Computer Vision - Lecture 22

Repetition

06.02.2017

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Announcements

e Exam
~ 15t Date: Monday, 29.02., 13:30-17:30h
~ 2" Date:Thursday, 31.03., 09:30 - 12:30h
> Closed-book exam, the core exam time will be 2h.

> We will send around an announcement with the exact starting
times and places by email.

e Test exam
~ Date: Thursday, 11.02., 14:15 - 15:45h, room UMIC 025
» Core exam time will be 1h
» Purpose: Prepare you for the questions you can expect.
» Possibility to collect bonus exercise points!
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Announcements (2)

e Feedback to the lecture evaluation
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Announcements

e Today, I’ll summarize the most important points from
the lecture.
~ It is an opportunity for you to ask questions...
~ ...or get additional explanations about certain topics.
> So, please do ask.

e Today’s slides are intended as an index for the lecture.

~ But they are not complete, won’t be sufficient as only tool.

» Also look at the exercises - they often explain algorithms in
detail.
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Repetition

 Image Processing Basics
> Image Formation

Binary Image Processing

> Linear Filters

Y

~ Edge & Structure Extraction

e Segmentation & Grouping

e Object Recognition

e Local Features & Matching

e Object Categorization
e 3D Reconstruction
e Motion and Tracking

B. Leibe
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Recap: Pinhole Camera

e (Simple) standard and abstract model today
> Box with a small hole in it
> Works in practice

image
plane

Source: Forsyth & Ponce

- wvirtual
image

B. Leibe



~  Point

in focus

u
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Source: Shapiro & Stockman

v

Blur

v ' circle

“circles of confusion”

B. Leibe

Recap: Focus and Depth of Field

Thin lens: scene
points at distinct
depths come in focus
at different image
planes.

(Real camera lens
systems have greater
depth of field.)

e Depth of field: distance between image planes where
blur is tolerable



RWTH
Recap: Field of View and Focal Length

e As f gets smaller, image
becomes more wide angle

~ More world points project
onto the finite image plane

Field of view

e As f gets larger, image
becomes more telescopic

> Smaller part of the world
projects onto the finite
image plane
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B. Leibe from R. Duraiswami



RO ONVERSITY
Recap: Color Sensing in Digital Cameras

Bayer grid

Estimate missing compo-
nents from neighboring
values (demosaicing)
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B. Leibe Source: Steve Seitz
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Repetition

 Image Processing Basics
> Image Formation
> Binary Image Processing
> Linear Filters

~ Edge & Structure Extraction

e Segmentation & Grouping

e Object Recognition

e Local Features & Matching

e Object Categorization
e 3D Reconstruction
e Motion and Tracking

B. Leibe

]

L ot |

A*B=(AGB)®B

Morphological Operators

L1

Connected Components

10



Recap: Binary Processing Pipeline

e Convert the image into binary form
> Thresholding

e Clean up the thresholded image
> Morphological operators

e Extract individual objects
> Connected Components Labeling

e Describe the objects
> Region properties
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B. Leibe Image Source: D. Kim et al., Cytometry 35(1), 1999



©
—
S~
Te)
—
n
=
c
=
B
>
g
S
Q
S
@)
@)

Recap: Robust Thresholding

background
frequency

H object

..,

Source: Robyn Owens B. Leibe

frequency

pixel value

Ideal histogram,
light object on
dark background

Actual observed
histogram with
noise

Assumption here:
only two modes

12
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RWTH
Recap: Global Binarization [Otsu’79] seqse

e Precompute a cumulative grayvalue histogram h.

e For each potential threshold T

1.) Separate the pixels into two clusters according to T.

2.) Compute both cluster means £ (T) and z,(T).
Look up n;, n,in h

(1) = @y <T3l, n2(D) =@y 2T}
3.) Compute the between-class variance ofetween (T)
Oretuween(T) = 11(D)na(T) [p1(T) — pa(T))°

e Choose the threshold that maximizes
T* = argmax |0} (T)]

O
T between

13
B. Leibe



RWNTH
Recap: Background Surface Fitting

e Document images often contain a smooth gradient
—=Try to fit that gradient with a polynomial function

Al

L
200 300 400 a00 BO0 700 800

Original image / Fitted surface

=— 678 gy 2801
sarrany

10 1z w 18 18
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200 |

=]
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We show the ROC curve for the

support vectors (bold solid line), two

10 and 100 reduced sets (both in >
che ina of the 100 rad..

- l\-uu\-bu SEt <O~

ith the full set of support vectors.
two element sets of 200 and 576 cle-
ine). Note that an element set of 576
asingle support vector. Hence, the
ivalent to the 10 reduced set in terms
uses much less memory.
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4: Face Dataset: We show the ROC curve for the Pigure 4; Face Dataset: We show the ROC curve for the
full set SVM of 1434 support vectors (bold solid line), two fall pet S¥M of 1434 support vectore (bold golid ling), 1wo
weduced set methods of 10 and 100 reduced sets (both in reduged st methods of 10 and 100 reduced scts (hoth in
dashed line). The dashed line of the 100 reduced set co- E—— dushed line). The deshed line of the 100 reduced set co-
Incide almost entirely with the full st of support vectors. Incide slmost entirely with the full set of support vectors,
In addition, we show two element sets of 200 and 576 ele- In sddition, we shaw two element sets of 200 and 576 cle-
meats (both in solid line). Note that an element set of 576 meata {both in solid ling). Note that an element set of 578
elements is equivalent to a single support vector. Hence, the eléanents is oquivalent to n single support vector. Hence, the
B76 element set is equivalent to the 10 reduced set in terms 576 slameut set is equivalent to the 10 reduced set in terms
of classification power but uses much less memory. of classification power but uses much less memary.

Shading compensation Binarized result

©
—
S~
Te)
—
n
=
c
=
B
>
g
S
Q
S
@)
@)

Source: S. Lu & C. Tan, ICDAR’07 B. Leibe



Recap: Dilation

e Definition

.~ “The dilation of A by B is the set
of all displacements Z, such that : i

(B), and A overlap by at least one B v
elei*ment”. A ADB,
- ((B), is the mirrored version of B,

shifted by 2)
O
L [ e | ___________
5N e Effects |
% > |If current pixel Z is foreground, set all B, |
g pixels under (B), to foreground.
?:J = Expand connected components
3 = Grow features
s = Fill holes A®B,

15

Image Source: R.C. Gonzales & R.E. Woods

B. Leibe



Recap: Erosion

e Definition

“The erosion of A by B is the set
of all displacements Z, such that

(B), is entirely contained in A”. oL
A ASB,
e Effects
© . If not every pixel under (B), is
d o L L]
T foreground, set the current pixel Z :
s to background. | | | A8 |
S = Erode connected components B, AOB,
2 = Shrink features
3 = Remove bridges, branches, noise
=
S
16

B. Leibe Image Source: R.C. Gonzales & R.E. Woods



Recap: Opening

e Definition

]
- Sequence of Erosion and Dilation —
A-B=(ASB)®B e
- I B
50 320
> A ¢ Bis defined by the points that A“B=(AGB)®B

are reached if B is rolled around

Ao B =U{(B)I(B),C A}

inside A. A
. Translates of B in A
= Remove small objects, Z
keep original shape. AN O
17

B. Leibe
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Image Source: R.C. Gonzales & R.E. Woods



Recap: Closing

e Definition

]
~ Sequence of Dilation and Erosion —
A-B=(A®B)SB .
% ------------ == f ﬁ
B L
,,,,,,,,,,,, e M
_____________ R ADB
o Effect L -
© . A - B is defined by the points that ] : ] :
% are reached if B is rolled around ~ I Apmaenes
2 on the outside of A.
S = Fill holes, ’ .
> keep original shape. \/ \v
(]
o
= A
O
= _ 18
B. Leibe

Image Source: R.C. Gonzales & R.E. Woods



Recap: Connected Components Labeling

 Process the image from left to
right, top to bottom:

1.) If the next pixel to process is 1
i.) If only one of its neighbors 57-512% 1 EAH 1 % 111
(top or left) is 1, copy its label. 3 1
4 5/5/5/5 1
6/6/6/6/6/6 7|7
888

ii.) If both are 1 and have the
same label, copy it.

é iii.) If they have different labels

< — Copy the label from the left.

Lo — Update the equivalence table.

n

= :i iv.) Otherwise, assign a new label.

S

2

>

5l ¢ Re-label with the smallest of equivalent %l 2, 7}
o labels e
E } r ’

(@]

@)

Slide credit: J. Neira B. Leibe



Recap: Region Properties

e From the previous steps, we can
obtain separated objects.

e Some useful features can be
extracted once we have connected
components, including

> Area

> Centroid

> Extremal points, bounding box
> Circularity

> Spatial moments
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Recap: Moment Invariants Exerc, S

e Normalized central moments

Hpg pP+(Q
MNpg =, = +1
™ Hoo 4 2
e From those, a set of invariant moments can be defined
for object description.
% =120+ oz (Additional invariant
2 2
@, = (1,0 —1p2)" +417, moments @, g5, @,

can be found in the

= —3 2 3 _ ’
P = (1130 —3115)" + (3171 — 1o3) literature).

