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Recap: Long Short-Term Memory
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» Inspired by the design of memory cells
» Each module has 4 layers, interacting in a special way.
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Recap: Elements of LSTMs

¢ Output gate layer
» Output is a filtered version of our

gate state.
First, apply sigmoid layer to decide
what parts of the cell state to
output.
» Then, pass the cell state through a

tanh (to push the values to be

v

S o op =a (W, [he—y,x] + b)
T between -1 and 1) and multiply it .
2 with the output of the sigmoid gate. he = o+ tanh (C4)
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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Random Forests

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks

» Current Research Directions
B. Leibe

Recap: Elements of LSTMs

* Forget gate layer
» Look at h, ; and x; and output a
number between 0 and 1 for each
dimension in the cell state C, ;.
0: completely delete this,
1: completely keep this.
fi=a (Wi lhe—y, 2] + by)
* Update gate layer
» Decide what information to store
in the cell state.

» Sigmoid network (input gate layer)
decides which values are updated.

» tanh layer creates a vector of new :
candidate values  that could be
added to the state.

iv = o (Wilheoyxe] + by)
& tanh(We-[heoq, 2] + bed
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Recap: Gated Recurrent Units (GRU)

* Simpler model than LSTM "
» Combines the forget and input
gates into a single update gate z,.
» Similar definition for a reset gate 7,
but with different weights.

» In both cases, merge the cell state
and hidden state.

=0 (W, [h_y1.2])

* Empirical results

~ Both LSTM and GRU can learn much  j, = tanh (W - [r; = hy_q.24])

longer-term dependencies than X
regular RNNs

» GRU performance similar to LSTM

(no clear winner yet), but fewer
parameters.

re = (W, - [he1, 7))

he = (1 — z¢) * hey + 2z¢ % by

ouice: Chrisigpher Qlah itn /icolab github I



http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RWTH//CHEN
Currently Hot Research Directions
* Generative Models

» Networks for image generation
» Generative Adversarial Networks (GAN)

* Towards General Models of Computation
» Memory Networks
» Neural Turing Machines

* Deep Reinforcement Learning

B. Leibe

RWTH/THE
Generative Adversarial Networks (GAN)

* Conceptual view

Real world « Sample
images Rea
A [ ] 5
»  Discriminator - -
3 s
§ Fake
g
g Generator + Sample
e
g 4
s =
3
* Main idea

» Simultaneously train an image generator and a discriminator.
» Interpreted as a two-player game
» Very tricky to train... 9

Memory Networks

¢ Soft, differentiable memory
» Stores <key, value> pairs
» Input is matched to the stored
keys
» Output is the average over all Values Vi
values that correspond to the

matched keys Coefficients ¢i *

Softmax

Dot Products =~

Input (Address) X]

* Key Idea
» Make all steps differentiable.
= Then all parameters (including
access keys, stored values, etc.)
can be learned with end-to-end
supervised learning.
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Generative Networks
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Code  Project and Stride 2
reshape Deconv 1

Decony 2

* Using a network to generate images
» Sampling from noise distribution
» Sequence of upsampling layers to generate an output image

» How can we train such a model to produce the desired output?
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Image from hitps:/blog.openai.cc del:
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Currently Hot Research Directions

* Towards General Models of Computation
» Memory Networks
» Neural Turing Machines

Machine Learning Winter ‘17

10
B. Leibe

End-to-End Memory Networks

* Acloser look at the memory mechanism
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In NIPS 2015.

lmage from otal 201



https://blog.openai.com/generative-models/
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf

Memory Networks

* Problem with this design mf

» Softmax used for the selection involves  ~T_ [ | ” I
a normalization over all stored keys.

» Memory cells that are not accessed get o

almost zero gradient. Output

» When a backpropagation step causes the 0=Y;piCi
accessed memory cell to change, this .
massively affects the gradient flow. Selection

pi = softmax(u’m;)

= Together, this results in bad gradient propagation during learning.
= Very finicky behavior...
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Neural Turing Machines

Extormad Ingut Extermial Output
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* Goal: Enable general computation with Neural Nets
» Again key is to make all operations differentiable.
» Memory + Access operators + Controller
» Learn entire algorithms from examples.
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A. Graves, G. Wayne, |. Danihelka, Neural Turing Machines. arXiv 1410.5401, 2014
15

TRWTH/ACHEN
Deep Reinforcement Learning

* Example application: Learning to play Atari games

Convohution Convolution Fully connected Fully connected
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V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,
pp. 529-533, 2015
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TRWTH/JCHEN
Improved Design

* Gated memory (e.g., Recurrent Entity Network)

key

Jo
date
~ I update
s hy Gating
2 St - , .
£ hy — ¢(Uh; +Vw; + Wsy)
3 N hj
hj+hjHa,0h h; +
[ 4 J )
E T
g M. Henaff, J. Weston, A. Szlam, A. Border, Y. LeCun, Tracking the World State 14
with Recurrent Entity Networks. arXiv 1612.03969, 2016.
RWTH/ACHEN
Currently Hot Research Directions
8 * Deep Reinforcement Learning
3
£
=
2
£
©
S
£
<
8
=
16
B. Leibe
RWTH/ACHEN
Idea Behind the Model
* Interpretation
» Assume finite number of actions
» Each number here is a real-valued
ConvNet quantity that represents the
Q function in Reinforcement Learning
Collect experience dataset:
o » Set of tuples {(s,a,s’r), ... }
i » (State, Action taken, New state, Reward
2 received
2
=4+ L2 Regression Loss )
£ target value predicted valu)e
5 2
é Li(0;) =Fisar.e)~u(p) |:(|: +rmax O(s".a'; 0; }| |Q[s.u: 0; ) :|
£ P
o
s Current reward + estimate of future reward, discounted by y 18
ide credit; Andrej Karpa B. Leibe



https://arxiv.org/abs/1612.03969
https://arxiv.org/abs/1410.5401
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
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Results: Space Invaders
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Comparison with Human Performance
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Success Story: Alpha Go

B. Leibe
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Results: Breakout
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Learned Representation

* t-SNE embedding of DQN last hidden layer (Space Inv.)

B. Leibe

References and Further Reading

* Generative Adversarial Networks (GANS)

» 1.J. Goodfellow,J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks,
arXiv:1406.2661, 2014.

» M. Arjovsky, S. Chintala, L. Boutou, Wasserstein GAN,
arXiv:1701.07875, 2017.

» L. Mescheder, P. Gehler, A. Geiger, The Numerics of GANSs,
arXiv:1705.10461, 2017.
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https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1705.10461

References and Further Reading References and Further Reading

* Memory Networks
» S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, End-to-End Memory
Networks. In NIPS 2015.
» M. Henaff, J. Weston, A. Szlam, A. Border, Y. LeCun, Tracking the

World State with Recurrent Entity Networks. arXiv 1612.03969,
2016.

* DQN paper
> Www.nature.com/articles/nature14236

* Neural Turing Machines

» A. Graves, G. Wayne, |. Danihelka, Neural Turing Machines. arXiv
1410.5401, 2014.

* AlphaGo paper
> Www.nhature.com/articles/nature16961
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http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
https://arxiv.org/abs/1612.03969
https://arxiv.org/abs/1410.5401
http://www.nature.com/articles/nature14236
http://www.nature.com/articles/nature16961

