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« Bayesian Filtering
— Kalman Filters, EKF
— Particle Filters
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Beyond Gaussian Error Models

Figure from Isard & Blake



Topics of This Lecture

* Recap: Extended Kalman Filter

« Particle Filters: Detailed Derivation
— Recap: Basic idea
— Importance Sampling
— Sequential Importance Sampling (SIS)
— Transitional prior
— Resampling
— Generic Particle Filter
— Sampling Importance Resampling (SIR)
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Recap: Kalman Filter — Detailed Algorithm

 Algorithm summary

— Assumption: linear model
X = DiXy1+¢&

y: = Mgx; + 04
— Prediction step
X, = Dtxf_l
2t_ — thj——lDz + Zdt
— Correction step
K, = ;M7 (M,Z; M7 +%,,,)
x; = x; + K (ye — Mix; )
7 = I-K:My) 2/
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Extended Kalman Filter (EKF)

 Algorithm summary

— Nonlinear model
X; = g(Xp_1)+ &

y: = h(x¢)+

— Prediction step

Xt

2y

g (x;_4)

G,/ Gl +32,,

— Correction step

K;

+
Xt

%/

>, H] (H,S; H +5,,,)
x, + K¢ (.Yt —h (Xt_))
I-KH,) X,
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Topics of This Lecture

« Particle Filters: Detailed Derivation
— Recap: Basic idea
— Importance Sampling
— Sequential Importance Sampling (SIS)
— Transitional prior
— Resampling
— Generic Particle Filter
— Sampling Importance Resampling (SIR)
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Recap: Propagation of General Densities

deterministic drift

A A
pix) plx)

=
=

stochastic diffusion

pix)

-a—

Y

reactive effect of measurement
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Recap: Factored Sampling

Probability

posterior
density

@ weighted

W

>o @> @O .. o State ™

-

 ldea: Represent state distribution non-parametrically
— Prediction: Sample points from prior density for the state, P(X)
— Correction: Weight the samples according to P(Y' | X)

Py [ X )P(Xc] Yo+ Yia)
PO Yoo Vo) = o S = 2
TRl XPOX 1 Yoo e )X
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Particle Filtering

Many variations, one general concept:

— Represent the posterior pdf by a set of randomly chosen weighted
samples (particles)

Posterior

A

» Sample space

— Randomly Chosen = Monte Carlo (MC)
— As the number of samples become very large — the characterization

becomes an equivalent representation of the true pdf.
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Particle filtering

« Compared to Kalman Filters and their extensions
— Can represent any arbitrary distribution
— Multimodal support
— Keep track of as many hypotheses as there are particles

— Approximate representation of complex model rather than exact
representation of simplified model

« The basic building-block: Importance Sampling
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Background: Monte-Carlo Sampling

* Objective: "
— Evaluate expectation of a function f(z) P(z)
w.r.t. a probability distribution p(z).

Blfl = [ f@)p(z)dz
« Monte Carlo Sampling idea I

— Draw L independent samples z®) with [ = 1,...,L from p(z).
— This allows the expectation to be approximated by a finite sum

| L
; z
T T Z f(z)
=1
— As long as the samples z) are drawn independently from p(z), then

E[f] = E[f]

= Unbiased estimate, independent of the dimension of z!
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Monte Carlo Integration

* We can use the same idea for computing integrals

— Assume we are trying to estimate a complicated integral of a function f

over some domain D:
F = j f (X)dX
D
— Also assume there exists some PDF p defined over D. Then
f (X
F = j f (X)dX = j ( ) p(X)dX

— For any pdf p over D, the following holds

[, p(x)d = E[ ! (X)}
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Monte Carlo Integration

* |dea (cont'd)

— Now, if we have 1.i.d random samples x,..
we can approximate the expectation

f (X)
{p(x)}
f(

=1 p( i)

— Guaranteed by law of large numbers:

N — oo, Fy, —>E{f()
pP(X)

— Since it guides sampling, p is often called a

Slide adapted from Michael Rubinstein
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Importance Sampling

 Let’'s consider an example

_ 13
NG pP(X)
— f/p is the importance weight of a

sample.
— What can go wrong here?