@, = (30 + 7712)2 + (77, + 7703)2

e Robust to translation, rotation & scaling,
but don’t expect wonders (still summary statistics).
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Repetition

 Image Processing Basics
> Image Formation
Binary Image Processing
> Linear Filters
~ Edge & Structure Extraction

Y

e Segmentation & Grouping

e Object Recognition 4
Derivative operators

= me
o

Gaussian/Laplacian pyramid

e Local Features & Matching
e Object Categorization
e 3D Reconstruction

e Motion and Tracking
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Recap: Effect of Filtering

* Noise introduces high frequencies.
To remove them, we want to apply a ) /-"\

“low-pass” filter.

e The ideal filter shape in the
frequency domain would be a box.
But this transfers to a spatial sinc, —
which has infinite spatial support.

|
e A compact spatial box filter .
transfers to a frequency sinc, which “P—
creates artifacts. - -

e A Gaussian has compact support in

both domains. This makes it a .
convenient choice for a low-pass N e

filter.
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Recap: Gaussian Smoothing ExeroSe

e Gaussian kernel
1 @24y
Gy = e 252
2ol

e Rotationally symmetric

e Weights nearby pixels more
than distant ones

~ This makes sense as
‘probabilistic’ inference
about the signal

e A Gaussian gives a good model
of a fuzzy blob
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B. Leibe Image Source: Forsyth & Ponce



RWNTH
Recap: Smoothing with a Gaussian

e Parameter ¢ is the “scale” / “width” / “spread” of the
Gaussian kernel and controls the amount of smoothing.

(o)
S
Lo
—
n
E 0 10 20 30 0 10 20 30 0 10 20 30
:% for sigma=1:3:10
E h = fspecial ('gaussian', fsize, sigma);
% out = imfilter(im, h);
g imshow (out) ;
o) ause;
= P
end

Slide credit: Kristen Grauman B. Leibe
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Recap: Resampling with Prior Smoothing

256 x 256 128 x 128 64 x 64 32 %32 16 x 16

no
smoothing

Gaussian
g=1

Gaussian
=2

e Note: We cannot recover the high frequencies, but we

can avoid artifacts by smoothing before resampling.
26

B. Leibe Image Source: Forsyth & Ponce



RO ONVERSITY
Recap: The Gaussian Pyramid
Low resolution g Ci=(G* Qa_USSian) 2

‘ * ATy AW I-samp | g
d
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High resolution 27

B. Leibe Source: Irani & Basri
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Recap: Median Filter

* Basic idea

> Replace each pixel by the
median of its neighbors.

Median value

* Properties

> Doesn’t introduce new pixel
values

> Removes spikes: good for
Impulse, salt & pepper noise

> Nonlinear

> Edge preserving

Slide credit: Kristen Grauman B. Leibe
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Recap: Derivatives and Edges...

1st derivative

u I
-0k

. Maxima of first

1n il an 40 50 (51) 70 a0 o 20 . .
/ derivative

]

I] 10 20

10F

—
2nd derivative

“zero crossings”
of second
derivative

L L L L L L L L
1] 1o 20 3o 40 a0 GO 70 a0 a0 100
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0 10 20 ] 40 =1l =11} 70 a0 a0

29




RWTH
Recap: 2D Edge Detection Filters — sengse
Y

e 4 14 "
"\.\
JONIT
iRy
i
y '\:':
T -
A i . Laplacian of Gaussian
y 50N
I s
i S
3?‘%&:"*“:‘:‘““““““ WI{"&,“‘Q““\\‘\W”’V’"%
R SR
SN

Gaussian

1 _ultv?

holu,v) = ——e 202
O’( b ) 27_(_0_2

e VZis the Laplacian operator:

o2 92
v2f — 8:13]; | 8y£
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Slide credit: Kristen Grauman B. Leibe



Repetition

 Image Processing Basics
> Image Formation
Binary Image Processing
> Linear Filters
» Edge & Structure Extraction

Y

e Segmentation & Grouping
e Object Recognition
e Local Features & Matching

e Object Categorization
e 3D Reconstruction
e Motion and Tracking

O,
»
.
.
. —_—
.
g
Q
Q
)

Hough transform for circles 3
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B. Leibe



RWTH
Recap: Canny Edge Detector Srercies
-6/

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):
» Define two thresholds: low and high

> Use the high threshold to start edge curves and the low
threshold to continue them

e MATLAB:

>> edge (image, ‘canny’) ;
>> help edge
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adapted from D. Lowe, L. Fei-Fei



Recap: Edges vs. Boundaries

Edges useful signal to
indicate occluding
boundaries, shape.

O
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Here the raw edge ..but qu often boundaries of
output is not so bad... are fragmented, and we have extra
“clutter” edge points. 33

Slide credit: Kristen Grauman
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Recap: Chamfer Matching

e Chamfer Distance

~ Average distance to nearest feature

1
Dr:h..r;,-mfH'(T: I) = T df (ﬂ

A=

M

~ This can be computed efficiently by correlating the edge
template with the distance-transformed image

Edge image Distance transform image
[D. Gavrila, DAGM’99]
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Recap: Fitting and Hough Transform

Given a model of interest,
we can overcome some of
the missing and noisy
edges using fitting tech-
niques.

With voting methods like
. the Hough transform,

! detected points vote on

B 1 possible model parame-
ters.
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Slide credit: Kristen Grauman
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Recap: Hough Transform

Y1 y=mx + b
. = (23, 1)
° (:E(” yO) ﬁ
z
Image space

S
E'\'@rc-ee
e 3 7/
b
b= —xgm + Yo
~_ '
\Q 1
bl ] \‘\-
// N~~~
my m

Hough (parameter) space

e How can we use this to find the most likely parameters

(m,b) for the most prominent line in the image space?

» Let each edge point in image space vote for a set of possible
parameters in Hough space

» Accumulate votes in discrete set of bins; parameters with the
most votes indicate line in image space.

Slide credit: Steve Seitz

36



RWTH
Recap: Hough Transf. Polar Parametrization

e Usual (M,b) parameter space problematic: can take on
infinite values, undefined for vertical lines.

[0.,0] X /

0 > d : perpendicular distance
g from line to origin

@ : angle the perpendicular
makes with the x-axis

Xcosfd—ysind=d

e Point in image space
= sinusoid segment in
Hough space
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Slide credit: Steve Seitz
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RWTH
Recap: Hough Transform for Circles %55@@3
<7/

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For an unknown radius I, unknown gradient direction

(%,

Image space Hough space

38
Slide credit: Kristen Grauman



Recap: Generalized Hough Transform

e What if want to detect arbitrary shapes defined by
boundary points and a reference point?

At each boundary point,
compute displacement

vector: I =a — ;.

For a given model shape:
store these vectors in a
table indexed by gradient

orientation 6.

Image space

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]
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Slide credit: Kristen Grauman
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Repetition

 Image Processing Basics

e Segmentation & Grouping
> Segmentation and Grouping
~ Segmentation as Energy Minimization Gestalt factors

e Object Recognition @ :
e Local Features & Matching %

e Object Categorization
K-Means & EM clustering

e 3D Reconstruction

e Motion and Tracking

Mean-shift clustering 4,
B. Leibe
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Recap: Gestalt Theory

e Gestalt: whole or group
> Whole is greater than sum of its parts
~ Relationships among parts can yield new properties/features

e Psychologists identified series of factors that predispose
set of elements to be grouped (by human visual system)

“l stand at the window and see a house, trees, sky.
Theoretically | might say there were 327 brightnesses
and nuances of colour. Do | have “327"? No. | have sky,
house, and trees.”

Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt, a4
Psychologische Forschung, Vol. 4, pp. 301-350, 1923

http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
B. Leibe

41


http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

Recap: Gestalt Factors

® @ ® @ ® ® | Not grouped 2 {> 2?\87 5 5 Darallels
arallelisimn
N o2 ((
® @ o @ ® @ | Proximity
O O e ® O O Similarity ) Y
‘>é 1)
® ® ) ) ® e siniaiy /

o " \ e .\ .‘ Common Fate X Continus
ontinuity
¢ G_OG e

Common Region

. @ @ . DQ Closure

e These factors make intuitive sense, but are very difficult to
translate into algorithms.
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Image source: Forsyth & Ponce

B. Leibe
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Recap: Image Segmentation

e Goal: identify groups of pixels that go together
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B. Leibe

Slide credit: Steve Seitz, Kristen Grauman



Recap: K-Means Clustering

e Basic idea: randomly initialize the k cluster centers, and
iterate between the two following steps

1. Randomly initialize the cluster centers, c,, ..., ¢
2. Given cluster centers, determine points in each cluster
- For each point p, find the closest c;. Put p into cluster i
3. Given points in each cluster, solve for c,
- Set ¢, to be the mean of points in cluster i
4. If c; have changed, repeat Step 2

O
=
L0
—i
U) o
=~ ¢ Properties
|5 > Will always converge to some solution
9} o o
S > Can be a “local minimum”
) - Does not always find the global minimum of objective function:
o 2
£ > > lp — ¢l
8 clusters ¢ points p in cluster 7
B. Leibe a4

Slide credit: Steve Seitz
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RWTH
Recap: Expectation Maximization (EM)

-

—
o

e Goal
> Find blob parameters 6 that maximize the likelihood function:

p(data|f) = H p(x,]0)
e Approach:

