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• Single-Object Tracking

• Bayesian Filtering
 Kalman Filters, EKF

 Particle Filters

• Multi-Object Tracking

• Visual Odometry

• Visual SLAM & 3D Reconstruction

• Deep Learning for Video Analysis

Course Outline



3
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 8 – Beyond Kalman Filters

Today: Beyond Gaussian Error Models

Figure from Isard & Blake
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Topics of This Lecture

• Recap: Kalman Filter
 Basic ideas

 Kalman filter for 1D state

 General Kalman filter

 Limitations

 Extensions

• Particle Filters
 Basic ideas

 Propagation of general densities

 Factored sampling
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Recap: Tracking as Inference

• Inference problem
 The hidden state consists of the true parameters we care about, 

denoted X.

 The measurement is our noisy observation that results from the 
underlying state, denoted Y.

 At each time step, state changes (from Xt-1 to Xt) and we get a new 

observation Yt.

• Our goal: recover most likely state Xt given

 All observations seen so far.

 Knowledge about dynamics of state transitions.

X1 X2

Y1 Y2

Xt

Yt

…

Slide credit: Kristen Grauman



6
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 8 – Beyond Kalman Filters

Recap: Tracking as Induction

• Base case: 
 Assume we have initial prior that predicts state in absence of any 

evidence: P(X0)

 At the first frame, correct this given the value of Y0=y0

• Given corrected estimate for frame t: 

 Predict for frame t+1

 Correct for frame t+1

predict correct

Slide credit: Svetlana Lazebnik
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Recap: Prediction and Correction

• Prediction:

• Correction:

      1101110 ,,||,,|   ttttttt dXyyXPXXPyyXP 

Dynamics

model

Corrected estimate

from previous step

Slide credit: Svetlana Lazebnik
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Recap: Linear Dynamic Models

• Dynamics model
 State undergoes linear transformation Dt plus Gaussian noise

• Observation model
 Measurement is linearly transformed state plus Gaussian noise

 1~ ,
tt t t dN  x D x

 ~ ,
tt t t mN y M x

Slide credit: Svetlana Lazebnik, Kristen Grauman
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Example: Constant Velocity (1D Points)

time

Measurements

States

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Example: Constant Velocity (1D Points)

• State vector: position p and velocity v

• Measurement is position only
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Example: Constant Velocity (1D Points)

• State vector: position p and velocity v

• Measurement is position only
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Slide credit: Svetlana Lazebnik, Kristen Grauman
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Example: Constant Acceleration (1D Points)

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Example: Constant Acceleration (1D Points)

• State vector: position p, velocity v, and acceleration a.

• Measurement is position only
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Slide credit: Svetlana Lazebnik, Kristen Grauman
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General Motion Models

• Assuming we have differential equations for the motion
 E.g. for (undampened) periodic motion of a linear spring

• Substitute variables to transform this into linear system

• Then we have
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The Kalman Filter

• Kalman filter
 Method for tracking linear dynamical models in Gaussian noise

• The predicted/corrected state distributions are Gaussian
 You only need to maintain the mean and covariance.

 The calculations are easy (all the integrals can be done in closed form).

Slide credit: Svetlana Lazebnik
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The Kalman Filter

Know corrected state from 

previous time step, and all 

measurements up to the 

current one 

 Predict distribution over 

next state.

Time advances: t++

Time update

(“Predict”)

Measurement update

(“Correct”)

Receive measurement

 10 ,, tt yyXP 



tt  ,

Mean and std. dev.

of predicted state:

 tt yyXP ,,0 



tt  ,

Mean and std. dev.

of corrected state:

Know prediction of state, 

and next measurement 

Update distribution over 

current state.

