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Beyond Gaussian Error Models
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Topics of This Lecture

* Recap: Extended Kalman Filter

« Particle Filters: Detailed Derivation
— Recap: Basic idea
— Importance Sampling
— Sequential Importance Sampling (SIS)
— Transitional prior
— Resampling
— Generic Particle Filter
— Sampling Importance Resampling (SIR)
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Recap: Kalman Filter — Detailed Algorithm

* Algorithm summary
— Assumption: linear model
xp = Dyxyy + 5

v = Mix; +d;
- Prediction step
x, = Dyx;
s, = D2 DI E,
— Correction step
K, = 5 MY (ME MY +5,,) "
x(‘ =x +Ki (Yf — M;x, )
E;r = I-KM;)E,

viual siute | Pro. o Bastan Libe RWTH
Comper viion () [—
Pana~ parice Fiers —

Extended Kalman Filter (EKF)

« Algorithm summary
— Nonlinear model
Xy = glX1)+er

yi = hix)+d with the Jacobians

— Prediction step

x = g(xly) o
1 o] Jg(x)
2 = GEL G +3 G = o
— Correction step oh -
R —r -1 ¢
K, - 5 B (HEH +5,) H, — ;""
X

x=x,

x/ = % + K (y. —h(x;))
B = (I-KH)S,
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Topics of This Lecture

* Particle Filters: Detailed Derivation
— Recap: Basic idea
— Importance Sampling
— Sequential Importance Sampling (SIS)
— Transitional prior
— Resampling
— Generic Particle Filter
— Sampling Importance Resampling (SIR)
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Recap: Propagation of General Densities

nxl pixi

AN

stochastic diffusion

#xl z Flx)

reactive effect of measurement

Eiqure from Isard & Rlakel
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Recap: Factored Sampling

Probablity

@ amo .. e State *

« Idea: Represent state distribution non-parametrically
- Prediction: Sample points from prior density for the state, P(X)
- Correction: Weight the samples according to P(Y'|X)

Py I X)P(X, | Yoo Vi)
P(X |y ,...,y): 1A t1Yo t-1
ST TP X P, Yo Ve JAX,
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Particle Filtering

+ Many variations, one general concept:
— Represent the posterior pdf by a set of randomly chosen weighted
samples (particles)

Posterior

Sample space

— Randomly Chosen = Monte Carlo (MC)
— As the number of samples become very large — the characterization
becomes an equivalent representation of the true pdf.

(9 o
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Particle filtering

* Compared to Kalman Filters and their extensions
— Can represent any arbitrary distribution
— Multimodal support
— Keep track of as many hypotheses as there are particles
— Approximate representation of complex model rather than exact
representation of simplified model

* The basic building-block: Importance Sampling
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Background: Monte-Carlo Sampling

* Objective:
- Evaluate expectation of a function f(z)
w.r.t. a probability distribution p(z).

B[f] = f J(2)p(z)dz

* Monte Carlo Sampling idea
- Draw L independent samples z® with [ = 1,...,L from p(z).
— This allows the expectation to be approximated by a finite sum

1L
7 ]
=72 /@)
=1
— As long as the samples z® are drawn independently from p(z), then

£[f] — Elf]

= Unbiased estimate, independent of the dimension of z!
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Monte Carlo Integration Monte Carlo Integration

* Idea (cont'd)
— Now, if we have i.i.d random samples x,..., ) sampled from p, then
we can approximate the expectation

* We can use the same idea for computing integrals
— Assume we are trying to estimate a complicated integral of a function f

over some domain D:
. f(X
F = f(x)dx ( )}
D D(X)
— Also assume there exists some PDF p defined over D. Then - by
F= jD f (X)d% = j & p(X)dx
( ) — Guaranteed by law of large numbers:
— For any pdf p over D, the following holds f (X)
[ 19 by~ | L9 |« N h QE[ ()}
b p( ) ( ) — Since it guides sampling, p is often called a proposal distribution.
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Importance Sampling Proposal Distributions: Other U

* Similar Problem

* Let's consider an example
— For many distributions, sampling directly from p(z) is difficult.

1 (%)
N TN rrey - But we can often easily evaluate p(z) (up to some normalization
N = p(%) b factor Z,): 1
— f/p s the importance weight of a z p(z) = Z—p(z)
sample. . |dea r
— What can go wrong here? . o o .
— Take some simpler distribution ¢(z) as proposal distribution from which

we can draw samples and which is non-zero.
kqlz

» Whatif p(z)=0 ?
— If pis very small, then f/p can get arbitrarily large!

= Design p such that f/p is bounded.
— Effect: get more samples in “important” areas of f,
i.e., where fis large.
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Background: Importance Sampling lllustration of Importance Factors

* ldea
— Use a proposal distribution g(z) from which it is easy to draw samples
and which is close in shape to f.
— Express expectations in the form of a finite sum over samples {z(}

drawn from ¢(z).