1. E-step: given current guess of blobs, compute ownership of each point

2. M-step: given ownership probabilities, update blobs to maximize
likelihood function

3. Repeat until convergence

45

Slide credit: Steve Seitz B. Leibe



RWTH
Recap: Mean-Shift Algorithm Sercing |
. . | | | | .2

* -+

10k _ ]

O L

—4 0 2 4 6 8

e |terative Mode Search
1. Initialize random seed, and window W
2. Calculate center of gravity (the “mean”) of W: " s H(x)
3. Shift the search window to the mean zeW
4. Repeat Step 2 until convergence
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Slide credit: Steve Seitz B. Leibe
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Recap: Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a mode

e Attraction basin: the region for which all trajectories
lead to the same mode
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Slide by Y. Ukrainitz & B. Sarel B. Leibe
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RWTH
Recap: Mean-Shift Segmentation Srercge |
-3/

e Find features (color, gradients, texture, etc)
e Initialize windows at individual pixel locations
e Perform mean shift for each window until convergence

e Merge windows that end up near the same “peak” or
mode 1] |

48

B. Leibe

Slide credit: Svetlana Lazebnik
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Repetition

 Image Processing Basics

e Segmentation & Grouping
> Segmentation and Grouping
> Segmentation as Energy Minimization

e Object Recognition

e Local Features & Matching
e Object Categorization

e 3D Reconstruction

e Motion and Tracking

B. Leibe

Graph cuts

49
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Recap: MRFs for Image Segmentation

e MRF formulation

= Minimize the energy

Unary F(x _ _—
potentials ) ( ’-Y) ; ﬁb( Y )
¢(xi7 yz) =

+ Z ¢(=’Bu in)
t,]

@D(:Ci, xj)

e

o e
=y e f\a

és WS iy

Data (D) Unary likelihood Pair-wise Terms MAP Solution
50
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Recap: Energy Formulation

o Energy function

Z¢ xzayz +Z¢ ZEMIEJ

7] -
Unary Pa1rw15e
potentials potentials

e Unary potentials ¢

» Encode local information about the given pixel/patch

» How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

e Pairwise potentials Nl

> Encode neighborhood information

- How different is a pixel/patch’s label from that of its neighbor?

(e.g. based on intensity/color/texture difference, edges)
B. Leibe
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RWTH
Recap: How to Set the Potentials? "

e Unary potentials
~ E.g. color model, modeled with a Mixture of Gaussians

D(Ti, Yis 0p) logZ% iy k)p(K|2)N (Y5 Uk, L)

= Learn color distributions for each label

/////"f

[

B. Leibe
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RWTH
Recap: How to Set the Potentials?

e Pairwise potentials
~ Potts Model
(i, 253 0p) = Opo(z; # T5)

- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.

> Extension: “Contrast sensitive Potts model”
(i, T4, 6i5(Y); 0p) = 04.9i5(y)0 (i # 5)

where 2
o, =e 1 parav(ly -y

= Discourages label changes except in places where there is also a
large change in the observations.
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RWTH
Recap: Graph-Cuts Energy Minimizati¢ege
-4/

e Solve an equivalent graph cut problem i
1. Introduce extra nodes: source and sink

2. Weight connections to source/sink (t-links) <
by ¢(x, = s) and ¢(z; = t), respectively. &

cut

3. Weight connections between nodes (n-links) ’5:
by %b(%a wj)° k
4. Find the minimum cost cut that separates H S

source from sink.
= Solution is equivalent to minimum of the energy.

e s-t Mincut can be solved efficiently
> Dual to the well-known max flow problem

» Very efficient algorithms available for regular
grid graphs (1-2 MPixels/s)
» Globally optimal result for 2-class problems
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RWTH
Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials Pairwise potentials

E(L) Z E. (L) + > E(L,, L)
t-links Pt n-links Lp E{S’t}

e s-t graph cuts can only globally minimize binary energies
that are SmeOdUIar. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

E(L) can be minimized | &= |E(S,S)+E(t,t) <E(S,t)+E(t,S)
by s-t graph cuts

Submodularity (“convexity”)

e Submodularity is the discrete equivalent to convexity.
» Implies that every local energy minimum is a global minimum.
= Solution will be globally optimal.

55
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First Applications Take Up Shape...

Line _
detection

Circle
detection

Binary
Segmen-
tation

Skin color detection Moment descriptors 5

Image Source: http://www.flickr.com/photos/angelsk/2806412807/
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Repetition

 Image Processing Basics
e Segmentation & Grouping
e Object Recognition

e Local Features & Matching

» Local Features -
Detection and Description

» Recognition with Local Features
e Object Categorization
e 3D Reconstruction

e Motion and Tracking

B. Leibe

M(o,,0p)= g(al)*|:

detector

Xy

If(GD) ley(O-D)_
ley(O-D) Ij(O-D) i

Harris & Hessian Hes(1) = |::xx

Xy

b

70289
scale

Laplacian scale selection

* K |™>
% (AN

LI i i

SIFT descriptor

57



Recap: Local Feature Matching Pipeline

1. Find a set of
distinctive key-
points

2. Define a region
around each
keypoint

3. Extract and
normalize the
region content

O
—
5
(7') Similarity
measure
E I 4. Compute a local
E ) |\ L < descriptor from the
> €:g: coler e:8: coler normalized region
= d(f,, f5)<T
>
= 5. Match local
3 descriptors

_ 58
B. Leibe
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Recap: Requirements for Local Features

e Problem 1:
» Detect the same point independently in both images

e Problem 2:
» For each point correctly recognize the corresponding one

We need a repeatable detector!

We need a reliable and distinctive descriptor!

Slide credit: Darya Frolova, Denis Simakov B. Leibe
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Recap: Harris Detector [Harrisss]

e Compute second moment matrix
(autocorrelation matrix)

M(o,,0,) = 9(0.){ 12(c) lxly(gD)}

IXIy(O-D) Ij(GD)

1. Image
derivatives

2. Square of
derivatives B

3. Gaussian
filter g(o;)

4. Cornerness function - two strong eigenvalues
R=det[M(o,,0)]—cftrace(M (o,,c;))]

=9(1,)9(1y) -[9(L1)F —alg(1) + 91y

5. Perform non-maximum suppression
B. Leibe
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Slide credit: Krystian Mikolajczyk
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. UNIVERSITY
Recap: Harris Detector Responses [Harris8s]

¢

Effect: A very precise
corner detector.
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Slide credit: Krystian Mikolajczyk



RWTHAACHEN

: JHHERSITY
Recap: Hessian Detector [seaudets) Sercioe
-1/

e Hessian determinant

Hessian(l):[:XX :Xy}

Xy

det(Hessian(1)) =11, — 1,

In Matlab:
IXX.*IW—(IXy)"Z

Slide credit: Krystian Mikolajczyk
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. UNIVERSITY
Recap: Hessian Detector Responses [seaudet7s]

Effect: Responses mainly
on corners and strongly
textured areas.
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Slide credit: Krystian Mikolajczyk
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Recap: Automatic Scale Selection

e Function responses for increasing scale (scale signature)

e——
/
4
—

I o e o T T il L e L EL I S e T T T
2.0°2.89 10 20 4?} 19

f(l,.i, (x.0))
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Slide credit: Krystian Mikolajczyk B. Leibe



AN ONVERSITY
Recap: Laplacian-of-Gaussian (LoG)

e Interest points:

> Local maxima in scale
space of Laplacian-of-
Gaussian

o

A

N i
. . A
_ T T 7
F & -r " P
. 215 Scale  AFAAA T
1 . \ NI 7
g
, 5 .
% .
- T T T
L) F

s
N L L
S A S
S S S S

= List of (x, y, 0)
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Slide adapted from Krystian Mikolajczyk B. Leibe
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Recap

Slide credit: Svetlana Lazebnik
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Recap: Key point localization with DoG

e Efficient implementation

> Approximate LoG with a
difference of Gaussians (DoG)

e Approach DoG Detector

~ Detect maxima of difference-
of-Gaussian in scale space

> Reject points with low
contrast (threshold)

> Eliminate edge responses

A

or-
[=]
T
O
o

.
!

Candidate keypoints:
list of (x,Y,0)

Image source: David Lowe



RWTHAACHEN
. UNIVERSITY
Recap: Harris-Laplace mikolajczyk ‘01

1. Initialization: Multiscale Harris corner detection

2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points

o s

Harris-Laplace points
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Slide adapted from Krystian Mikolajczyk B. Leibe



Recap: Orientation Normalization S
e Compute orientation histogram [Lowe, SIFT, 1999

e Select dominant orientation
e Normalize: rotate to fixed orientation

! e

0 1) 2T
69
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Slide adapted from David Lowe - -



Recap: Affine Adaptation

e Problem:
- Determine the characteristic shape of the region.

e Solution: iterative approach
~ Use a circular window to compute second moment matrix.
~» Compute eigenvectors to adapt the circle to an ellipse.

> Recompute second moment matrix using new window and
iterate...
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B. Leibe

Slide adapted from Svetlana Lazebnik

» Assumption: shape can be described by “local affine frame”.
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CHEN
UNIVERSITY

Recap: Iterative Affine Adaptation

1.
2.
3.
4.

