Recap: Neural Probabilistic Language Model

- **Core idea**
 - Learn a shared distributed encoding (word embedding) for the words in the vocabulary.

Recap: word2vec

- **Goal**
 - Make it possible to learn high-quality word embeddings from huge data sets (billions of words in training set).

- **Approach**
 - Define two alternative learning tasks for learning the embedding:
 - "Continuous Bag of Words" (CBOW)
 - "Skip-gram"
 - Designed to require fewer parameters.

Recap: word2vec CBOW Model

- **Continuous BOW Model**
 - Remove the non-linearity from the hidden layer
 - Share the projection layer for all words (their vectors are averaged)

 \[\text{Bag-of-Words model} \quad \text{(order of the words does not matter anymore)} \]

Recap: word2vec Skip-Gram Model

- **Continuous Skip-Gram Model**
 - Similar structure to CBOW
 - Instead of predicting the current word, predict words within a certain range of the current word.
 - Give less weight to the more distant words
Problems with 100k-1M outputs

- Weight matrix gets huge!
 - Example: CBOW model
 - One-hot encoding for inputs
 - Input-hidden connections are just vector lookups.
 - This is not the case for the hidden-output connections!
- Softmax gets expensive!
 - Need to compute normalization over 100k-1M outputs

Solution: Hierarchical Softmax

- Idea
 - Organize words in binary search tree, words are at leaves
 - Factorize probability of word \(w \), as a product of node probabilities along the path.
 - Learn a linear decision function \(y = v^T h \) at each node to decide whether to proceed with left or right child node.
 - Decision based on output vector of hidden units directly.

Topics of This Lecture

- Recurrent Neural Networks (RNNs)
 - Motivation
 - Intuition
- Learning with RNNs
 - Formalization
 - Comparison of Feedforward and Recurrent networks
 - Backpropagation through Time (BPTT)
- Problems with RNN Training
 - Vanishing Gradients
 - exploding Gradients
 - Gradient Clipping

Recurrent Neural Networks

- Up to now
 - Simple neural network structure: 1-to-1 mapping of inputs to outputs
- This lecture: Recurrent Neural Networks
 - Generalize this to arbitrary mappings

Application: Part-of-Speech Tagging

Legend: Click on the legend words to toggle highlighting. See the top of this page.

Application: Predicting the Next Word
Application: Machine Translation

<table>
<thead>
<tr>
<th>French words</th>
<th>English words</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
</tr>
<tr>
<td>C</td>
<td>Z</td>
</tr>
<tr>
<td><S></td>
<td><E></td>
</tr>
</tbody>
</table>

I. Sutskever, O. Vinyals, Q. Le, *Sequence to Sequence Learning with Neural Networks*, NIPS 2014.

RNNs: Intuition

- Example: Language modeling
 - Suppose we had the training sequence “cat sat on mat”
 - We want to train a language model
 \[p(\text{next word} | \text{previous words}) \]
 - First assume we only have a finite, 1-word history.
 - I.e., we want those probabilities to be high:
 \[p(\text{cat} | <S>) \]
 \[p(\text{sat} | \text{cat}) \]
 \[p(\text{on} | \text{sat}) \]
 \[p(\text{mat} | \text{on}) \]
 \[p(<E> | \text{mat}) \]

- Turning this into an RNN (wait for it...)

- Turning this into an RNN (done!)

- Training this on a lot of sentences would give us a language model.
 - I.e., a way to predict
 \[p(\text{next word} | \text{previous words}) \]
RNNs: Intuition

• Training this on a lot of sentences would give us a language model.

• I.e., a way to predict
 \[p(\text{next word} \mid \text{previous words}) \]

sample!
RNNs: Intuition

• Training this on a lot of sentences would give us a language model.
• I.e., a way to predict \(p(\text{next word} | \text{previous words}) \)

Topics of This Lecture

• Recurrent Neural Networks (RNNs)
 - Motivation
 - Intuition
• Learning with RNNs
 - Formalization
 - Comparison of Feedforward and Recurrent networks
 - Backpropagation through Time (BPTT)
• Problems with RNN Training
 - Vanishing Gradients
 - Exploding Gradients
 - Gradient Clipping

RNNs: Introduction

• RNNs are regular NNs whose hidden units have additional forward connections over time.
 - You can unroll them to create a network that extends over time.
 - When you do this, keep in mind that the weights for the hidden units are shared between temporal layers.

Feedforward Nets vs. Recurrent Nets

• Imagine a feedforward network
 - Assume there is a time delay of 1 in using each connection.
 - This is very similar to how an RNN works.
 - Only change: the layers share their weights.

 \(\Rightarrow \) The recurrent net is just a feedforward net that keeps reusing the same weights.
Backpropagation with Weight Constraints

- It is easy to modify the backprop algorithm to incorporate linear weight constraints
 - To constrain $w_1 = w_2$, we start with the same initialization and then make sure that the gradients are the same:
 $$\nabla w_1 = \nabla w_2$$
 - We compute the gradients as usual and then use
 $$\frac{\partial E}{\partial w_1} + \frac{\partial E}{\partial w_2}$$
 for both w_1 and w_2.