« What if p(z)=0 ?
— If p is very small, then f/p can get arbitrarily large!

= Design p such that f/p is bounded.
— Effect: get more samples in “important” areas of f,

l.e., where fis large.

Institute

Slide adapted from Michael Rubinstein
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Proposal Distributions: Other Uses

 Similar Problem

— For many distributions, sampling directly from p(z) is difficult.

— But we can often easily evaluate p(z) (up to some normalization
factor Z): 1

p(z) — Z—pﬁ(z)
 [dea

— Take some simpler distribution ¢(z) as proposal distribution from which
we can draw samples and which is non-zero.

kq(20) kq(z)

N

Z0 z
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Background: Importance Sampling

e |[dea

— Use a proposal distribution ¢(z) from which it is easy to draw samples
and which is close in shape to f.

— Express expectations in the form of a finite sum over samples {z()}
drawn from g(z).

Blf) = [ fp(aiz— [ f(Z)g%q(Z)dz

1 E (l)
e

(l)

2

— with importance weights
)
Z
r p(z")

q(z) =
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lllustration of Importance Factors

« Goal: ApprOX|mate target den3|ty f
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lllustration of Importance Factors

i (NI N (I T O N Y N O B NI DO ORI R e ni I:

« Goal: Approximate target density f
— Instead of sampling from f directly, we can only sample from g.
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lllustration of Importance Factors

« Goal: Approximate target density f
— Instead of sampling from f directly, we can only sample from g.

— Asample of fis obtained by attaching the weight f/g to each sample x
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lllustration of Importance Factors

- _r T

Tracking application:
Posterior of the
current frame

Tracking application:
Posterior from the

previous frame
L~

« Goal: Approximate target density f
— Instead of sampling from f directly, we can only sample from g.

— Asample of fis obtained by attaching the weight f/g to each sample x
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Importance Sampling for Bayesian Estimation

E[f(X)] = f F (0 )p (00t [y 100

XO: Yi:
p— /f ()t t‘ t)Q(XO:t‘ylzt)dXO:t
XO:t‘Yl:t)

* Applying Importance Sampling

— Characterize the posterior pdf using a set of samples (particles) and
their weights

{Xg:tv w;}j\il

— Then the joint posterior is approximated by

p(X0:¢|y1:¢) Zwt X0:t — XOt)
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Importance Sampling for Bayesian Estimation

E[f(X)] = / F (%0 )p (X [y 1.0 )

XO: Y.
— / f Ot t‘ t)Q(XO:t‘YLt)dXO:t
XO:t‘ylzt)

* Applying Importance Sampling
— Draw the samples from the importance density q(x,., | ¥,.,) with
importance weights (X0t yie)
w’L (X . .

Q(XO:t‘YLt)
— Sequential update (after some calculation)

« Particle update X Q(Xt‘xi 19 .Yt)

: : th X X
= Weight update wt = ‘ t)P t‘ i-1)

t
Xt 1 Yt
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Sequential Importance Sampling Algorithm

function {{Xi,wz}il] = SIS {{Xi_hwiq}f\il ;Yt]

N = Initialize

Xi ~ q(xt|Xi_1a yt) Sample from proposal pdf

i i p(yt|Xi)p(Xi|Xi—1)

Wy = Wy_+ q(thxi_l, .Yt) Update weights
n=mn-+ ’wi Update norm. factor
end
for : = 1:N
wi = w!/n Normalize weights
end
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Sequential Importance Sampling Algorithm

function {{Xi,wz}il] = SIS {{Xi_hwiq}f\il ;Yt]

end
for

end

Initialize
1 = 1:N
xf; ~ q(xt!Xi_th) Sample from proposal pdf
| | i '}Xz 5
wy = w;_lp(yﬂ t)lz t/xi-1) Update weights
q(x¢|xt_1 \t)
n=mn-+ ’wi Update norm. factor
For a concrete algorithm,
i — 1:N we need to define the
. . importance density g(.|.)! _ _
Wy = ’wi/"? Normalize weights
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Choice of Importance Density