Detect keypoints, e.g. multi-scale Harris

Automatically select the scales

Adapt affine shape based on second order moment matrix
Refine point location

K. Mikolajczyk and C. Schmid, Scale and affine invariant interest point detectors, 71
IJCV 60(1):63-86, 2004. Slide credit: Tinne Tuytelaars



http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf

UNIVEF?SI;II%I
Recap: Affine-Inv. Feature Extraction

Eliminate rotational Compare
ambiguity descriptors

IV

# N
% L

LY e e

Extract affine regions Normalize regions

INNSVARREN

FR RS
Xk e

S e
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. 72
Slide credit: Svetlana Lazebnik B. Leibe
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Recap: SIFT Feature Descriptor

e Scale Invariant Feature Transform

e Descriptor computation:
~ Divide patch into 4x4 sub-patches: 16 cells

> Compute histogram of gradient orientations (8 reference angles)
for all pixels inside each sub-patch

> Resulting descriptor: 4x4x8 = 128 dimensions

P
# K>
>>k L
S

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

73

Slide credit: Svetlana Lazebnik B. Leibe


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Repetition

 Image Processing Basics

e Segmentation & Grouping
e Object Recognition

e Local Features & Matching

> Local Features -

Detection and Description Fitting affine transformations

. Recognition with Local Features & homographies

e Object Categorization
e 3D Reconstruction

e Motion and Tracking
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B. Leibe Gen. Hough Transform



Recap: Recognition with Local Features

e Image content is transformed into local features that
are invariant to translation, rotation, and scale

e Goal: Verify if they belong to a consistent configuration

4 | N\
R

Sy -

<

3

U)

= —

c

=

e N\ y
=

2 Local Features,
§ e.g. SIFT

75

Slide credit: David Lowe B. Leibe



Recap: Indexing features

,_,
NI
T
—_—
T

,_,
[ANRNARNN]

—e,

Index each one into
pool of descriptors
p— from previously seen
g D K images

kS ° o0 % o 53,8500 G

a -
: ;\
R
h.) .
X X}
‘ 3
‘ “ ,
T
THHTLLTT
—_—
T
—_—
T

Descfi be

=} Detect or sample

et features features or

(9))] —>

E List of Associated list R

S o —> — ,

= positions, of d- Match to quantized
> scales, dimensional descriptors (visual
= orientations descriptors words)

o

£ : . ..

51| = Shortlist of possibly matching images + feature correspondences

76

Slide credit; Kristen Grauman B. Leibe
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Slide credit: David Nister

RWTHAACHEN
UNIVERSITY

Recap: Fast Indexing with Vocabulary Trees

o g A

Geometric
verification

/ﬁ; [Nister & Stewenius, CVPR’06]
77
B. Leibe
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RWNTH
Recap: Fitting an Affine Transformation

e Assuming we know the correspondences, how do we get
the transformation?

3

N

[N

|
|
~— —
|
l

N

B. Leibe



Recap: Fitting a Homography

e Estimating the transformation

(o)
=
Lo
(7') Homogenous coordinates
= Xp > Xp, e _h11 h12 h13_ "y ] Matrix notation
S X, O X X' = Hx
:g’ & % Y [={hy hy hy(fy o
X, <X '
o Aq B | 7' _h31 h,, 1| X":ilx'
*g- Z
g o hy, Xg, + h12YBl +h;; V, = h,, Xg, T h22y|31 +h,,
AT A
O hy; Xg +hg,yp +1 hy; Xg +hg,yp +1 79
B. Leibe

Slide credit: Krystian Mikolajczyk



Recap: Fitting a Homography ExeroSe

e Estimating the transformation

h, Xg + hlz3’51 +hy _XAthl Xg, _)(Aihszys1 —Xp = 0

h21 Xal + hzzyBl + h23 - yA1 h31 XBl - yAlh32yBl - yAl =0

Ah =0 o

B. Leibe

g XAl <_>X31 Xg, Vs, 1 0 0 0 —XpXg  —XpYs —Xp h,, 0
L 0 0 0 X3 Yo 1 =VaXe —YaVs —Ya||Pu| |O
(é) XAZHXBZ ) ) ) ) ) ) ) ) . h22 —
g XA3 HXB3 . . . . . . . . N h23

(% i M| L]
>

« h

(¢D} 32

= 1

o

e

(@]

@)

80

Slide credit: Krystian Mikolajczyk



Recap: Fitting a Homography

e Estimating the transformation

e Solution:
> Null-space vector of A

~ Corresponds to smallest
eigenvector

SVD Ah=0

(do]
=N X, o x l - T T
Lo A o d11 d19 Vig o Vi
0 Xp, €>Xg, A—UDVT —ul . . :
= X, X
2 _d91 d99__V91 Vool
>
)
+— V . .,V o .
2 h= v ) Minimizes least square error
§ Vgg
81
B. Leibe

Slide credit: Krystian Mikolajczyk
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RWTH
Recap: RANSAC Srorges
6.2/

RANSAC loop:

1. Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of
matches)

2. Compute transformation from seed group
3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-
compute least-squares estimate of transformation on
all of the inliers

e Keep the transformation with the largest number of
inliers

82

Slide credit; Kristen Grauman B. Leibe
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Recap: RANSAC Line Fitting Example

e Task: Estimate the best line

Slide credit: Jinxiang Chai B. Leibe
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Recap: RANSAC Line Fitting Example e

e Task: Estimate the best line

°
°
®
o O
°
O ¢ ®
$
®
o o Sample two points
°
B. Leibe

Slide credit: Jinxiang Chai
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Recap: RANSAC Line Fitting Example

e Task: Estimate the best line

Fit a line to them

Slide credit: Jinxiang Chai B. Leibe
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RWNTH
Recap: RANSAC Line Fitting Example

e Task: Estimate the best line

-
-
-
-
-
-
-
-
-

e
-7 "——”
e ‘ -
--" ‘ ————————————
T °
®
o o Total number of points
o within a threshold of
line.
B. Leibe

Slide credit: Jinxiang Chai
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RWNTH
Recap: RANSAC Line Fitting Example

e Task: Estimate the best line

Repeat, until we get a
good result.

Slide credit: Jinxiang Chai B. Leibe
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UNIVEF?EI%
Recap: Feature Matching Example

e Find best stereo match within a square search window
(here 300 pixels?)

e Global transformation model: epipolar geometry

before RANSAC after RANSAC

Images from Hartley & Zisserman

88
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Recap: Generalized Hough Transform

e Suppose our features are scale- and rotation-invariant

> Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).
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B. Leibe

Slide credit: Svetlana Lazebnik
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e Suppose our features are scale- and rotation-invariant

> Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

> Of course, a hypothesis from a single match is unreliable.

> Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins.

90

Slide credit: Svetlana Lazebnik B. Leibe
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Application: Panorama Stitching Panoy., e

Q’na Del’no,

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
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91
[Brown & Lowe, ICCV’03]

B. Leibe


http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Repetition

 Image Processing Basics

e Segmentation & Grouping

e Object Recognition
e Local Features & Matching

* Object Categorization e
> Sliding Window based Object Detection .

= Boosting

0 - Bag-of-Words Approaches

2 - Deep Learning Approaches . N s

=8 o 3D Reconstruction 'Adisoost“] L

S | N A e

= ¢ Motion and Tracking N

a

E Non-faces resholds, and weights

S HOG detector Viola-Jones face detector
92

B. Leibe



R UNVERSITY
Recap: Sliding-Window Object Detection

e |f object may be in a cluttered scene, slide a window
around looking for it.

Car/non-car ]
Classifier

e Essentially, this is a brute-force approach with many
local decisions.
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Slide credit; Kristen Grauman B. Leibe
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UNIVERSITY
Recap: Gradient-based Representations

e Consider edges, contours, and (oriented) intensity
gradlents

e Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations
> Contrast-normalization: try to correct for variable illumination

94

Slide credit; Kristen Grauman B. Leibe



RWTH
Recap: Classifier Construction: Many Choices...

Nearest Neighbor Neural networks

ps 18@10x10
S4:1 maps 16@5x5

e
o™

- L L]
on '.
.
L » -
" .

Berg, Berg, Malik 2005,
Chum, Zisserman 2007, Rowley, Baluja, Kanade 1998
Boiman, Shechtman, Irani 2008, ... .