Backpropagation Through Time (BPTT)

- Formalization
 - Inputs x_t
 - Outputs y_t
 - Hidden units h_t
 - Initial state h_0
 - Connection matrices
 - W_{xh}
 - W_{h}
 - W_{h}
 - Configuration $h_t = \sigma(W_{xh}x_t + W_{hh}h_{t-1} + \beta)$

Recap: Backpropagation Algorithm

- Efficient propagation scheme
 - y_i is already known from forward pass! (Dynamic Programming)
 - Propagate back the gradient from layer j and multiply with y_i.

Backpropagation Through Time (BPTT)

- Error function
 - Computed over all time steps:
 $$E = \sum_{1 \leq t \leq T} E_t$$

Backpropagation Through Time (BPTT)

- Backpropagated gradient
 - For weight w_{ij}:
 $$\frac{\partial E_t}{\partial w_{ij}} = \frac{\partial E_t}{\partial h_i} \frac{\partial h_i}{\partial w_{ij}}$$
Backpropagation Through Time (BPTT)

- **Backpropagated gradient**
 - For weight w_{ij}:
 - In general:
 \[
 \frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \leq k < T} \left(\frac{\partial E_t}{\partial h_k} \frac{\partial h_k}{\partial h_{k-1}} \frac{\partial h_{k-1}}{\partial w_{ij}} \right)
 \]

- **Analyzing the terms**
 - For weight w_{ij}:
 \[
 \frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \leq k < T} \left(\frac{\partial E_t}{\partial h_k} \frac{\partial h_k}{\partial h_{k-1}} \frac{\partial h_{k-1}}{\partial w_{ij}} \right)
 \]
 - Propagation term:
 \[
 \frac{\partial h_k}{\partial h_{k-1}} = \prod_{1 \leq i \leq k} \frac{\partial h_i}{\partial h_{i-1}}
 \]

Topics of This Lecture

- Recurrent Neural Networks (RNNs)
 - Motivation
 - Intuition
- Learning with RNNs
 - Formalization
 - Comparison of Feedforward and Recurrent networks
 - Backpropagation through Time (BPTT)
- Problems with RNN Training
 - Vanishing Gradients
 - Exploding Gradients
 - Gradient Clipping

Problems with RNN Training

- **Summary**
 - Backpropagation equations
 \[
 E = \sum_{1 \leq t \leq T} E_t
 \]
 \[
 \frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \leq k < T} \left(\frac{\partial E_t}{\partial h_k} \frac{\partial h_k}{\partial h_{k-1}} \frac{\partial h_{k-1}}{\partial w_{ij}} \right)
 \]
 \[
 \frac{\partial h_k}{\partial h_{k-1}} = \prod_{1 \leq i \leq k} \frac{\partial h_i}{\partial h_{i-1}} = \prod_{1 \leq i \leq k} \mathbf{W}_{ii} \text{diag}(\sigma'(h_{i-1}))
 \]
 - Remaining issue: how to set the initial state h_0?
 - Learn this together with all the other parameters.

- **Training RNNs is very hard**
 - As we backpropagate through the layers, the magnitude of the gradient may grow or shrink exponentially
 - Exploding or vanishing gradient problem!
 - In an RNN trained on long sequences (e.g., 100 time steps) the gradients can easily explode or vanish.
 - Even with good initial weights, it is very hard to detect that the current target output depends on an input from many time-steps ago.
Exploding / Vanishing Gradient Problem

- Consider the propagation equations:
 \[
 \frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \leq s \leq T} \left(\frac{\partial E_s}{\partial h_s} \frac{\partial h_s}{\partial h_{t-s}} \frac{\partial h_{t-s}}{\partial w_{ij}} \right) \\
 \frac{\partial h_t}{\partial h_k} = \prod_{l \geq k} \frac{\partial h_l}{\partial h_{l-1}} = \prod_{l \geq k} W_{hl}^{(l)} \sigma'(h_{l-1}) \\
 = (W_{hl}^{(l)})^t
 \]
- if \(t \) goes to infinity and \(l = t - k \).

 \Rightarrow \text{We are effectively taking the weight matrix to a high power.}

 - The result will depend on the eigenvalues of \(W_{hl} \).
 - Largest eigenvalue > 1 \(\Rightarrow \) Gradients may explode.
 - Largest eigenvalue < 1 \(\Rightarrow \) Gradients will vanish.
 - This is very bad...

Why Is This Bad?

- Vanishing gradients in language modeling
 - Words from time steps far away are not taken into consideration when training to predict the next word.

 - Example:
 - „Jane walked into the room. John walked in too. It was late in the day. Jane said hi to ____“

 \Rightarrow The RNN will have a hard time learning such long-range dependencies.

Gradient Clipping

- Trick to handle exploding gradients
 - If the gradient is larger than a threshold, clip it to that threshold.

Algorithm 1: Pseudo-code for norm clipping the gradients whenever they explode

\[
g \leftarrow \frac{g}{\|g\|} \\
\text{if } \|g\| \geq \text{threshold} \text{ then} \\
\quad g \leftarrow \frac{g}{\text{threshold}} \\
\text{end if}
\]

- This makes a big difference in RNNs

Gradient Clipping Intuition

- Example
 - Error surface of a single RNN neuron
 - High curvature walls
 - Solid lines: standard gradient descent trajectories
 - Dashed lines: gradients rescaled to fixed size

References and Further Reading

- RNNs