Blf) = [ttt [ s :

o (1)
> 0

i=1

==

- with importance weights » Goal: Approximate target density f

@)

o S
g(z1) -
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lllustration of Importance Factors

» Goal: Approximate target density f
— Instead of sampling from f directly, we can only sample from g.
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lllustration of Importance Factors

+ Goal: Approximate target density f
— Instead of sampling from f directly, we can only sample from g.
- Asample of fis obtained by attaching the weight f/g to each sample x
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lllustration of Importance Factors

Tracking application:
Posterior of the ,
current frame

Tracking application
Posterior from the
previous frame

» Goal: Approximate target density f
— Instead of sampling from f directly, we can only sample from g.
— A sample of fis obtained by attaching the weight f/g to each sample x
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Importance Sampling for Bayesian Estimation

E[f(X)] = f F (ko) Pty 10 )ebKost

P(x0|y1:t)
X0:¢|¥1:0)dX0,
[ flx (;(an|y],‘) (Xt |1 )dXoe
« Applying Importance Sampling
— Characterize the posterior pdf using a set of samples (particles) and
their weights
i g N
{Xﬂ:!' "'I};_|
— Then the joint posterior is approximated by
N
P(x0:]¥12) = Z wyd(x0.; — Xé‘_l)

i=1
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Importance Sampling for Bayesian Estimation

E[f(X)) — f Fx0)p(0uly1:)dxon
= [ o BEAD iy

* Applying Importance Sampling
— Draw the samples from the importance density g(xg. | y1.;) with
importance weights X (0. [¥1:0)

wi
¢ (X [¥1:0)
— Sequential update (after some calculation)

Xe ~ (%X, ¥e)

plydx)plx|xi 1)

= Particle update

. T
= Weight update Wy = Wy ) =
q( (fo _1: V1)
viswa stite | Prot. o  Bastan Loibe J)
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Sequential Importance Sampling Algorithm

function [{x, w } J = SIS l{x, L l} . y,J
=10 Initialize
for i = 1:N

X; ~ q(xe|xi_y, 1) Sample from proposal pdf

o plyidxdp(xilx; )

“'; =y PR Update weights

no=n Update norm. factor
end
for i = I:N

wy = wy, 1 Normalize weights
end
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Sequential Importance Sampling Algorithm

function l{xj,-u:j}:ilJ = 8IS l{x}_l,-u:,‘_l}jil .y,J

ice of Importance Density

* Most common choice

=20
for i = 1:N

x} ~ g(xefxi_y, ¥0)

=1+ w
end For a concrete algorithm,
for i = 1:N we need to define the
. importance density g(.|.)!
wi = wy/n

end

Initialize

Sample from proposal pdf
Update weights

Update norm. factor

Normalize weights
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— Transitional prior

(i y2) = plxdxi_y)

— With this choice, the weight update reduces to
i Py |xj.)P(X: X’—l)

w = w_
! T g(xdx L)

= w,_
P 1)

— i pyilx;)
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SIS Algorithm with Transitional Prior

function l{xj,-u:j}:ilJ = 8IS l{x}_l,-u:,‘_l}jil .y,J

=20
for i = 1:N

xp o~ plxfxiy)

wy = wy_plye|x})

Initialize

Sample from proposal pdf

Update weights

Implementation of Sampling Step

function |{x},wi} ", | = SIS [{xi_,.wi_,}., ¥

=20
for i = I:N
Draw &y from noise distribution
i_ i i
X =8 (xt.—l) tet
wy = wi_yp(yilx;)

=1+ wy

Initialize

Sample from proposal pdf

Update weights

Update norm. factor

o=+ w Update norm. factor
end
for i = 1:N
wp = wy Normalize weights
end
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end
for i = 1:N

wy = wy/n
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Normalize weights
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The Degeneracy Phenomenon

» Unavoidable problem with SIS
— After a few iterations, most particles have negligible weights.
— Large computational effort for updating particles with very small
contribution to p(x, | ¥1.,)-

* Measure of degeneracy
— Effective sample size

— Uniform: N=N
— Severe degeneracy: N, ;; = 1
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Resampling

* ldea
— Eliminate particles with low importance weights and increase the
number of particles with high importance weight.

it W 11"
ol (x5}

— The new set is generated by sampling with replacement from the
discrete representation of p(x; | y;.,) such that

Pr {xi* = x,'} =w]

i=1
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* How to do thatin practiqg?
- We want to resample {x]} } " . from the discrete pdf given by

. il N
the weighted samples {xj, u{} " |

i

iy NV N
- l.e., we want to draw N new samples {x;‘} lW|th replacement

where the probability of drawing x? is given by w,’

* There are many algorithms for this
— We will look at two simple algorithms here...
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Inverse Transform Samplin

* ldea
— Itis easy to sample from a discrete distribution using the cumulative
distribution function F'(x) = p(X < x) ! N
c(k) = Zu‘,/’ w;
“’k
1 k N
j s Compung e [Pt o Satnten ( o) ... | RWTH

Inverse Transform Sampling

* ldea
— Itis easy to sample from a discrete distribution using the cumulative
distribution function F'(z) = p(X < z) & N
clk)="% w; w;
* Procedure *) !Z ‘/r !