Boosting Support Vector Machines | | Randomized Forests

H
RN
Viola, Jones 2001, Vapnik, Scholkopf 1995, Amit, Geman 1997,

Torralba et al. 2004, | Papageorgiou, Poggio ‘01,| | Breiman 2001,
Opelt et al. 2006, Dalal, Triggs 2005, Lepetit, Fua 2006,

Benenson 2012, ... Vedaldi, Zisserman 2012 Gall, Lempitsky 2009,...
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Slide adapted from Kristen Grauman B. Leibe



RWTH
Recap: Support Vector Machines (SVMs)

e Discriminative classifier
based on optimal
separating hyperplane
(i.e. line for 2D case)

« Maximize the margin
between the positive
and negative training
examples
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Slide credit; Kristen Grauman B. Leibe
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Recap: Non-Linear SVMs

e General idea: The original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

N :
°
oo e v evmen :
° .- .'. o (D X —_ (I)(X) “““““““““ ®
® leo ~.'.....“ ............ o
® Y e ¢ © ‘ °
o ° o ®
°
5 °
® e
® ® o
° . . ® o ® °
o e ° ®
°

97
Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



http://www.autonlab.org/tutorials/svm.html

RWTH
Recap: HOG Descriptor Processing Chain

e SVM Classification Object/ NOTn-0bJect
~ Typically using a linear SVM Linear SYM
T

Collect HOGs over
detection window

T

Contrast normalize over
overlapping spatial cells

T

Weighted vote in spatial &
orientation cells

T

Compute gradients
T

Gamma compression

T
— Image Window

. e il
N = = e e i
B R s e e e B
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Slide adapted from Navneet Dalal
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RWTH
Recap: HOG Cell Computation Details

e Gradient orientation voting 1
» Each pixel contributes to localized %F }é
gradient orientation histogram(s) Y

~ Vote is weighted by the pixel’s t
gradient magnitude % ‘%{
_ —1(9f ,0f
/ 6 = tan (ZE /9%
k VA= (D7 + (3D

e Block-level Gaussian weighting

~ An additional Gaussian weight is
applied to each 2x2 block of cells

~ Each cell is part of 4 such blocks,
resulting in 4 versions of the
histogram.

99



RWNTH
Recap: HOG Cell Computation Details (2)

e Important for robustness: Tri-linear interpolation

> Each pixel contributes to (up to) 4
neighboring cell histograms (21, 1) (29, 1)
1, Y1 2, Y91

~ Weights are obtained by bilinear .
interpolation in image space:

h(xy,y1) + w - (1— x_wl)(l— y—yl)
T2 — I Y2 — 1
M) w0 (1_ T — 1 ) (y—yl)
Lo — I Y2 — 1
h($2ay1)<—w'(m_$l)(1_y_yl) \
2 —I1 Y2 — 1
r—T —
bazae) - (211 ) (L0
T2 — X1 Y2 —
> Contribution is further split over

(up to) 2 neighboring orientation bins
via linear interpolation over angles.
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UNIVERSITY

Recap: Non-Maximum Suppression

After multi-scale dense scan

Goal

Fusion of multiple detections

. Leibe

Clip detection score

Map each detection to 3D
[x,y,scale] space

Y

Apply robust mode detection,
e.g. mean shift

Non-maximum suppression
101

Image source: Navneet Dalal, PhD Thesis
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Recap: AdaBoost

O O
Weak P O o
Classifier 1 “""\-H__ ________
© o
® 0
Weak

Weights

Increased ® .:
\.:_\’.
Weak }.__': O
Classifier 2 q

classifier 3

Final classifier is
combination of the
weak classifiers

Slide credit: Kristen Grauman

|\

.1

‘ ..
\
° @
\
\
@9
O
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Recap: Viola-Jones Face Detection

“Rectangular” filters
i

Efficiently computable
with integral image: any
sum can be computed
in constant time

Avoid scaling images =
scale features directly
for same cost

Slide credit: Kristen Grauman

Feature output is difference
between adjacent regions

Value at (x,y) is
sum of pixels

above and t
left of (X,y)

X,¥)

o the

Integral image

B. Leibe

D=1+4-(2+3)
=A+(A+B+C+D)—(A+C+ A+ B)
=D

103
[Viola & Jones, CVPR 2001]



RWTH
Recap: AdaBoost Feature+Classifier Selection

e Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Resulting weak classifier:

hg _ { +1 if £(x)> 0,

feature on faces
and non-faces.

© -1 otherwise

0

%))

= | . For next round, reweight the
c P t (X) —> .

S t examples according to errors,
S Outputs of a choose another filter/threshold
(3 possible rectangle combo.

=

O

@)

104

Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]



RWNTH
Application: Viola-Jones Face Detector

4 I
Train cascade of
classifiers with

AdaBoost

.

= gl (|
—

.| =

uE Selected features,
Non-faces thresholds, and weights

e Train with 5K positives, 350M negatives
e Real-time detector using 38 layer cascade

e 6061 features in final layer

e [Implementation available in OpenCV:
http://sourceforge.net/projects/opencvlibrary/]
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Slide credit: Kristen Grauman B. Leibe


http://sourceforge.net/projects/opencvlibrary/
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Repetition

Object —H Bag of “words”

 Image Processing Basics

e Segmentation & Grouping

e Object Recognition

o K,
i : &
T ed

* Local Features & MatChing Bag-of-words repesef&tion
e Object Categorization

> Sliding Window based Object Detection

~ Part-based Approaches e

- Deep Learning Approaches Activation histogram

e 3D Reconstruction

e Motion and Tracking

L]

Implicit Shape Model 106

B. Leibe



RWTHAACHEN
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Recap: Identification vs. Categorization

e Recognize ANY cow

B !
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B. Leibe



Recap: Visual Wq

e Quantize the
feature space into
“visual words”

e Perform matching
only to those visual
words.

©
—
S~
Te)
—
n
=
c
=
B
>
g
S
Q
S
@)
@)

Exact feature matching — Match to same visual word

Slide adapted from Kristen Grauman Figure from Sivic & Zisserman, ICCV 2003
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Recap: Bag-of-Word Representations ?BoW

Object —— Bag of “words”

(0]
A
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—
N
=
c
=
&
>
2
S
o
S
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_ 109
B. Leibe Source: ICCV 2005 short course, Li Fei-Fei



RWNTH
Categorization with Bags-of-Words

e Compute the word
activation histogram for
each image.

Let each such BoW
histogram be a feature
vector.

Use images from each
class to train a classifier
(e.g., an SVM).

Violins
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Slide adapted from Kristen Grauman B. Leibe
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RWNTH
Recap: Advantage of BoW Histograms

e Bag of words representations make it possible to
describe the unordered point set with a single vector
(of fixed dimension across image examples).

[T
I
]
111
[T

 Provides easy way to use distribution of feature types

with various learning algorithms requiring vector input.

Slide credit; Kristen Grauman B. Leibe
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Limitations of BoW Representations

112

e The bag of words
removes spatial
layout.

e This is both a strength
and a weakness.

e Why a strength?

e Why a weakness?
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Recap: Part-Based Models

e Fischler & Elschlager 1973

e Model has two components

> parts
(2D image fragments) LEFT | A6
. structure EDOE

(configuration of parts)
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Recap: Implicit Shape Model - Representation
5 c;,‘ —. (2

EEANEEEAARRAZEEEER...

‘AR RS A RARLAGR YR AT
@, FrryrrIrrv2ysrsir--
N B B B P e s e e e B B A P B - - -
B KXXAKEXKAK
- W BRARnAR
e e (5 axsalalalalals
Training images
(+reference segmentation) 4hkE

e Learn appearance codebook y y
. N &
> Extract. local features at interest points x9 @ *9 .
» Clustering = appearance codebook B
S sl °

e Learn spatial distributions y y

. e . Q Qe ‘
> Match codebook to training images ‘9 ‘% L L
- Record matching positions on object

X
Spatial occurrence distributions
+ local figure-ground labels 114
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A VERSITY
Recap: Implicit Shape Model - Recognition

Interest Points Matched Codebook Probabilistic
~__Entries Voting

lﬁ.

“Generalized Hough Transform
with backprojection” o

®. " g

o 3D Voting Spécg
9 (continuous)
n

=

9}

£

@

o Backprojected Backprojection

§ Hypotheses of Maxima

115
[Leibe, Leonardis, Schiele, SLCV’04; [JCV’08]




Recap: Scale Invariant Voting

e Scale-invariant feature selection
~ Scale-invariant interest points
- Rescale extracted patches
> Match to constant-size codebook

e Generate scale votes

- Scale as 3 dimension in voting space

©

Ry

Lo . _ ) » = S

(‘7') LToote — Limg — a’occ(b m g/ S occ) . .

E Yvote —  Yimg — yocc(s'é-:rng/Socc) s| o e Search
@) i i i <:, . .

(%) Svote  — ('S'i'TTlg/’S()LT(T) . . window
> ® e

= - Search for maxima in 3D voting space T

Q.

S

@)

O
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B. Leibe



Repetition

 Image Processing Basics

° Segmentatlon & Groupmg Convolutional Neural Networks

e Object Recognition

SN

000

e Local Features & Matching

L ObjeCt CategorizatiOn Coanvolution layers
> Sliding Window based Object Detection

O 111124

S P h 5|6 |7 |8 6 | 8
L0 ~ Part-based Approaches e
2 - Deep Learning Approaches 2] 4

c . .