« Most common choice
— Transitional prior

q(x¢|xt_1,¥yt) = p(xe|x5_4)
— With this choice, the weight update reduces to

i i p(Yt‘Xi)p(XﬂXi—ﬂ
Wy = Wi i
Q(Xt |Xt—1 ) yt)

. p(ye|xh)p(xext )

= wi—lp(Yt‘Xi)
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SIS Algorithm with Transitional Prior

function {{Xi,wz}il] = SIS {{Xi_hwiq}f\il ;Yt]

n=2>0
for 1 = 1:N

x; ~ p(xefx; )

w; = wi_1p(ye|x})

n=n+w
end
for 1 = 1:N
wy = wj/n
end
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Implementation of Sampling Step

function {{Xi,wz}il] = SIS {{Xi_hwiq}f\il ;Yt]

n=>0

for i = 1:N
Draw Ei from noise distribution
X, = g (xi_1) +e¢

w; = wi_1p(ye|x})

n=n+w
end
for 1 = 1:N
wy = wj/n
end
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The Degeneracy Phenomenon

« Unavoidable problem with SIS

— After a few iterations, most particles have negligible weights.

— Large computational effort for updating particles with very small
contribution to p(x; | y.,)-

« Measure of degeneracy
— Effective sample size

— Uniform: N, e =N
— Severe degeneracy: N, = 1
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Resampling

e |[dea

— Eliminate particles with low importance weights and increase the
number of particles with high importance weight.

N 1 N
X, Ww ) — X —
{ t) t}z:]_ { t 7\7}
1=1

— The new set is generated by sampling with replacement from the
discrete representation of p(x, | y;.,) such that

Pr {X%* = Xg} = w!
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Resampling

* How to do that in practlce’7
— We want to resample{xt} from the discrete pdf given by

the weighted samples {xj’;, wz}izi

- l.e., we want to draw N new samples {x; }i_lwnh replacement

where the probability of drawing X{ IS given by wg.

* There are many algorithms for this
— We will look at two simple algorithms here...
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Inverse Transform Sampling

e |[dea

— It is easy to sample from a discrete distribution using the cumulative
distribution function F'(x) = p(X < x)

c(k) = Ew,/ZW,
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Inverse Transform Sampling

e |[dea

— It is easy to sample from a discrete distribution using the cumulative
=p(X < z)

distribution function F'()

 Procedure

1. Generate uniform u in
the range [0,1].

2. Visualize a horizontal
line intersecting the
bars.

3. If index of intersected
bar is 7, output new
sample x ..
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More Efficient Approach

* From Arulampalam paper:

Algollthm 2: Resampling Algorithm
[ wj, ¥}Y] = RESAMPLE [fax), wi}l]
+* Inltlallze the CDF: ¢ =10

* FOR ¢ = 2: N,

— Construct CDF: ¢ = -iif:—l—l-w}’:.

END FOR

Start at the bottom of the CDF: ¢i=1
Draw a starting point: ag ~ U0, N7
FOR g = 1: Ng

— Move along the CDF: wu; =y + N7 j—1)
— WHILE 4; > ¢

# ¢ =4+ 1 Basic idea: choose one initial
— END WHILE small random number: deter-
. ! 13 . . .
— Asslgn sample: x:;} fs; ministically sample the rest
- i:igz ;‘T;SEE iy by “crawling” up the cdf.
o END FOR This is O(N)!
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Generic Particle Filter

function [{X@,wi}il} = PF [{Xi_pwiq}il,}’t}
Apply SIS filtering [{xg,wg}fl 1} _ SIS [{x,@;_l,w;ﬁ_l}f; 1 ,yt}
Calculate N,
if N, < Ny,
{xi,wi} | = RESAMPLE |{x},wi}" |
end

