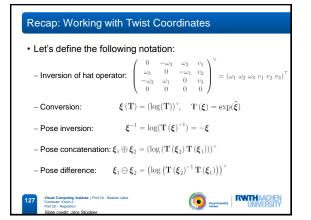


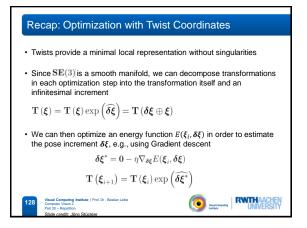


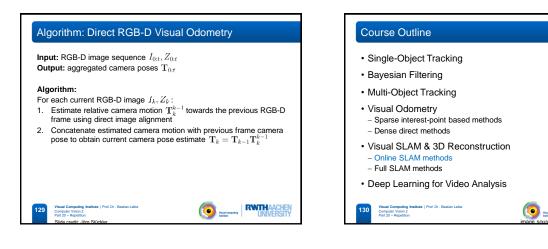


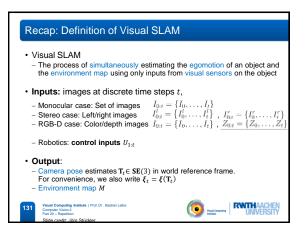


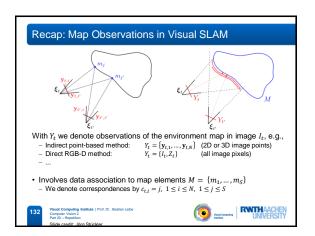












RWTH