8 o 3D Reconstruction Pooling layers
% . . ' - EEMEEWEMH
51 * Motion and Tracking R N P
=) 1afjaafagplgpliggdat gy gg B9

3 BB B ORY. .0 TEELE

O

O

AlexNet, VGGNet, GoogLeNet, ResNet7
B. Leibe




ONVERSITY
Recap: Convolutional Neural Networks

C3:f. maps 16@10x10

C1:feature maps S4:f. maps 16@5x5 1 44
INPUT SOoe08 belo@ LeNet
32x32 S2: f. maps C5: layer . layer OUTPUT .
6@14x14 120 Py 10 architecture

I | Fullconllnection | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

 Neural network with specialized connectivity structure
> Stack multiple stages of feature extractors
» Higher stages compute more global, more invariant features
> Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: CNN Structure "
17

 Feed-forward feature extraction [ Feature maps }
1. Convolve input with learned filters ﬁ
;O ;Ion-.llnearlt.y [ Normalization }
. Spatial pooling
4. (Normalization) ﬁ
e Supervised training of convolutional [ Spatial pooling }
filters by back-propagating 4
classification error [ Non-linearity

ﬁ

[ Input Image J
119
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Slide credit: Svetlana Lazebnik B. Leibe



Recap: Intuition of CNNs

e Convolutional net

~ Share the same parameters
across different locations

> Convolutions with learned
kernels

Learn multiple filters

> E.g. 1000x1000 image
100 filters
10x 10 filter size

= only 10k parameters

e Result: Response map
. size: 1000x1000x100

> Only memory, not params!
120

Image source: Yann LeCun
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Slide adapted from Marc’Aurelio Ranzato B. Leibe



Recap: Convolution Layers

- Naming convention:
H““mﬂ HEIGHT
I-----....-"""----.

—=0000P
////’VWDTH

DEPTH
32

3

e All Neural Net activations arranged in 3 dimensions

> Multiple neurons all looking at the same input region,
stacked in depth

> Form a single [1x1xdepth] depth column in output volume.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe
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Recap: Activation Maps

Activations:

AL SERERENNCIIAN AR RS ESARTENER ISR

one filter = one depth slice (or activation map) 5x%5 filters

Activatio

HHIIIH

BT

.H Each activation map is a depth
slice through the output volume.

Activation maps

(0]
A
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—
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Slide adapted from FeiFei Li, Andrej Karpathy B Leéibe



Recap: Pooling Layers

Single depth slice

A
« 1112 |4
max pool with 2x2 filters
516 |7 |8 and stride 2 6 | 8
-

31210 3| 4

112 1|3 | 4
O
=
. .
2 y
S
- ¢ Effect:
>
= > Make the representation smaller without losing too much
E information
§ ~ Achieve robustness to translations

123

Slide adapted from FeiFei Li, Andrej Karpathy B Leéibe
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Recap: Effect of Multiple Convolution Layers

Feature Feature Feature Classifier

Low-Level| |Mid-Level _|High-Level Trainable
— —

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]
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Slide credit: Yann LeCun B. Leibe
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Recap: AlexNet (2012)

2 ; Sl”d Max
: of 4 ) poolmg

l

i3 \"
NS

3 48

S Y
i / \\ ' \
| B (o « p
[.. . ' ‘ ' ‘
s ]
13 dense Kensel
1000

Max

pooling

192 192 128 Max . =i
pooling 2048 2048

o Similar framework as LeNet, but

Bigger model (7 hidden layers, 650k units, 60M parameters)
More data (106 images instead of 103)

GPU implementation
Better regularization and up-to-date tricks for training (Dropout)

Y

A%

>

>

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012.

125
Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012


http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Recap: VGGNet (2014/15)

e Main ideas
~ Deeper network

~ Stacked convolutional
layers with smaller
filters (+ nonlinearity)

~ Detailed evaluation
of all components

e Results

> Improved ILSVRC top-5
error rate to 6.7%.

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB imagp)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 [ conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128
maxpool
conv3-256 | conv3-256 | conv3-256 conv3-256 | conv3-256 f§ conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [ conv3-256
convl-256 | conv3-256 || conv3-256
conv3-256
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 || conv3-512
conv3-512
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool T
FC-4096 mallity uscd
FC-4096
FC-1000
soft-max
126
B. Leibe

Image source: Simonyan & Zisserman
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Recap: GooglLeNet (2014)
e |deas: -
» Learn features at multiple scales
> Modular structure Bl B
0| & B4 B0 p,
o] = R 408 gadggdlei
FTIITIL N b declagtondes | [0 )00
e HHALERN LR
0| o =1 i L
e a f
o Convolution
L Inception Pooling
g module copies \ |
- Other
= . .
2 _—7
= e | | s | | o om Auxiliary classification
= T [ | [t | [ outputs for training the
3 \m ”;/ lower layers (deprecated)
O
O (b) Inception module with dimension reductions 127
B. Leibe

Image source: Szegedy et al.



Recap: Residual Networks

AlexNet, 8 layers ;% VGG, 19 layers % ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) % (ILSVRC 2015)

e Core component

> This makes it possible

to train (much) deeper _
networks. H(x)=F(x)+x

o - Skip connections X

9 bypassing each layer

%))

= - Better propagation of weight layer
|5 gradients to the deeper F(x) l rely
Z

E layers weight layer
-z

o

o

£

(@]

O

128

B. Leibe



RWNTH
Recap: Transfer Learning with CNNs

~ ™% 1, Train on ~ Mm% 3 |If you have a medium
come 82 ImageNet come 2 sized dataset,
conv-64 conv-64 “f' 9 s d‘
e . e the old weights as
wwizs 2. If small dataset: fix initialization, train the
maxpool all WelghtS (treat maxpool full network or Only
oy 256 extractor), retrain gony. 256 lavers
maxpool opro maxpool y ¢
only the classifier

3 conv-512 conv-512

B conv-512 cony-512 ] ]

” maxpool l.e., replace the maxpool Retrain bigger

= conv-512 Softmax layer at conv-512 part of the network

= conv-512 the end conv-512

(% maxpool maxpool

z FC-4096 FC-4096

% FC-096 FC-4096

o FC-1000 FC-1000

= softmax softmax

= 129

B. Leibe

Slide credit: Andrej Karpathy
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Repetition

 Image Processing Basics

e Segmentation & Grouping
e Object Recognition

e Local Features & Matching

e Object Categorization

> Sliding Window based Object Detection

~ Part-based Approaches
» Deep Learning Approaches

e 3D Reconstruction

e Motion and Tracking

B. Leibe

warped region

Faster R-CNN

Fully Convolutional Networks
130



RWTH
Recap: R-CNN for Object Detection

R-CNN: Regions with CNN features

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
e Key ideas

> Extract region proposals (Selective Search)

> Use a pre-trained/fine-tuned classification network as feature
extractor (initially AlexNet, later VGGNet) on those regions

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation, CVPR 2014 131

Computer Vision WS 15/16



http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

R\WNTH

Recap: R-CNN for Object Deteection

ConvNet

Slide credit: Ross Girshick

ConvNet

ConvNet

B. Leibe
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Recap: Faster R-CNN

e One network, four losses

> Remove dependence on
external region proposal

Classification Bounding-box
loss regression loss

algorithm.

Classification
loss

Bounding-box
regression loss

Rol pooling

> Instead, infer region
proposals from same
CNN.

~ Feature sharing
> Joint training

= Object detection in
a single pass becomes
possible.

%propcgls — /;1
e /

H.

Region Proposal Network

feature map

Slide credit: Ross Girshick
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Recap: Fully Convolutional Networks

“tabby cat”

e CNN

6 00 o0
pO%p0%A° d 1

1

convolutionalization

[ apaphqs®

tabby cat heatmap

oo

e |ntuition

> Think of FCNs as performing a sliding-window classification,
producing a heatmap of output scores for each class
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Image source: Long, Shelhamer, Darrell




RWNTH
Recap: Semantic Image Segmentation

e Encoder-Decoder Architecture
» Problem: FCN output has low resolution
> Solution: perform upsampling to get back to desired resolution
» Use skip connections to preserve higher-resolution information
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Image source: Newell et al.



Recap: FCNs for Human Pose Estimation

e |Input data

Image Keypoints Labels
ORATIOM 7 PROPER SOCTTD € DRATIOP

919) §41-9211

e Task setup
» Annotate images with keypoints for skeleton joints
» Define a target disk around each keypoint with radius r
» Set the ground-truth label to 1 within each such disk
» Infer heatmaps for the joints as in semantic segmentation
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Slide adapted from Georgia Gkioxari



e Image Processing Basics LT e
Epipolar'geometry

e Segmentation & Grouping
e Object Recognition
e Local Features & Matching

e Object Categorization

e 3D Reconstruction

~ Epipolar Geometry and
Stereo Basics

> Camera Calibration &
Uncalibrated Reconstruction

> Structure-from-Motion

e Motion and Tracking

T == ; e

B. Leibe Dense stereo matching 3

©
—
S~
Te)
—
n
=
c
=
B
>
g
S
Q
S
@)
@)




Recap: What Is Stereo Vision?

e Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape -
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B. Leibe

Slide credit: Svetlana Lazebnik, Steve Seitz



RWNTH
Recap: Depth with Stereo - Basic Idea

e Basic Principle: Triangulation

> Gives reconstruction as intersection of two rays

> Requires
- Camera pose (calibration)
- Point correspondence
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Slide credit: Steve Seitz B. Leibe



Recap: Epipolar Geometry

e Geometry of two views allows us to constrain where the
corresponding pixel for some image point in the first
view must occur in the second view.

epipolar line epipolar line

e Epipolar constraint:

. Correspondence for point p in I1 must lie on the epipolar line /’
in IT’ (and vice versa).