Slide credit: Kristen Grauman
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Kalman Filter for 1D State

• Want to represent and update

   2

10 )(,,, 

  tttt NyyxP 

   2

0 )(,,,  tttt NyyxP 



22
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 8 – Beyond Kalman Filters

Propagation of Gaussian densities

Shifting the mean

Increasing the varianceBayesian update
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1D Kalman Filter: Prediction

• Have linear dynamic model defining predicted state 

evolution, with noise

• Want to estimate predicted distribution for next state

• Update the mean:

• Update the variance:
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for derivations, 

see F&P Chapter 17.3

Slide credit: Kristen Grauman
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1D Kalman Filter: Correction

• Have linear model defining the mapping of state to 

measurements:

• Want to estimate corrected distribution given latest 

measurement:

• Update the mean:

• Update the variance:
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Slide credit: Kristen Grauman Derivations: F&P Chapter 17.3
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Prediction vs. Correction

• What if there is no prediction uncertainty

• What if there is no measurement uncertainty
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The measurement is ignored!

The prediction is ignored!

Slide credit: Kristen Grauman
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Recall: Constant Velocity Example

State is 2D: position + velocity 

Measurement is 1D: position

measurements

state

time

p
o
s
it
io

n

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Constant Velocity Model

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 

before and after 

measurements

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Constant Velocity Model

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 

before and after 

measurements

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Constant Velocity Model

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 

before and after 

measurements

Slide credit: Kristen Grauman Figure from Forsyth & Ponce



30
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 8 – Beyond Kalman Filters

Constant Velocity Model

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 

before and after 

measurements

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Kalman Filter: General Case (>1dim)

PREDICT CORRECT
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Slide credit: Kristen Grauman
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Summary: Kalman Filter

• Pros:
 Gaussian densities everywhere

 Simple updates, compact and efficient

 Very established method, very well understood

• Cons:
 Unimodal distribution, only single hypothesis

 Restricted class of motions defined by linear model

Slide adapted from Svetlana Lazebnik
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Remarks

• Try it!
 Not too hard to understand or program

• Start simple
 Experiment in 1D

 Make your own filter in Matlab, etc.

• Note: the Kalman filter “wants to work”
 Debugging can be difficult

 Errors can go un-noticed

Slide adapted from Greg Welch
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Topics of This Lecture

• Recap: Kalman Filter
 Basic ideas

 Kalman filter for 1D state

 General Kalman filter

 Limitations

 Extensions

• Particle Filters
 Basic ideas

 Propagation of general densities

 Factored sampling
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Extension: Extended Kalman Filter (EKF)

• Basic idea
 State transition and observation model don’t need to be linear functions 

of the state, but just need to be differentiable.

 The EKF essentially linearizes the nonlinearity around the current 

estimate by a Taylor expansion.

• Properties
 Unlike the linear KF, the EKF is in general not an optimal estimator.

 If the initial estimate is wrong, the filter may quickly diverge.

 Still, it’s the de-facto standard in many applications

 Including navigation systems and GPS

𝑦𝑡 = ℎ 𝑥𝑡 + 𝛿

𝑥𝑡 = 𝑔 𝑥𝑡−1, 𝑢𝑡 + 𝜀
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Recap: Kalman Filter – Detailed Algorithm

• Algorithm summary
 Assumption: linear model

 Prediction step

 Correction step
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Extended Kalman Filter (EKF)

• Algorithm summary
 Nonlinear model

 Prediction step

 Correction step

with the Jacobians
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Kalman Filter – Other Extensions

• Unscented Kalman Filter (UKF)
 Used for models with highly nonlinear predict and update functions.

 Here, the EKF can give very poor performance, since the covariance is 
propagated through linearization of the non-linear model.

 Idea (UKF): Propagate just a few sample points (“sigma points”) around 
the mean exactly, then recover the covariance from them.

 More accurate results than the EKF’s Taylor expansion approximation.

• Ensemble Kalman Filter (EnKF)
 Represents the distribution of the system state using a collection (an 

ensemble) of state vectors.

 Replace covariance matrix by sample covariance from ensemble.

 Still basic assumption that all prob. distributions involved are Gaussian.

 EnKFs are especially suitable for problems with a large number of 
variables.
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Even More Extensions

• Switching Linear Dynamic System (SLDS)

 Use a set of k dynamic models A(1),...,A(k), each of which describes a 

different dynamic behavior.