* We can also apply resampling selectively
— Only resample when it is needed, i.e., Neff IS too low.
= Avoids drift when the tracked state is stationary.
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Sampling-Importance-Resampling (SIR)

function [X;] = SIR [X;_1,y:]
A?t — Xt — @
for i = 1:N

Sample Xi ~ p(xt\xi_l)

wi = P(Yt|Xi)
end
for 1 = 1:N

Draw 1 with probability o wz

Add x! to X,
end
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Other Variant of the Algorithm

function [X;] = SIR [X;_1,y:]
A?t — Xt — @
for i = 1:N

Sample X} ~ p(x¢|xt_,)

wi = P(.Yt|Xi)
end
for 1 = 1:N

Draw © with probability

Add x! to X,
end
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Important property:

Particles are distributed

according to pdf from
previous time step.

Particles are distributed
according to posterior
from this time step.
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Recap: Condensation Algorithm

Start with weighted
samples from previous

" time step

Sample and shift
—Q : according to dynamics

model
diffuse

Spread due to
_ _ : randomness; this is pre-
observation dicted density P(X{Y,.;)

density \ ]
LR 2N I Weight the samples

— -~ - — '\\. measure

- ~- according to observation
density

Arrive at corrected density
estimate P(X,|Y,)

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for
visual tracking, 1JCV 29(1):5-28, 1998
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http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html

Particle Filtering — Visualization

Code and video available from
http://www.robots.ox.ac.uk/~misard/condensation.htmi
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http://www.robots.ox.ac.uk/~misard/condensation.html

Particle Filtering Results

0ms

400 ms

800 ms

1200 ms

1600 ms

2000 ms

2400 ms

Time

2800 ms

http://www.robots.ox.ac.uk/~misard/condensation.html
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http://www.robots.ox.ac.uk/~misard/condensation.html

Particle Filtering Results

« Some more examples

http://www.robots.ox.ac.uk/~misard/condensation.html

Visual Computing Institute | Prof. Dr . Bastian Leibe
Computer Vision 2 0 Visual Computing
Part 9 — Particle Filters Institute

Videos from Isard & Blake



http://www.robots.ox.ac.uk/~misard/condensation.html

Sidenote: Obtaining a State Estimate

* Note that there’s no explicit state estimate maintained,
just a “cloud” of particles

« Can obtain an estimate at a particular time by querying the
current particle set

« Some approaches

— “Mean” particle
= Weighted sum of particles
= Confidence: inverse variance

— Really want a mode finder—mean of tallest peak
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Condensation: Estimating Target State

il '»tllllq‘r‘\‘[!““j,u}mv‘ i

From Isard & Blake, 1998

State samples Mean of weighted
(thickness proportional to weight) state samples
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Summary: Particle Filtering

* Pros:
— Able to represent arbitrary densities

— Converging to true posterior even for non-Gaussian and nonlinear
system

— Efficient: particles tend to focus on regions with high probability
— Works with many different state spaces

= E.g. articulated tracking in complicated joint angle spaces
— Many extensions available
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Summary: Particle Filtering

« Cons / Caveats:
— #Particles is important performance factor
= Want as few particles as possible for efficiency.
= But need to cover state space sufficiently well.
— Worst-case complexity grows exponentially in the dimensions
— Multimodal densities possible, but still single object
= |nteractions between multiple objects require special treatment.

= Not handled well in the particle filtering framework
(state space explosion).
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References and Further Reading

* A good description of Particle Filters can be found iIn Ch.4.3
of the following book =

— S. Thrun, W. Burgard, D. Fox. Probabilistic
Robotics. MIT Press, 2006.

» A good tutorial on Particle Filters

— M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. ATutorlal
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2), pp.
174-188, 2002.

« The CONDENSATION paper

— M. Isard and A. Blake, CONDENSATION - conditional density
propagation for visual tracking, IJCV 29(1):5-28, 1998
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