» Reduces correspondence problem to 1D search along conjugate

epipolar lines. 140
B. Leibe
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RWTH
Recap: Stereo Geometry With Calibrated Cameras

X world point

R
e Camera-centered coordinate systems are related by

known rotation R and translation T:

X' =RX+T

B. Leibe
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Slide credit: Kristen Grauman



Recap: Essential Matrix

X'-(TxRX)=0
X'-(Tx RX)=0
Let E=TxR . j -t .
XTEX =0 |

e This holds for the rays p and p’ that
are parallel to the camera-centered -
position vectors X and X’, sowe have: | Pp° Ep =0

* E is called the essential matrix, which relates
corresponding image points [Longuet-Higgins 1981]

B. Leibe
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Slide credit: Kristen Grauman



RWTH
Recap: Essential Matrix and Epipolar Lines

T Epipolar constraint: if we observe
P Ep=0 point p in one image, then its
position p’ in second image must
satisfy this equation.

!,l = Ep is the coordinate vector represen-
ting the epipolar line for point p

(i.e., the line is given
by: [’'x=0)

[ = ET p' IS the coordinate vector representing
the epipolar line for point p’
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Slide credit; Kristen Grauman B. Leibe



Recap: Stereo Image Rectification

e In practice, it is
convenient if image
scanlines are the
epipolar lines.

e Algorithm A’

» Reproject image planes onto a common
plane parallel to the line between optical
centers

> Pixel motion is horizontal after this transformation

> Two homographies (3x3 transforms), one for each
input image reprojection
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Slide adapted from Li Zhang C. Loop & Z. Zhang, Computing Rectifying Homographies for Stereo Vision. CVPR’99



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

RWTH
Recap: Dense Correspondence Search

q“‘"}aom ABRATIAM T. INCOLN, President of Lnltcd States. =g

e For each pixel in the first image
> Find corresponding epipolar line in the right image

» Examine all pixels on the epipolar line and pick the best match
(e.g. SSD, correlation)

> Triangulate the matches to get depth information

e This is easiest when epipolar lines are scanlines
= Rectify images first

adapted from Svetlana Lazebnik, Li Zhang
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Recap: Effect of Window Size

W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same disparity.
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Figures from Li Zhang

Slide credit; Kristen Grauman B. Leibe



Repetition N
 Image Processing Basics

Camera
e Segmentation & Grouping calibration

e Object Recognition

e Local Features & Matching Triangulation
e Object Categorization
O,
=N ¢ 3D Reconstruction . . TEx' =
S . Essential matrix, X Ex =0
(‘7', - Epipolar Geometry and Fundamental matrix TEX =0
= Stereo Basics o
= . . (uu uv U vul ovvov,ul v [ P
2 » Camera Calibration & hoa oo e
2Y2 272 2 2Y2 272 2 2 2 F
S Uncalibrated Reconstruction [u wv v we vweow w1y . .
. . e BIGAEDOINE
= > Structure-from-Motion e w1l algorithm
Q [TRTLTRVARNTS vjuz5 vjvi’s vj uz vz 1 Fa
[J [ ’ ’ ' ’ ’ ’ F32
| * Motion and Tracking R

B. Leibe SVD! 147



Recap: A General Point

e Equations of the form

AX =0

e How do we solve them? (always!)
- Apply SVD

SVD B I 7
l d11 Vii Vi
A=UDV' =U : :

dNN ] _VNl o M

Singular values Singular vectors

> Singular values of A = square roots of the eigenvalues of ATA.
> The solution of Ax=0 is the nullspace vector of A.

> This corresponds to the smallest singular vector of A.
B. Leibe
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Recap: Camera Parameters

e Intrinsic parameters
~ Principal point coordinates m, f s pl [a s x
» Focal length K = m, = a, Y,
- Pixel magnification factors { J{ } { }
> Skew (non-rectangular pixels)
> Radial distortion

e Extrinsic parameters

= CCD Camera with square pixels: 10 DoF

= General camera: 11 DoF 149
B. Leibe

(<o)

§ . Rotation R

(é) > Translation t

= (both relative to world coordinate system)

kS

= ¢ Camera projection matrix P=K|[R|t]
= = General pinhole camera: 9 DoF

£

@)

O




Recap: Calibrating a Camera

Goal

e Compute intrinsic and extrinsic
parameters using observed camera
data.

Main idea
e Place “calibration object” with

B known geometry in the scene

=8 e« Get correspondences

= « Solve for mapping from scene to

> image: estimate P=P, .P_ . 4l

?i 7

S /

S y .
B. Leibe P?

Slide credit: Kristen Grauman



Recap: Camera Calibration (DLT Algorithm)
0" X -yX
X{ 00 —xX] [P
P, |=0 Ap=0
D e 2 Y
X, 00 —x X,
e P has 11 degrees of freedom.

e Two linearly independent equations per independent
2D/3D correspondence.

e Solve with SVD (similar to homography estimation)
> Solution corresponds to smallest singular vector.

e 51 correspondences needed for a minimal solution.
151
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Recap: Triangulation - Lin. Alg. Approach fe.® )
<3/

X, =PX X xPX=0 [X, ]JPX=0
LX,=P,X  x,xPX=0 [X,]P,X=0

e Two independent equations each in terms of
three unknown entries of X.

e Stack equations and solve with SVD.

e This approach nicely generalizes to multiple cameras.
152
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Recap: Epipolar Geometry - Calibrated Case

Slide credit: Svetlana Lazebnik

The vectors x, [, and Rx’ are coplanar

B. Leibe

Camera matrix: [RT | -RT{]
Vector x’ in second coord.
system has coordinates Rx’ in
the first one.

X
[
o \ t ‘
\?/
Camera matrix: [1]|0]
X=(u,v,w, 17
X =(u,v,w)T"

153



Recap: Epipolar Geometry - Calibrated Case

x-[tx(Rx)]=0 ®mE) Xx'Ex'=0 with E=[t]R

8

Essential Matrix
(Longuet-Higgins, 1981)

OJ
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Epipolar Geometry - Calibrated Case

X

[ I’

e ec
(@) ' o’

x-[tx(Rx)]=0 ®mE) Xx'Ex'=0 with E=[t]R

e E x’ is the epipolar line associated with x’ ([ = E x’)
e E7x is the epipolar line associated with x (I’ = E"x)
e Ee’=0 and E’e=0

e E is singular (rank two)

e E has five degrees of freedom (up to scale)
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Epipolar Geometry - Uncalibrated Case

X

e ec
O I O.’

e The calibration matrices K and K’ of the two cameras
are unknown

e We can write the epipolar constraint in terms of
unknown normalized coordinates:

LER =0 X=KX, X =K%
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH/V/
Recap: Epipolar Geometry - Uncalibrated Case

X

OJ

3 (@) \

T 5T = ! T r - T r—1
A K'EX'=0 mm) x'Fx'=0 with F=K'EK
: &4

0 X =KX

?, , A Fundamental Matrix

= X = K (Faugeras and Luong, 1992)

S

S

157

Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Epipolar Geometry - Uncalibrated Case

X

[ I’

e ec
(@) ' o’

R'EX=0 mm) x'Fx'=0 with F=KTEK'"
e Fx’ is the epipolar line associated with x’ ({ = F x’)
e FTx is the epipolar line associated with x (I’ = FTx)

e Fe’=0 and Fe=0

e Fis singular (rank two)
 F has seven degrees of freedom

B. Leibe
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Slide credit: Svetlana Lazebnik



RWNTH
Recap: The Eight-Point Algorithm s

e
( Fi1 3/
x=(u,v, )T, x’=@@’ v’ 17 Fi
! Fi
Fii Fig Fig\(u Fo
Pl
(w,0,1)| For Foy Fyy ||V |=0 ‘ (u, uv', u,vu', vv', v, 0,0, 1) | Fae | =0
F31 FSZ F33 1 Foy
o F3
~ | E Fy9
uu  uv U vuovyvov,ouy L Fll £y )
12
uu, u\Vv, u, V,u, Vv, Vv, u, v, 1
o ’ ’ ’ ’ ’ ’ F13 1.) SOIVG Wlth SVD.
= | uu, uv, u, V.u, Vv.v. V., U, v, 1 ) . . .
S RO F This minimizes
=5 luu uVv, u, vu vV v, u Vv 1| %
N 4¥4 4V4 4 4¥4 4Va 4 4 4 E -0 N
| U UgVp U Velp Vevg Ve up o vl F22 Z (XIT F Xi’ )2
(e
EH U UVe Ug Velg Vevg Ve Up Vg 1 F23 i=1
< 31
; Uy UV Uy Vol VoV vy vy L 2.) Enfore rank-2
+— 32 N o
] | Ugly  UgVg Ug  Vglg  VeVg Vg Uy Vg 1 - constraint using SVD|
E | " 33 _]
s1| * Problem: poor numerical conditioning o
B. Leibe

Slide credit: Svetlana Lazebnik



RWTH
Recap: Normalized Eight-Point Alg.  &e.