 Hidden variable zt determines which model is active at time t. 

 A switching process can change zt according to distribution .

Figure source: Erik Sudderth
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Topics of This Lecture

• Recap: Kalman Filter
 Basic ideas

 Kalman filter for 1D state

 General Kalman filter

 Limitations

 Extensions

• Particle Filters
 Basic ideas

 Propagation of general densities

 Factored sampling

Today: only main ideas

Formal introduction

next lecture
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When Is A Single Hypothesis Too Limiting?

• Consider this example: 

say we are tracking the 

face on the right using a 

skin color blob to get our 

measurement.

UpdateInitial position

x

y

x

y

Prediction

x

y

Measurement

x

y

Video from Jojic & Frey

Figure from Thrun & KoseckaSlide credit: Kristen Grauman
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Propagation of General Densities

Figure from Isard & Blake
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Factored Sampling

• Idea: Represent state distribution non-parametrically

 Prediction: Sample points from prior density for the state, P(X)

 Correction: Weight the samples according to P(Y |X)
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Slide credit: Svetlana Lazebnik



45
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 8 – Beyond Kalman Filters

Particle Filtering

• (Also known as Sequential Monte Carlo Methods)

• Idea
 We want to use sampling to propagate densities over time

(i.e., across frames in a video sequence).

 At each time step, represent posterior P(Xt|Yt) with weighted sample 

set.

 Previous time step’s sample set P(Xt-1|Yt-1) is passed to next time step 

as the effective prior.
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Particle Filtering

• Many variations, one general concept:
 Represent the posterior pdf by a set of randomly chosen weighted 

samples (particles)

 Randomly Chosen = Monte Carlo (MC)

 As the number of samples become very large – the characterization 

becomes an equivalent representation of the true pdf.

Sample space

Posterior

Slide adapted from Michael Rubinstein
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Particle Filtering

Start with weighted 

samples from previous 

time step

Sample and shift 

according to dynamics 

model

Spread due to 

randomness; this is pre-

dicted density P(Xt|Yt-1)

Weight the samples 

according to observation 

density

Arrive at corrected density 

estimate P(Xt|Yt)

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for 

visual tracking, IJCV 29(1):5-28, 1998

Slide credit: Svetlana Lazebnik

http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
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Particle Filtering – Visualization

Code and video available from

http://www.robots.ox.ac.uk/~misard/condensation.html

http://www.robots.ox.ac.uk/~misard/condensation.html
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Particle Filtering Results

http://www.robots.ox.ac.uk/~misard/condensation.html

http://www.robots.ox.ac.uk/~misard/condensation.html
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Particle Filtering Results

• Some more examples

http://www.robots.ox.ac.uk/~misard/condensation.html

Videos from  Isard & Blake

http://www.robots.ox.ac.uk/~misard/condensation.html
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Obtaining a State Estimate

• Note that there’s no explicit state estimate maintained,

just a “cloud” of particles

• Can obtain an estimate at a particular time by querying the 

current particle set

• Some approaches

 “Mean” particle

 Weighted sum of particles

 Confidence: inverse variance

 Really want a mode finder—mean of tallest peak
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Condensation: Estimating Target State

From Isard & Blake, 1998

State samples 

(thickness proportional to weight)

Mean of weighted 

state samples

Figures from  Isard & BlakeSlide credit: Marc Pollefeys
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Summary: Particle Filtering

• Pros:
 Able to represent arbitrary densities

 Converging to true posterior even for non-Gaussian and nonlinear 

system

 Efficient: particles tend to focus on regions with high probability

 Works with many different state spaces

 E.g. articulated tracking in complicated joint angle spaces

 Many extensions available
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Summary: Particle Filtering

• Cons / Caveats:
 #Particles is important performance factor

 Want as few particles as possible for efficiency.

 But need to cover state space sufficiently well.

 Worst-case complexity grows exponentially in the dimensions

 Multimodal densities possible, but still single object

 Interactions between multiple objects require special treatment.

 Not handled well in the particle filtering framework

(state space explosion).
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• The CONDENSATION paper
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