1. Generate uniform w in
the range [0,1].

2. Visualize a horizontal
line intersecting the
bars.

3. Ifindex of intersected
bar is j, output new
sample x;.

More Efficient Approach

* From Arulampalam paper:
Algorithm J/\ Resampling Algcrithl}e
[,y #) )] = RESAMPLE [ix, wiks)
¢ Initialize the CDF: ¢ =0

* FOR i =2: N,

— conatruct CDF: ¢ = ¢ -+ wj
® END FOR
# Start at the bottom of the CDF:
® Draw a starting point: gy~ w[o.
* FOR j = L: N,

— Move along the CDF: w; =y +N7Hj—1)
— WHILE 4 > ¢
#i=d+1 Basic idea: choose one initial
~ END WHILE small random number; deter-
— hssign sample: ministically sample the rest
— Assign welght: by “crawling” up the cdf.

— Aseign parent: ¢ o
* END FOR This is O(N)!
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Generic Particle Filter

N

function l{x{,u:;'}_;\;J = PF HXLU‘”LL 1*3’5J
Apply SIS filtering l{x;'. u‘:'};LJ — SIS l{)c;,l,Lu,*',l}ll ,y,,}
Calculate N,y
if N,y < Ny,
N N
({xt.wf}L, | = RESAMPLE [{x},w}}_|

end

» We can also apply resampling selectively
- Only resample when it is needed, i.e., N, is too low.
= Avoids drift when the tracked state is stationary.
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Sampling-Importance-Resampling (SIR)

function [X;] = SIR [Xi_1,¥:]
g Initialize
for i = I:N

Sample xt ~ p(x,[x}_,) Generate new samples

wy — plyifx;) Update weights

end
for i = I:N
Draw i with probability x u',i‘
) Resample
Add x; to X,
end
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Other Variant of the Algorithm

function [X;] = SIR [X;,_1,y.]

Xo—x -0
for i = I:N

Important property:

Particles are distributed
according to pdf from
previous time step.

Sample x; ~ p(x,[x} ;)

wi — p(yefx;)
end
for i = 1:N

Particles are distributed
according to posterior
from this time step.

Draw i with probability

Add %t to X,
end
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Recap: Condensation Algorithm

Start with weighted
samples from previous
time step

" Sample and shift
=0 according to dynamics
model

h Spread due to
- 55 randomness; this is pre-
dicted density P(X|Y,,)
measuwre Weight the samples
. according to observation
density

Arrive at corrected densit
estimate P(X]Y,)

chservafion
densily

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for
visual tracking, IJCV 29(1):5-28, 1998

rticle Filter ualizal

Code and video available from

http://www.robots.ox.ac.uk/~misard/condensation.html
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ticle Filtering Results

800 ms.

2000 ms

2400 ms

EELECR:

Particle Filtering Results

* Some more examples

_—L- =
http://www.robots.ox.ac.uk/~misard/condensation.html
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Sidenote: Obtaining a State Estimate

« Note that there’s no explicit state estimate maintained,
just a “cloud” of particles
< Can obtain an estimate at a particular time by querying the
current particle set
« Some approaches
— “Mean” particle
= Weighted sum of particles
= Confidence: inverse variance
— Really want a mode finder—mean of tallest peak

vist i eibe
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Condensation: Estimating Target State

From Isard & Blake, 1998

State samples Mean of weighted
(thickness proportional to weight) state samples

ide cradit: Mace Rallaf Ei from isard & Rlak
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Summary: cle Filtering

* Pros:

— Able to represent arbitrary densities

— Converging to true posterior even for non-Gaussian and nonlinear
system

— Efficient: particles tend to focus on regions with high probability

— Works with many different state spaces
= E.g. articulated tracking in complicated joint angle spaces

— Many extensions available
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Summary: Particle Filtering

* Cons / Caveats:
— #Particles is important performance factor
= Want as few particles as possible for efficiency.
= But need to cover state space sufficiently well.
— Worst-case complexity grows exponentially in the dimensions
— Multimodal densities possible, but still single object
= Interactions between multiple objects require special treatment.
= Not handled well in the particle filtering framework
(state space explosion).

References and Further R

» A good description of Particle Filters can be found in Ch.4.3
=

of the following book
— S. Thrun, W. Burgard, D. Fox. Probabilistic
Robotics. MIT Press, 2006.

3
+ A good tutorial on Particle Filters L
— M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2), pp.
174-188, 2002.
* The CONDENSATION paper
— M. Isard and A. Blake, CONDENSATION - conditional density
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propagation for visual tracking, IJCV 29(1):5-28, 1998
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