XQpn
@I’ClS@ 6. 7
1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD. Set d,, to
syD d,, Vv, - V|~ zeroand
ELUDVT = U .. . reconstruct F

4. Transform fundamental matrix back to original units: if
T and T’ are the normalizing transformations in the two
images, than the fundamental matrix in original
coordinates is T"F T°.
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Slide credit: Svetlana Lazebnik B. Leibe [Hartley, 1995]
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Normalized 8-point

Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel
Slide credit: Svetlana Lazebnik Btete

Recap: Comparison of Estimation Algorithms

61



Recap: Epipolar Transfer

e Assume the epipolar geometry is known

e Given projections of the same point in two images, how
can we compute the projection of that point in a third

image?
% O O X
» X1 X2 | X3 |
= 31 32
5
S — T
. I3, = FlisX
g — ET
E l3, = FlysX;
o
=
O
@)

162

Slide credit: Svetlana Lazebnik B. Leibe
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Repetition

 Image Processing Basics
e Segmentation & Grouping
e Object Recognition

e Local Features & Matching

2m

e Object Categorization

e 3D Reconstruction

~ Epipolar Geometry and
Stereo Basics

> Camera Calibration &
Uncalibrated Reconstruction

> Structure-from-Motion

e Motion and Tracking

B. Leibe

Structure-
Xy from-Motion
\\§

Projective /
ambiguity T -

Affine factorization
3 Points

v

Projective
factorization

SN Euclidean
. % uypgrade 164



Recap: Structure from Motion

e Given: m images of n fixed 3D points

Xij = Pi X, =1L ...,m, j=1,...,n

e Problem: estimate m projection matrices P, and
n 3D points X; from the mn correspondences x;
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Structure from Motion Ambiguity

e |f we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of
1/k, the projections of the scene points in the image
remain exactly the same.

e More generally: if we transform the scene using a

transformation Q and apply the inverse transformation
to the camera matrices, then the images do not change

x =PX = (PQ QX
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Slide crediﬁ: Svetlana Lazebnik
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Recap: Hierarchy of 3D Transformations

Projective
15dof

Affine
12dof

Similarity
7dof

Euclidean
6dof

At Preserves intersection
and tangenc
v v sy
A T Preserves parallellism,
0" 1 volume ratios
SR t Preserves angles, ratios
o’f 1 of length
R t
Preserves angles,
0" 1 lengths

e With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction.

 Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean.

Slide credit: Svetlana Lazebnik

B. Leibe
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RWTH
Recap: Affine Structure from Motion

e Let’s create a 2m x n data (measurement) matrix:

)A(11 )A(12 )A(ln Al
Xoo Xop o0+ X A
D — 21 22 ) 2n | _ :2 [Xl X2 Xn]
A A . A . Points (3 x n)
_Xml Xmz an_ _Am_
Cameras
(2m x 3)

e The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.

B. Leibe

168
Slide credit: Svetlana Lazebnik


http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
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Recap: Affine Factorization

e Obtaining a factorization from SVD:

2m D

Slide credit: Martial Hebert

n
3 < \-.
< i < I

Possible decomposition:

M=UW" S=W/"V’

<

This decomposition minimizes
|ID-MSJ?

)9



Recap: Projective Factorization

Z11X11 £1,X1, 0 LXKy, I:)1
Z,.X Z,.X cee 2o X P
217721 227322 2n\2n 2
D = . —| [Xl Ky o Xn]
. . Points (4 x n)

_Zmlxml Lo Xma2 Zmnxmn_ _Pm_

Cameras

(3m x 4)

D = MS has rank 4

e If we knew the depths z, we could factorize D to
estimate M and S.

e If we knew M and S, we could solve for z.

e Solution: iterative approach (alternate between
above two steps).
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Sequential Projective SfM

e |nitialize motion from two images
using fundamental matrix Points

v

e [nitialize structure T o e e e e e e
e For each additional view: o DD
> Determine projection matrix TR
of new camera using all the % : : : : : : : :
known 3D points that are Ul e e eoeee e
© visible in its image - AR EEEEREE
> calibration i A
(é) ~ Refine and extend structure: ' T
= compute new 3D points,
2 re-optimize existing points
= that are also seen by this camera -
3 triangulation
§ e Refine structure and motion: bundle adjustment

171

Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Recap: Estimating the Euclidean Upgrade

e Goal: Estimate ambiguity matrix C bo- Ix-

> Orthographic assumption:

/ M- MC, S —»C-1S
X

1) Image axes are perpendicular

s R a,-a,=0
dy :
N 2) Scale is 1
a;

§ jay|? = |ay|2= 1

N . . .

= ¢ This can be converted into a system of 3m equations:
=

O (A A (AT T

= d; -, =0 a,CC a,=0 with L=CC'
o ) |a.1| —1 4 aﬂCCT a, =1, i=1..m this translates to
o

o A T T T

3 a,|=1 8,CC'a, =1 ALA =1
@)

172

Slide adapted from S. Lazebnik, M. Hebert B. Leibe



Recap: Bundle Adjustment

e Non-linear method for refining structure and motion
e Minimizing mean- square reprOJectlon error

EP.X) =3 3 Dk, PX, )

=1l j=1
X
<
9
(0))]
; W
c
()]
= 4 Pt h‘\
: M 72
- P2 173

Slide credit: Svetlana Lazebnik B. Leibe
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Repetition

 Image Processing Basics

e Segmentation & Grouping
e Object Recognition

e Local Features & Matching
e Object Categorization

e 3D Reconstruction

e Motion and Tracking
> Motion and Optical Flow

B. Leibe

Motion field

Yodedly Yo Ixly u | | X ey
Yo Iply Y Iyly v | > Iyl

AT A Alp
Lucas-Kanade optical flow

7 K
AY \Y
1y 1y
vy Iy
AN by
oy v
LT y 4
AY AY
11 v 11 v
11 v 11 vy
, \ o \
1 1
\ AY
o \ \ o \ \
1 1
1 \ 1 AY
1 \ 1 \
AY AY
) \ y \
\ \
! \ ! 1 \
1 . S 1
1 1
1 1
] ]
1 1
1 1

Gaussian pyramid Gaussian pyramid

Coarse-to-fine estimation

174



Recap: Estimating Optical Flow

./' Q *
N o
o—> z (@) .
(x,y,t-1) 1(X,y,1)

e Given two subsequent frames, estimate the apparent
motion field u(x,y) and v(x,y) between them.

e Key assumptions

» Brightness constancy: projection of the same point looks the
same in every frame.

> Small motion: points do not move very far.
» Spatial coherence: points move like their neighbors.
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Slide credit: Svetlana Lazebnik B. Leibe



Recap: Lucas-Kanade Optical Flow &

e Use all pixels in a KxK window to get more equations.
e Least squares problem:

- L(p1)  ILy(p1) | - Ii(p1)
Ix(pZ) Iy(PZ) U ] — _ [t(pZ) A d=1b
5 : v 5 25x2 2x1 25x1
| Ie(p2s) Iy(p2s) | Ii(p2s)

e Minimum least squares solution given by solution of
(ATA) d= Alp

Recall the

2X2 2x1 2x1 .
Harris detector!

Shly SLiy||uw|_ | XS]
SLly Sy || v | | STyl

Al A Alp

B. Leibe
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Recap: Iterative Refinement SXorees
6.4/

o Estimate velocity at each o ff” e
pixel using one iteration of BV,
LK estimation. | :

e Warp one image toward the \ Ao
other using the estimated e (]
flow field. "N\ -

e Refine estimate by repeating : "
the process. + A1) )

Initial guess: dp
Estimate: 03 = do + d

e |terative procedure
~ Results in subpixel accurate localization.
» Converges for small displacements.

ol J

A filz — d3) = fa(x)

©
—
S~
Te)
—
n
=
c
=
B
>
g
S
Q
S
@)
@)

177

<Y

Slide adapted from Steve Seitz B. Leibe



Computer Vision WS 15/16
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Recap: Coarse-to-fine Estimation

"
A
i\

[
] A
[ P \
\ \
! 1
, \ \
! \
o \
\ AY
L \ \
! 1 \ \
1
1 \
1 \
) \
\
\
1 \ N
1 ! \ N

1 ! \
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N
AY
N \
! h ' \
1 h \ \
1 \ \
1 ! \ \
1
N \
\
/ N
, \
\
II K
!
I
1 ! \
1 1 \
1 1 \

Gaussian pyramid of image 1

Slide credit: Steve Seitz

u=1.25 pixels

u=2.5 pixels

U=>5 pixels

u=10 pixels

Gaussian pyramid of image 2

178
B. Leibe



Recap: Coarse-to-fine Estimation ’Ex@,;je

A N
My M
AN I

- —, Runiterative L-K _-

Warp & upsample

- —— Run iterative L-K +— -

Computer Vision WS 15/16

Gaussian pyramid of image 1

Gaussian pyramid of image 2

179

Slide credit: Steve Seitz B. Leibe



A INVERSITY
Any Questions?

So what can you do with all of this?
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RWTHAACHEN
. . . . UNIVERSITY
Application: Object Detection

Py ."

h"\\.

ﬁ

Before i T TAften R
global normalization. '~'f‘ ‘rglob ¥zat|on

e
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Application: Multi-Object Tracking UNIVERSITY

e

» )
= Kalman
y Filters

Dynamic
| Bayesian
1B} "™ Networks

)
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e Additional analysis modules for tracked people  Random
> Articulated body pose estimation Forests
- Head orientation estimation rrr.T_\\\
> Human attribute recognition CNNs
>



Computer Vision WS 15/16

RWTHAAC
UNIVERS

Semantic Segmentation

[Pohlen, Hermans, Mathias, Leibe, arXiv 2016]

e More recent results
> Based on an extension of ResNets



Computer Vision WS 15/16

Automotive Applications




A INVERSITY
Any More Questions?

Good luck for the exam!
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